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Abstract

Existing pipelines of semantic correspondence commonly include extracting high-
level semantic features for the invariance against intra-class variations and back-
ground clutters. This architecture, however, inevitably results in a low-resolution
matching field that additionally requires an ad-hoc interpolation process as a post-
processing for converting it into a high-resolution one, certainly limiting the overall
performance of matching results. To overcome this, inspired by recent success
of implicit neural representation, we present a novel method for semantic corre-
spondence, called Neural Matching Field (NeMF). However, complicacy and high-
dimensionality of a 4D matching field are the major hindrances, which we propose
a cost embedding network to process a coarse cost volume to use as a guidance for
establishing high-precision matching field through the following fully-connected
network. Nevertheless, learning a high-dimensional matching field remains chal-
lenging mainly due to computational complexity, since a naïve exhaustive inference
would require querying from all pixels in the 4D space to infer pixel-wise cor-
respondences. To overcome this, we propose adequate training and inference
procedures, which in the training phase, we randomly sample matching candidates
and in the inference phase, we iteratively performs PatchMatch-based inference and
coordinate optimization at test time. With these combined, competitive results are
attained on several standard benchmarks for semantic correspondence. Code and
pre-trained weights are available at https://ku-cvlab.github.io/NeMF/.

1 Introduction

Establishing visual correspondence across semantically similar images is a fundamental problem in
computer vision, which has been facilitating many applications including visual localization [68, 38],
structure-from-motion [69], image editing [1] and autonomous driving [33]. Unlike traditional dense
correspondence tasks [20, 23], where visually similar images of the same scene are used as inputs,
semantic correspondence problem poses additional challenges due to intra-class appearance and
severe geometry variations among object instances [15, 16].

Much research [65, 48, 29, 25, 32, 50, 64, 26, 47, 31, 8, 35, 77, 9] in semantic correspondence
literature attempt to address above challenges by leveraging Convolutional Neural Networks (CNNs)-
based features thanks to their greater semantic invariance than traditional hand-crafted descrip-
tors [37, 10, 66, 3] that only capture low-level local structure. As shown in Fig. 1(a), they typically
perform matching with deeper features that contain high-level semantics to obtain a low-resolution
correspondence map, and they are enforced to use hand-crafted interpolation techniques, e.g., bilinear
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Figure 1: Intuition of the proposed neural matching field (NeMF): (a) existing works [47, 8] and
(b) the proposed NeMF. Unlike existing methods that explicitly compute and store discrete matching
field defined at low resolution, we implicitly represent a high-dimensional 4D matching field with
deep fully-connected networks defined at arbitrary original image resolution.

interpolation [65, 64, 26, 8, 77, 9] or TPS warping with sparse keypoints [48, 50, 47], significantly
reducing localization precision in matching details. Instead of these hand-crafted designs, several
works [25, 76, 19] attempted to formulate a coarse-to-fine approach by utilizing multi-level features,
but they often suffer from the propagation of initial error from the early coarse level.

Inspired by recent success of Implicit Neural Representation (INR) [44, 57, 73, 45, 5, 51] where a
coordinate-based neural network allow to model a continuous field, we propose a novel learnable
framework, dubbed Neural Matching Field (NeMF), that aims to establish high-precision correspon-
dence at arbitrary original image resolution. However, typically, matching field between a pair of
images is complicated and high-dimensional, where a simple fully-connected network, which is
commonly used in INR, may fail to implicitly represent such a high-dimensional matching field. To
better structure the intricate matching field, we propose a cost embedding network that takes a coarse
cost volume to learn cost feature representation and use it as a guidance for generating high-precision
matching field through the following fully-connected network. This is accomplished by designing the
cost embedding network with convolutions [18] and self-attention layers [78] to encapsulate local
contexts and impart to all pixels with global receptive fields of self-attention, which also helps to
compensate for the lack of inductive bias of Transformer by injecting convolutional inductive bias.
The intuition of the proposed method is illustrated in Fig. 1(b).

Although leveraging a cost representation may alleviate the issues for learning the matching field
with details preserved, naïvely performing feed-forward for all pixels of matching field to find
pixel-wise correspondences that are used for providing supervisory signals or inference would be
computationally intractable. To this end, we learn a neural matching field by enforcing the network
to predict the correctness of a correspondence given a set consisting of randomly sampled points
and the ground-truth point. Furthermore, as the intractability issue applies similarly at inference
phase, we propose a novel test-time optimization method that not only adopts a PatchMatch [1]-based
search space sampling strategy in the learned neural matching, but also optimizes the coordinates
for a means of correction that lead to find better correspondences as the iteration progresses. We
alternatively perform both PatchMatch-like inference and coordinate optimization, which works as
an exploration and exploitation solution.

In the experiments, we evaluate the effectiveness of the proposed method using the standard bench-
marks for semantic correspondence [49, 15, 16]. We demonstrate that the proposed implicit matching
field effectively finds high precision correspondences, reporting the dramatically boosted perfor-
mances in comparison to that of hand-crafted interpolation techniques. We also conduct extensive
ablation study to validate our design choices and explore the effectiveness of each components.

2 Related Work

Semantic Correspondence. The earliest works [10, 66, 3, 37] focused on feature extraction stage
by proposing the hand-crafted feature descriptors. Although these works are probably based on
the most well-known traditional hand-crafted feature descriptors, they exhibit limited capability to
capture high-level semantics. Resolving such an issue, convolutional neural networks (CNNs) [72, 18]
made a paradigm shift thanks to their robust representations to deformations, at first replacing the
hand-crafted features with deep features, rapidly converging towards end-to-end learning. Since
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Figure 2: Visualization of matching fields: (a) source image, where the keypoint is marked as green
triangle, (b), (c) 2D contour plots of cost by CATs [8] and the NeMF (ours), respectively, and (d), (e)
3D visualization of cost by CATs [8] and NeMF, with respect to the keypoint in (a). Note that all the
visualizations are smoothed by a Gaussian kernel. Compared to CATs [8], NeMF has higher peak
near ground-truth and makes a more accurate prediction.

then, leveraging deep features has become the de facto standard. Rocco et al. [62] first proposed
an end-to-end geometric matching networks based on the deep feature maps extracted using CNNs
and correlation maps computed between the extracted feature maps. Since then, using correlation
map which contains all pairs of similarities between descriptors has become popular by numerous
matching networks [65, 63, 43, 76, 19, 31, 48, 50, 47, 64, 26, 34, 82, 32, 40, 8]. However, not
only exhaustively computing and storing all pairwise similarities require quadratic memory and
computation complexity with respect to the input spatial size, which is a major downside, but also it
is infeasible to compute them as the resolution increases. This inevitably caused existing methods to
utilize correlation map defined at low resolutions.

On the other hand, notable methods include NC-Net [65] which first proposes to employ 4D convo-
lutions to identify spatially consistent matches by exploring neighbourhood consensus. DHPF [50]
applied probabilistic Hough matching (PHM) [7] to find the matching points. CHM [47] extends
the PHM by employing high-dimensional convolutional kernels to aggregate 6D correlation maps.
CATs [8] and its extension [9] use transformers [78, 12] to explore global consensus from correlation
maps thanks to transformers’ ability to consider long-range interactions. All these works exploit
rich semantics present at high-level features for robust matching across semantically similar images.
However, this inevitably necessitates up-sampling the predicted correspondence field to original
image-level resolutions, which may result in losing precision. Unlike them, we implicitly represent a
matching field at arbitrary image-level resolution, eliminating such a loss and ensure high-precision
correspondence field to be found, as shown in Fig. 2.

Implicit Neural Representation. Implicit neural representation (INR), also known as coordinate-
based representations, is continuous, differentiable signal representation parameterized by neural
networks [45]. INR recently received huge attention, and substantial progress has been made in this
direction. INR is not coupled to spatial resolution, making the memory requirements to parameterize
the input signals orthogonal to spatial resolution.

Notable contributions to INR include COIN [13] that proposes a compression method with INR and
LIIF [5] learns a continuous representation for images that can be presented in arbitrary resolution.
DeepSDF [53] was a pioneering work that enables high quality representation from 3D input data
by leveraging a learned continuous signed distance function. Occupancy networks [44] implicitly
represent the 3D surface as the continuous decision boundary. IM-Net [6] also takes a similar
approach, learning a mapping from coordinates conditioned by shape feature vectors to determine
whether a point is outside or inside the 3D shape.

Since then, INR-based works consistently have attained state-of-the-art performance in 3D computer
vision. As a pioneering work, NeRF [45] represents 3D scenes as neural radiance fields for novel
view synthesis. Inspired by NeRF, a large number of works [81, 54, 70, 28, 55, 59, 14, 79, 42, 58, 2,
73, 4, 51, 80, 61, 5] made a progress in this direction. Although flourished in 3D computer vision
tasks, INR has never been properly studied or explored in visual correspondence tasks, which we
address in this work.
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Figure 3: Overview of network architecture: Given a pair of images as an input, we first extract
features using CNNs [18] and compute an initial noisy cost volume at low resolution. We feed the
noisy cost volume with the proposed encoder consisting of convolution [18] and Transformer [78],
and decode with deep fully connected networks by taking the encoded cost and coordinates as inputs.

3 Preliminary

Neural Radiance Field (NeRF) is a continuous function fω with parameters ω that computes a volume
density σ and RGB color value c = (r, g, b) taking as an input a 3D location o = (x, y, z) and 2D
viewing direction d = (θ, ϕ), such that fω : (o,d) → (σ, c). In practice, as shown in [45, 74],
mapping low dimensional inputs x and d to higher dimensional features before passing them through
the neural networks enables better representing high frequency variations.

Specifically, denoting γ(·) as an encoding function and L as the number of frequency octaves as

γ(t) = [sin(20tπ), cos(20tπ), ..., sin(2Ltπ), cos(2Ltπ)], (1)

the overall process fω : RLo × RLd → R+ × R3 is defined as

{σ, c} = fω(γ(o), γ(d)) (2)

where Lo and Ld denote output dimension of the encoded coordinate o and viewing direction d,
respectively. The function fω is formulated as a fully-connected deep network. This implicit neural
representations are not coupled to spatial resolution for using continuous functions, making the
memory consumption required to parameterize the signal independent of spatial resolution [45, 74].

4 Neural Matching Fields (NeMF)

4.1 Problem Statement and Overview

The overview of NeMF is shown in Fig. 3. Given a pair of source and target images as Is ∈ RHs×Ws

and It ∈ RHt×Wt , our objective is to find a dense correspondence field F (x) that is defined for each
pixel x in original image resolution, which warps Is towards It so as to satisfy It(x) ≈ Is(x+F (x)).

Following traditional matching pipeline, we first extract dense features Ds and Dt from the input
source and target images, and then compute full pair-wise similarity scores between them using
cosine distance such that:

C(x,y) =
Ds(x) ·Dt(y)

∥Ds(x)∥∥Dt(y)∥
, (3)

where x ∈ [0, hs)× [0, ws) and y ∈ [0, ht)× [0, wt), and ∥ · ∥ denotes l-2 normalization. Previous
approaches [50, 47, 8] extracted features from the deep layers of CNN to have high-level semantic
invariance, resulting the spatial resolution of Ds and Dt to be reduced, i.e., h < H and w < W .
Consequently, utilizing the coarse similarity scores C(x,y) to infer correspondences inevitably yields
a low-resolution correspondence map, which additionally requires post-processing to be interpolated
into a high-resolution map [8, 47].

To alleviate this issue, we propose an INR-based learnable framework, called neural matching field
(NeMF), that implicitly represents a high-dimensional 4D matching field to infer high-precision
correspondences at arbitrary scales without any post-processing procedure. Specifically, we formulate
a continuous function fθ as a multi layer perceptron (MLP) with parameters θ in which encoded
position and its corresponding cost feature vector are taken as an input. Formally, denoting 4D
coordinates defined in original image resolution as p = [x,y] where x ∈ [0, Hs) × [0,Ws) and
y ∈ [0, Ht)× [0,Wt), our neural matching field M ∈ RHs×Ws×Ht×Wt is computed as

M(p) = fθ(γ(p), ϕ(C,p)) ∈ [0, 1], (4)
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Figure 4: Overview of neural matching field optimization: Given an encoded cost, we randomly
sample coordinates from uniform distribution. The random coordinates and ground-truth coordinate
are then processed altogether to obtain the matching scores and the cross-entropy loss is computed
for the training signal.

where γ(p) is an encoded point of p, and ϕ(C,p) denotes the cost feature vector at p extracted from
coarse cost volume C. A possible way for the architecture design of function fθ is first concatenating
the two inputs γ(p) and ϕ(C,p), and then passing them through the fully-connected network. This
approach, however, may impose memory intensive batch normalization operation [44]. To address
this, we adopt the architecture of [52], where ϕ(C,p) is added to the input features of each fully-
connected block. In addition, to guarantee the value of 4D matching cost fields to be lied within the
range from 0 to 1, we use a sigmoid function [17] at the end of the networks.

4.2 Cost Embedding Network

Our assumption is that formulating the function fθ(·) without any condition may be challenged when
representing complicated and high-dimensional continuous field. We address this by introducing
cost embedding network where the raw cost volume is further embedded into a cost feature volume
ϕ(C,p), which is used as a guidance for establishing high-precision matching field through the
following fully-connected network fθ(·).
Motivated by recent works [8, 22] that aggregate matching costs for better correspondence hypothesis,
we further embed the raw cost volume through the global receptive fields of self-attention layer [78,
12]. Although these representations are explicitly encoded from all pixels of a cost volume, the
absence of operations that impart inductive bias, i.e., translation equivariance by convolutions or
relative positioning bias, may yield representations with errors. To this end, we combine Transformer
architecture [78] with convolution operator to compensate the lack of inductive bias, allowing local
and global integration of matching cues by encapsulating the local contexts and imparting them to all
pixels via self-attention. Concretely, before providing matching cost to the function fθ, the 4D raw
cost volume C is embedded into 5D cost feature volume C ′ ∈ RHs×Ws×Ht×Wt×K with K channels
which is still defined at low resolution. We then use a quadlinear interpolation on C ′ for a query point
p to a cost feature vector ϕ(C,p) ∈ RK×1.

4.3 Training

As shown in Fig. 4, to train the networks, we use a ground-truth keypoint pair {x,x′} between
an input image pair in a manner that if a query point p = [x,y] is classified as the ground-truth
correspondence, i.e., y = x′, the network output should be encouraged to be 1, and 0 otherwise. We
formulate this as a classification problem, and thus we apply cross-entropy loss to learn to predict the
correctness of a correspondence for a query x in the source image among sampled negative keypoints
y in the target image (where y ̸= x′) and that of ground-truth x′. Even though the better negative
sampling techniques, e.g., hard negative mining [27, 24], can be used, in experiments, we simply
adopt random sampling from uniform distribution as negative samples, as background clutters or
extreme geometric variations inherently present across semantic correspondence datasets [15, 16, 49]
would contribute to robust representation learning. Formally, the loss function is defined as follows:

Lf = −
K∑

k=1

M∗
k log(M(pk)), (5)

where pk denotes k-th query samples for k ∈ {1, ...,K}, and M∗
k is a ground-truth matching score,

e.g., M∗
k = 1 if pk is a ground-truth keypoint pair, and 0 otherwise.
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Figure 5: Illustration of the proposed PatchMatch and coordinate optimization: With the learned
neural matching field, the proposed PatchMatch injects explicit smoothness and reduces the search
range. The subsequent optimization strategy searches for a location that maximizes the score of MLP.

Although this would provide sufficient supervisory signal, we found it is beneficial to provide an
additional explicit supervisory signal for learning better cost features, which positively affect our
PatchMatch [1]-based inference strategy as will be further detailed in Sec. 4.4. To this end, we use
end-point-error [8] between the predicted keypoints using the cost feature representations ϕ(C,p)
directly and the ground-truth keypoints. Concretely, we obtain a channel-wise average pooled cost
feature volume V = avgpool(ϕ(C,p)) ∈ RHs×Ws×Ht×Wt and compute Fpred by applying soft
argmax function to V . We then calculate the Euclidean distance between the ground-truth flow map
computed using the ground-truth keypoints and the predicted flow map as

Lc = ∥Fgt − Fpred∥2. (6)

Combining with Eq. 6, we define the final objective function Ltotal with balancing weights λf and
λc: Ltotal = λfLf + λcLc.

4.4 Inference

PatchMatch-based Sampling. At the inference stage, we aim to find a dense correspondence
field F (x) by leveraging the trained network to determine the correct correspondence for each query
p = [x,y]. However, searching the best match for each coordinate x over all possible matching
candidates y in exhaustive manner results in Hs × Ws × Ht × Wt number of feed-forward per
sample, which is an extremely time consuming and computationally intensive.

To alleviate the issue, we propose PatchMatch [1]-based sampling. PatchMatch [1] runs a sequence
of propagation and update steps to reduce a search space. We use the learned NeMF fθ as a scoring
function to determine the correspondence. To overcome its time-consuming process induced by serial
processing inherited from PatchMatch [1], we propose a GPU-friendly PatchMatch optimization that
performs propagation and update in a parallel manner.

Specifically, for initialization, we utilize an average pooled cost feature volume V introduced in
Section 4.3 . Note that the objective of Eq. 6 directly connects to the initialization step of this
approach. This implies that the better cost feature representations would help to obtain a better
initialization for PatchMatch-based inference. Then for a query x, we sample a set of candidate
correspondences by considering adjacent pixels such that Z l−1 = {F l−1(z)}z for adjacent pixels z
at (l − 1)-th iteration. In addition, a few random points sampled from a uniform distribution are used
to augment Z l−1 such that Y l−1 =

⋃(
Z l−1, {y}

)
for randomly sampled pixels y where

⋃
denotes

an union of the sets. Then the correspondence fields are undated by considering the set of matching
candidate Y l−1 such that

F l(x) = argmaxy∈Yl−1(M([x,y])). (7)

This process is iterated until the convergence. In practice, this candidate selection and scoring run in
parallel for every target pixel. This makes the inference process efficient and GPU-friendly in the
original resolution, compared to serial propagation and update in [30].

Coordinate Optimization. Although the proposed PatchMatch-based inference strategy could
prevent exhaustive searching by effectively sampling the search range for determining the correct
correspondence for each pixel, this may degrade the performance due to several reasons including
insufficient number of iterations that may result in a sub-optimal solution and a limited search range
that provides relatively fewer candidates for consideration. To address this issue, we provide a means
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(a) Source (b) Target (c) N = 5 (d) N = 10 (e) N = 15 (f) N = 20

Figure 6: Visualization of flow maps for different N iterations: (a) source image, (b) target image.
As the number of iteration we set increases along (c), (d), (e) and (f) at inference phase, NeMF with
trained MLP predicts more precise matching fields by PatchMatch-based sampling and coordinate
optimization. Note that different colors of flow maps indicate directions and magnitudes of the flows.

to reduce the potential erroneous inference by adopting test-time optimization strategy that directly
optimize coordinates y that maximizes the correctness of the correspondence using the learned the
network fθ.

Concretely, because the network fθ is naturally differentiable, as shown in Fig. 5, we use a gradient
descent to optimize the target coordinate y in the direction of decreasing the negative log likelihood of
the matching score, with respect to the corresponding source coordinate x. Formally, the coordinate
optimization is performed by iterative updates which can be formulated as:

L = −log(M([x,y])),

y := y − α∇yL,
(8)

where α denotes a step size. Any advanced optimizer can also be used for improved optimiza-
tion [60, 39]. Note that the source coordinate is not updated during this optimization. With the
proposed coordinate optimization, we combine with PatchMatch-based sampling to establish a final
correspondence field as shown in Fig. 5. Each iteration number is defined as N . As exemplified
in Fig. 6, NeMF predicts more precise matching fields by PatchMatch-based sampling and coordinate
optimization as evolving iterations.

Note that the key difference of this test-time optimization to that of DMP [19] is that we optimize
the coordinates to correct themselves to find a better correspondence with by leveraging the already
learned network, while DMP optimizes the parameters of the networks.

5 Experiments

5.1 Implementation Details

For backbone feature extractor, we use ResNet-101 [18] pre-trained on ImageNet [11]. We use the
feature maps resized to 16×16 for constructing a coarse cost volume. For the cost embedding network,
we build upon [8] and its implementations. We implemented our network using PyTorch [56], and
AdamW [41] optimizer with an initial learning rate of 3e−5. We set N = 10 for both PatchMatch and
coordinate optimizations, and learning rate of 3e−4 is used for coordinate optimization. Additional
details are provided in the supplemenatry material.

5.2 Experimental Settings

Datasets. We use three benchmarks, which include SPair-71k [49], PF-PASCAL [16] and PF-
WILLOW [15], to evaluate the effectiveness of the proposed method. SPair-71k [49] provides
total 70,958 image pairs, PF-PASCAL [16] contains 1,351 image pairs from 20 categories, and
PF-WILLOW [15] contains 900 image pairs from 4 categories. Each dataset contains ground-truth
annotations, which we use them for evaluation and training.

Evaluation Metric. For the evaluation metric, we employ a percentage of correct keypoints (PCK),
which is computed as the ratio of estimated keypoints within the threshold from ground-truths to
the total number of keypoints. Assume a predicted keypoint kpred and a ground-truth keypoint
kGT, the number of correctly predicted keypoints are counted, and the condition for deciding the
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Table 1: Quantitative evaluation on standard benchmarks [49, 15, 16, 75]: Higher PCK is better.
The best results are in bold, and the second best results are underlined. All results are taken from the
papers. Eval. Reso.: Evaluation Resolution, Flow Reso.: Flow Resolution.

Methods Eval. Reso. Flow Reso.
SPair-71k [49] PF-PASCAL [16] PF-WILLOW [15]
PCK @ αbbox PCK @ αimg PCK @ αbbox-kp

0.01 0.03 0.05 0.1 0.01 0.03 0.05 0.1 0.01 0.03 0.05 0.1

CNNGeo [62] ori - - - - 20.6 - - 41.0 69.5 - - 36.9 69.2
A2Net [71] - - - - - 22.3 - - 42.8 70.8 - - 36.3 68.8
WeakAlign [63] ori - - - - 20.9 - - 49.0 74.8 - - 37.0 70.2
RTNs [29] - - - - - 25.7 - - 55.2 75.9 - - 41.3 71.9
SFNet [32] 288/ori 20 - - - - - - 53.6 81.9 - - 46.3 74.0
PARN [25] - - - - - - - - 26.8 49.1 - - - -
PMD [35] - 20 - - - 37.4 - - - 90.7 - - - 75.6
PMNC [31] 400 - - - - 50.4 - - 82.4 90.6 - - - -
MMNet [82] 224×320 - - - - 40.9 - - 77.6 89.1 - - - -
DCC-Net [21] 240/ori/- - - - - - - - 55.6 82.3 - - 43.6 73.8
HPF [48] max 300 - - - - 28.2 - - 60.1 84.8 - - 45.9 74.4
GSF [26] - - - - - 36.1 - - 65.6 87.8 - - 49.1 78.7
ANC-Net [34] 240 15 - - - - - - - 86.1 - - - -
NC-Net [65] 240/ori/- 15 - - - 20.1 - - 54.3 78.9 - - 33.8 67.0
DHPF [50] 240 15 - - - 37.3 - - 75.7 90.7 - - - 71.0
CHM [47] 240 15 - - - 46.3 - - 80.1 91.6 - - - 69.6
CATs [8] 256 16 2.3 13.8 27.7 49.9 7.7 49.9 75.4 92.6 2.9 20.4 40.7 69.0

NeMF ori ori 3.2 19.5 34.2 53.6 18.6 61.6 80.6 93.6 3.8 25.4 60.8 75.0

Table 2: Per-class quantitative evaluation on SPair-71k [49] benchmark.

Methods aero. bike bird boat bott. bus car cat chai. cow dog hors. mbik. pers. plan. shee. trai. tv all

CNNGeo [62] 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6
WeakAlign [63] 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9
NC-Net [65] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1
HPF [48] 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 15.9 31.5 35.6 28.2
SCOT [40] 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35.0 27.7 24.4 48.4 40.8 35.6
DHPF [50] 38.4 23.8 68.3 18.9 42.6 27.9 20.1 61.6 22.0 46.9 46.1 33.5 27.6 40.1 27.6 28.1 49.5 46.5 37.3
CHM [47] 49.1 33.6 64.5 32.7 44.6 47.5 43.5 57.8 21.0 61.3 54.6 43.8 35.1 43.7 38.1 33.5 70.6 55.9 46.3
MMNet [82] 43.5 27.0 62.4 27.3 40.1 50.1 37.5 60.0 21.0 56.3 50.3 41.3 30.9 19.2 30.1 33.2 64.2 43.6 40.9
PMNC [30] 54.1 35.9 74.9 36.5 42.1 48.8 40.0 72.6 21.1 67.6 58.1 50.5 40.1 54.1 43.3 35.7 74.5 59.9 50.4
CATs [8] 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58.0 49.9

NeMF 55.6 37.2 76.2 36.9 54.1 62.1 47.5 70.5 26.2 67.6 59.3 57.1 48.0 40.2 42.1 36.7 80.7 66.1 53.6

correctness is defined as follows: d(kpred, kGT) ≤ α · max(H,W ), where d( · ) and α denote
Euclidean distance and a threshold. When we evaluate on PF-PASCAL, we use αimg following other
works [16, 48, 50, 8], SPair-71k and PF-WILLOW with αbbox; H and W denote height and width of
the object bounding box or entire image, respectively.

5.3 Matching Results

To ensure a fair comparison, the model evaluated on SPair-71k [49] is trained on training split of
SPair-71k [49] and the model evaluated on PF-PASCAL [16] and PF-WILLOW [15] is trained on
training split of PF-PASCAL [16].

The results are summarized in Table 1 and the qualitative results are shown in Fig. 7. We note the
resolution which the method is evaluated, since [9, 77] observe that the resolution of images affect
the PCK performance, and the resolution of which the method outputs the correspondence field. It
is shown that NeMF achieves competitive performance or even attains state-of-the-art performance
for several alpha thresholds. More concretely, for lower alpha thresholds, we tend to achieve higher
PCK compared to other works. This implies that the existing works, which rely on interpolation
techniques that prevent from fine-grained matching due to the use of matching field defined at low
resolution, may have suffered from the large resolution gap between the predicted flow and that of
ground-truth. For example, CATs [8] processes the cost volume at 164 and infers a flow map at this
resolution. On the contrary, NeMF avoids this by implicitly representing a matching field at higher
resolution, demonstrating its advantageous approach.

5.4 Ablation Study

In this section, we conduct ablation study to investigate the effectiveness of different configurations
for cost embedding network and effectiveness of the proposed inference strategies. We train the
networks on the training split of SPair-71k [49] and evaluated on the test split.
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(a) CATs [8] (b) NeMF (c) CATs [8] (d) NeMF

Figure 7: Qualitative results on PF-PASCAL [16]: keypoint transfer results by (a), (c) CATs [8]
and (b), (d) NeMF. Green and red line denote correct and wrong prediction (αimg = 0.1), respectively.
Note that correspondences are estimated at the original resolutions of iamges.

Different Cost Feature Representation. Table 3 summarizes the comparison between the effec-
tiveness of cost feature representations learned from different configurations of cost embedding
network. In this ablation study, we compare four configurations. (I) shows the results for exploiting
raw cost volume defined at coarse level. From (II) to (IV), we show the effectiveness of extracting
cost features via convolutions, self-attention layers and integration of both, respectively.

Table 3: Cost feature representation.

Components
SPair-71k [49]
PCK @ αbbox

0.01 0.03 0.05 0.1 0.15

(I) Coarse cost volume 0.3 2.3 5.8 15.5 25.7
(II) Conv. 2.2 14.6 28.3 48.9 59.4
(III) Self-attention 2.5 16.4 30.6 51.7 61.7
(IV) Conv. + self-attention 3.2 19.5 34.2 53.6 63.3

We observe that simply leveraging a raw cost
volume struggles to learn a complicated match-
ing field, as it does not provide a sufficient struc-
tural or detailed information among pixel-wise
similarities. As the cost embedding network is
introduced to learn feature representations, the
performance is dramatically boosted, and our
approach clearly helps to attain the best perfor-
mance by learning more powerful representa-
tions than (II) and (III).

Table 4: Inference strategy. TL denotes Too Long.

Components
SPair-71k [49] Average
PCK @ αbbox run-time per sample

0.01 0.03 0.05 0.1 0.15 [s]

(I) Exhaustive infer. TL TL TL TL TL > 300k
(II) PatchMatch-based infer. 1.1 7.7 15.3 31.4 41.9 7.75
(III) (II) + coordinate opt. 3.2 19.5 34.2 53.6 63.3 8.20

Inference Strategies. In this ab-
lation study, we aim to show a
quantitative comparison between
different strategies at the inference
phase. Table 4 summarizes the re-
sults. Note that we included (I)
to highlight that at the inference
phase, the evaluation on a pair of images with original resolution, for example, would take approx-
imately more than 300k seconds. This clearly shows the infeasibility of adopting naïve inference
strategy.

From (II) to (III), we observe an apparent performance boost, which demonstrates that the proposed
test-time coordinate optimization helps to correct the coordinates for finding better correspondences.
However, this approach has a downside. Applying coordinate optimization inevitably increases the
time taken for the inference, which is a typical limitation of test-time optimization. However, 0.5
second is a minor sacrifice for a better performance. Note that further improvement could be made by
adopting better optimizing strategy, i.e., learning rate, search range or optimizer.
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Computational Complexity. Although the proposed inference strategy enables significantly re-
duced time for establishing correspondence field between a pair of images, in practice, we observe that
assuming we set N = 10, the time taken at the inference phase for a single sample is approximately
8-9 seconds on a single GPU Geforce RTX 3090, which prevents from a real-time inference. This is
an apparent limitation of the proposed approach, but we refer the readers to supplementary material
where we show that without affecting the performance, the memory consumption and run-time can
be controlled.

Table 5: Memory Comparison. OOM : Out of
Memory

Method Train Inference 164 324 644 1284

CHM [47] ✓ ✗ 708 1,538 OOM OOM
✗ ✓ 371 433 OOM OOM

CATs [8] ✓ ✗ 454 3,523 OOM OOM
✗ ✓ 188 302 1882 OOM

NeMF ✓ ✗ 4,205 4,205 4,205 4,205
✗ ✓ 1,528 1,528 2,443 6,309

In addition, we also provide experimental re-
sults that demonstrates the efficiency of the pro-
posed approach in comparison to existing works,
which is summarized in Table 5. Let us assume
that we are representing cost volumes of four
different resolutions, e.g., 16, 32, 64 and 128.
At the training phase, unlike other works that
inevitably consume more memory as the resolu-
tion increases, the proposed approach success-
fully deviates from it thanks to the proposed
training strategy. Furthermore, at the inference
phase, we observe that the proposed approach has an advantage over other methods. Although
NeMF may suffer from relatively larger computation and memory consumption than CATs [8] and
CHM [47] when the resolution is low, it has an advantage when the resolution is high, allowing the
network to exploit highly accurate cost volume with relatively less memory consumption.

6 Conclusion

In this paper, we proposed a novel INR-based architecture, called neural matching fields (NeMF),
that implicitly represent a 4D matching field to find high-precision correspondences. This method
proposed an architecture and training and inference procedures targeted to handle complicacy and
high-dimensionality of a matching field that acts as major hindrances. Specifically, we embed the raw
cost volume with convolutions and Transformer to obtain local and global integration of matching
cues to handle the complicacy, and sampling-based training and inference procedure to handle the
high-dimensionality. We have shown that the proposed method attains state-of-the-art performance
on several benchmarks for semantic correspondence. We also conducted an extensive ablation study
to validate our choices.

Broader Impact

Our implicit representation of cost volume may be beneficial for other domains that utilize a cor-
relation map, which include semantic segmentation [67, 75, 46], object detection [36], and image
editing [37]. It can help to boost the performance by preserving the fine-detailed information within
the cost volume. However, as the proposed approach aims to implicitly represent the cost volume, on
its own, it is not feasible to use for a malicious purpose.

Acknowledgements. This research was supported by the MSIT, Korea (IITP-2022-2020-0-01819,
ICT Creative Consilience program, No. 2020-0-00368, A Neural-Symbolic Model for Knowl-
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