
Appendix

In the appendix, we first provide the details of the uniform encoding strategy. We then give a
detailed proof of the Theorem 2. In Section C, we illustrate the searched architectures with figures.
Supplementary experimental details and more ablation studies are provided in Section D and E
respectively.

A Details of the Uniform Encoding Strategy

In practice, the encoding strategies of different architecture spaces are required to be unified for
implementing the cross-domain predictor. Taking NAS-Bench-101, NAS-Bench-201, and DARTS as
examples, although these three search spaces all use cells to make up architectures, the representation
methods of architectures in different search spaces vary greatly. In addition, the original encoding
strategies for architectures in different search spaces are also quite different, so the progressive
subspace adaptation cannot be carried out directly.

To solve this issue, we propose a uniform encoding strategy that consists of four main steps. These
steps unify the encoding from four aspects, including the number of input, operation location, mapping
of operations, and cell types. After these four main steps, all the cells in NAS-Bench-201 and DARTS
can be converted to the formulation of NAS-Bench-101. And then, we will introduce them in detail
next.

3×3

1×1 MP

In Out
In

Out

1×1

AP

skip
3×3

zeroize

1×1

(a) (b)

sep_3×3

sep_3×3

sep_3×3

skip

sep_3×3

sep_3×3
skip

dil_3×3

In_1

In_2

Out

(c)

Figure 4: Examples in three search spaces. The
subfigure (a): a cell in NAS-Bench-101, (b): a cell
in NAS-Bench-201, (c): a cell in DARTS. ‘In’ de-
notes the input node, and ‘Out’ denotes the output
node. Different operations are represented by 1×1,
3 × 3, etc. 1 × 1 and 3 × 3 denote for 1 × 1 and
3× 3 convolution operations respectively. MP and
AP are short for max pooling and average pooling.

The number of inputs: We firstly separate the
cell having two inputs in DARTS into two cells
with a single input of each. An example is given
based on Fig. 4 (c), and we will introduce how
to separate it into two cells in detail. Suppos-
ing that the first cell contains ‘In_1’, then the
operations only connected to node ‘In_2’ need
to be deleted in the first cell. A similar process
will be carried out in the second cell. This step
unifies the number of ‘input’ nodes in different
cells and ensures that there is only one input in
each cell. At the same time, this step can reduce
the number of operations in cells of DARTS
and make it more similar to the smaller cells in
NAS-Bench-101 and NAS-Bench-201.

Operation location: Another obvious differ-
ence is the operation location. According to
Fig. 4, the operations are represented by ver-
tices in NAS-Bench-101, while are represented
by edges in the remaining two search spaces.
In addition, the skip connection and the zeroize
operation will not appear in the form of NAS-
Bench-101 because they are both implicitly represented by the edges, i.e., the connections. This
step is to convert the cells to the formulation of NAS-Bench-101 because it can be more intuitively
converted into adjacency matrix M and operation feature O0 which are the inputs of CDP. Because
the conversion methods of NAS-Bench-201 and DARTS are almost the same, we only introduce
how to convert the cell in NAS-Bench-201 to the form of NAS-Bench-101. The vertices in cells of
NAS-Bench-201 are densely connected since the vertices in the back may receive the connection
from all the vertices in the front. Then we specify an order for these six edges. After that, the template
adjacency matrix Mt, which should be the same in all cells, can be obtained by regarding the edges as
vertices. Finally, the adjacency matrix is pruned according to skip connection and zeroize operation.

Mapping of operations: One intractable issue is how to encode the feature of operations caused
by the various types of operations. We hope to map the operation types in the target architecture
space and the source architecture space as much as possible and as accurately as possible, and try to
manually divide similar operations into one category based on their characteristics. Firstly, there are
two types of pooling operations, namely max pooling and average pooling. We make their feature

13

encoding the same because of their similar functions. Secondly, there are separable convolutions and
dilated separable convolutions with kernel sizes of 3 and 5 in DARTS. Fortunately, 3×3 convolutions
are utilized in both NAS-Bench-101 and NAS-Bench-201. According to the above principle, the
convolutions with the same kernel size are classified into one category. However, we cannot find
any suitable operation corresponding to the 5× 5 convolutions in the source architecture space. One
solution is to map the 5×5 convolution to the 1×1 convolution which is also isolated. But their roles
in the neural network are too far apart, so we do not choose this solution. Finally, we define these
operations as unknown type, and the ablation study provided in the manuscript proves the benefits of
doing so.

Cell types: There are two types of cells in DARTS, namely normal cell and reduction cell. In the
end, one architecture in DARTS will be represented by totally 4 cells multiple by 2 cells which are
separated from the first step. The weighted sum of these four cell scores is used as the performance
of the architecture. We use the weighted sum score of these four cells as the performance value of the
architecture. Considering the contribution of different types of cells to the entire architecture, four
neural predictors are trained with different datasets split from the whole training datasets of NAS-
Bench-101 and NAS-Bench-201. The size of the training dataset is proportional to the proportion of
the cell type predicted by the neural predictor in the architecture.

After the above four main steps, all the cells in NAS-Bench-201 and DARTS can be converted to
the form of NAS-Bench-101. The last step is to pad zeros to ensure the sizes of all the adjacency
matrices are the same. Following the conventions in [57], the positions of the zero-padding are in the
second to last row and second to last column. In addition, we use one-hot encoding to encode the
operations, namely input, output, convolution 1× 1, convolution 3× 3, pooling, and zeroize. And the
unknown operation is encoded with zeros.

B Proofs

B.1 Proof of Lemma 1.

Lemma 1. Let εT (h) and εS(h) be the expected error on target and source domain and H be a
hypothesis space, for h ∈ H:

εT (h) ≤ εS(h) + dH(D̃S , D̃T) + λ, (14)

where λ = εT (h∗) + εS(h∗) is the combined error of ideal hypothesis h∗ = arg minh∈H(εT (h) +
εS(h)) on both domains.

Proof. We first introduce the A-distance which can measure the difference between probability
distributions. The formulation is shown as follows:

dA(D,D′) = 2 sup
A∈A
|PrD[A]− PrD′ [A]|. (15)

We follow the conventions in domain adaptation to assume a binary classification scenario, where
Y = {0, 1}. For a binary hypothesis spaceH, we use dH to indicate the A-distance.

Let Zh = {z ∈ Z : h(z) = 1} represents the set of latent representations in the latent space Z that
are classified as category 1 by h, h∗ = arg minh∈H(εT (h) + εS(h)), and we have the following
inequalities:

εT (h) ≤ εT (h∗) + PrDT [Zh∆Zh∗], (16)

PrDS [Zh∆Zh∗] ≤ εS(h) + εS(h∗), (17)

where ∆ is the XOR operation. The reason why inequality (16) holds is as follows. The first term
after the inequality sign εT (h∗) is the error rate of h∗, including the error when the hypotheses of
h, h∗ are in agreement, and the second term is the error probability when the hypotheses of h, h∗
are in disagreement. Thus, the expected error on the target domain is less than the sum of these two
terms. The reason why inequality (17) holds as follows. The first term PrDS [Zh∆Zh∗] denotes the
hypotheses of h, h∗ are in disagreement, i.e., h(z)⊕ h∗(z) = 1,⊕ : XOR. At this time, only one of
the hypotheses is wrong, so it is less than the sum of the errors of h and h∗.

14

Let λ = εT (h∗) + εS(h∗), and we can have:

εT (h) ≤ εT (h∗) + PrDT [Zh∆Zh∗]
≤ εT (h∗) + PrDS [Zh∆Zh∗] + |PrDS [Zh∆Zh∗]− PrDT [Zh∆Zh∗]|
≤ εT (h∗) + PrDS [Zh∆Zh∗] + dH(D̃S , D̃T)

≤ εT (h∗) + εS(h) + εS(h∗) + dH(D̃S , D̃T)

≤ εS(h) + dH(D̃S , D̃T) + λ.

B.2 Proof of Theorem 2

Theorem 2. Let d′ be the VC-dimension ofH′, m be the size of ŨS,valid, m′ be the size of unlabeled
samples ŨS and ŨT . With probability of 1− δ, for h ∈ H′:

εT (h) ≤ ε̂S,valid(h) + 2dk(D̃S , D̃T) +
2(d′ logm− log δ)

3m
+

√
2(d′ logm− log δ)

m

+4

√
d′ log(2m′) + log(4

δ)

m′
+ 2 + λ.

(18)

Proof. Firstly, we found an upper bound represented by empirical error on source validation dataset
ε̂S,valid(h) for the expected error on source domain εS(h) in Equation (14). Following the proof
in [32], let κi = εS(h)−L(h(zi), yi) for h ∈ H and zi ∈ ŨS,valid, and m is the size of ŨS,valid. We
have:

εS(h)− ε̂S,valid(h) ≤ 1

m

m∑
i=1

κi(h). (19)

As 0 ≤ εS(h) ≤ 1 and 0 ≤ L(h(zi), yi) ≤ 1, we can derive the boundary −1 ≤ κi ≤ 1 and
E[κi(h)2] ≤ 1, |κi| ≤ 1. By using Bernstein inequality, we have:

Pr

(
1

m

m∑
i=1

κi(h) > ξ

)
≤ exp

(
− ξ2m

2(1 + ξ
3)

)
. (20)

Considering union bound over all h ∈ H, Equation (21) can be derived from Equation (20) with
VC-dimension d′ ofH:

Pr

(
∪h∈H

1

m

m∑
i=1

κi(h) > ξ

)
≤ md′ exp

(
− ξ2m

2(1 + ξ
3)

)
. (21)

Let δ = md′ exp
(
− ξ2m

2(1+ ξ
3)

)
and solve the Equation (21) for ξ:

ξ =
d′ logm− log δ

3m
±

√(
d′ logm− log δ

3m

)2

+
2(d′ logm− log δ)

m
. (22)

Because ξ ≥ 0 and
√
a+ b ≤

√
a+
√
b, we can simplify the Equation (22) as:

ξ ≤ 2(d′ logm− log δ)

3m
+

√
2(d′ logm− log δ)

m
. (23)

Therefore, with a probability of at least 1− δ, for h ∈ H:

εS(h)− ε̂S,valid(h) ≤ 2(d′ logm− log δ)

3m
+

√
2(d′ logm− log δ)

m

εS(h) ≤ ε̂S,valid(h) +
2(d′ logm− log δ)

3m
+

√
2(d′ logm− log δ)

m
. (24)

15

Furthermore, by enlarging the expected domain distance to its upper bound with the empirical domain
distance measured by finite samples according to [3], we have:

εT (h) ≤ ε̂S,valid(h) +
2(d′ logm− log δ)

3m
+

√
2(d′ logm− log δ)

m
+ dH(D̃S , D̃T) + λ

≤ ε̂S,valid(h) +
2(d′ logm− log δ)

3m
+

√
2(d′ logm− log δ)

m

+ d̂H(ŨS , ŨT) + 4

√
d′ log(2m′) + log(4

δ)

m′
+ λ. (25)

Secondly, we found an upper bound represented by MMD for the distance d̂H(ŨS , ŨT) in Equa-
tion (25). Following the assumption in [35], we also choose Parzen window classifier [47] as h, and
the empirical distance can be bounded by:

d̂H(ŨS , ŨT) ≤ 2

1− inf
h∈H

m′∑
i=1

L[h(zsi) = 1] + L[h(zti) = −1]

m′

= 2 + 2dk(D̃S , D̃T), (26)

where L(·) is the loss function of Parzen window classifier.

Finally, by applying the bound between d̂H(ŨS , ŨT) and dk(D̃S , D̃T) on Equation (25), we can have
Equation (18).

C Searched Architectures

We use four figures to display the searched architectures. Specifically, the searched normal cell and
reduction cell on ImageNet are shown in Fig. 5. While the searched cells on CIFAR-10 are shown in
Fig. 6.

c_{k-2}

0skip_connect

1sep_conv_3x3

2
dil_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

3

dil_conv_3x3

c_{k}
skip_connect

sep_conv_3x3

(a)

c_{k-2}

0

max_pool_3x3

1

dil_conv_3x3

2

avg_pool_3x3

3

avg_pool_3x3

c_{k-1}

dil_conv_3x3

sep_conv_3x3

sep_conv_5x5

sep_conv_5x5

c_{k}

(b)

Figure 5: Searched normal cell (top) and reduction cell (bottom) on ImageNet.

D Supplementary Experimental Details

This section is a supplement to the experimental details in the manuscript.

16

c_{k-2}

0

skip_connect

3dil_conv_3x3

c_{k-1} sep_conv_3x3
1

dil_conv_3x3

sep_conv_3x3

skip_connect

2sep_conv_3x3

c_{k}

dil_conv_3x3

(a)

c_{k-2}

0

avg_pool_3x3
1

dil_conv_3x3

2

sep_conv_3x3

c_{k-1} dil_conv_5x5

sep_conv_5x5

skip_connect

3dil_conv_3x3
c_{k}

dil_conv_5x5

(b)

Figure 6: Searched normal cell (top) and reduction cell (bottom) on CIFAR-10.

Settings of GCN: GCN is set up to fully utilize GPU memory and computing power. Specifically,
the training batch size is set as 1K and the learning rate is 2e-3. In addition, because the neural
architectures in multiple spaces are complex, we set the number of hidden layers as 5. The other
parameters remain the same as suggested in [55].

Training settings of the searched architectures: Based on the convention, we also follow the
positive training methods suggested in [2] to improve the classification accuracy on ImageNet.
Specifically, the total training epoch is set as 350. The cosine learning rate with the decay 4e-5 is
used as the optimizer. Regularization methods such as labeling smoothing [51] and AutoAugment [9]
are also adopted. In addition, the squeeze-and-excitation module [24] is attached after each cell.
Furthermore, the training batch size on ImageNet is set as 512, and the learning rate is 0.2. As for the
training details on CIFAR-10, we follow the conventions of the previous works [33, 58].

E More Ablation Studies

This section is a supplement to the ablation study of the manuscript.

1 2 3 4
C

0.40

0.45

0.50

KT
au

LMMD
Baseline

Figure 7: The performance of the predictor
under different numbers of categories C in
LMMD, where C denotes the number of sub-
spaces. The baseline denotes the KTau value
without LMMD.

The numbers of categories: We first conduct an
ablation study on the numbers of categories C in
LMMD, and the results are shown in Fig. 7. As
discussed in Subsection 3.2, when C is equal to
1, LMMD is mathematically equivalent to MMD.
Because of the generalizability of MMD, not sur-
prisingly, the predictor has been improved. Then we
increase C to display the effect of subspace adap-
tation. As can be seen from Fig. 7, LMMD works
better than MMD when C is set as 2. However,
when C is increased to 3, the prediction perfor-
mance does not improve but exacerbates. Further
increasing C to 4 results in continued deterioration
of performance. This phenomenon may be caused
by the incorrect pseudo-labels discussed in Subsec-
tion 3.2.

The hyper-parameter K of Equation (9): We decide the maximum number of subspaces K by an
ablation study. Table 6 shows increasing K from 2 to 3, the performance is improved. But increasing
K to 4, the performance is worse. This is because whenK increases, the probability that the predicted

17

Table 6: Ablation study on K.

K = 2 K = 3 K = 4
Cost (GPU minutes) 55 72 85

KTau 0.4921 0.5306 0.5172

pseudo-label is wrong will also increase. In addition, when K increases, the search cost will also
increase. So we set K to 3.

Table 7: The impact on kernel φ.

RQK Laplace Gaussian
KTau 0.4135 0.4698 0.5306

The impact of kernel φ: We have tried three different
φ, i.e., Rational Quadratic Kernel (RQK), Laplace kernel,
and Gaussian kernel. As can be seen from Table 7, the
Gaussian kernel is significantly better than the other two
in terms of KTau. And this is why we use it.

Other improvements: As shown in Table 8, we divided the improvements into two parts. The first
part is the baseline where no improvements are applied. The second part includes three tricks. The
first trick is to normalize the performance values in NAS-Bench-101 and NAS-Bench-201 separately.
A great improvement is obtained in terms of KTau value. On this basis, we continue to fine-tune
the penalty parameter θ in Equation (4) of the manuscript. In the end, θ = 2

1+exp{−10 eE }
− 1 after

fine-tuning, and a smaller improvement can be observed. On the basis of these two tricks, we use the
unknown operation to represent 5× 5 convolution which is explored in the uniform encoding strategy.
As can be seen from Table 8, this trick also brings positive effects. Therefore, we used these three
tricks throughout the experiments introduced in the manuscript.

Table 8: Ablation study on shallow DARTS dataset. ∆ denotes the difference from the previous
improvement.

Improvement KTau ∆

Baseline 0.3403 —
Separate normalization 0.4079 + 0.0676

Fine-tuning θ 0.4107 + 0.0028
Unknown operation 0.4375 + 0.0268

18

