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Abstract

We study the problem of distributed stochastic non-convex optimization with in-
termittent communication. We consider the full participation setting where M
machines work in parallel over R communication rounds and the partial participa-
tion setting where M machines are sampled independently every round from some
meta-distribution over machines. We propose and analyze a new algorithm that
improves existing methods by requiring fewer and lighter variance reduction opera-
tions. We also present lower bounds, showing our algorithm is either optimal or
almost optimal in most settings. Numerical experiments demonstrate the superior
performance of our algorithm.

1 Introduction

We consider the following distributed optimization problem with M machines:

min
x∈Rd

F (x) :=
1

M

M∑
m=1

Fm(x), (1.1)

where Fm, which denotes the objective on machine m, is a non-convex function for all m, as is the
average objective F . We want to solve this problem in the intermittent communication (IC) setting
[1, 2] where the machines work in parallel and are allowed to make K oracle calls between two
communication rounds for R consecutive rounds. The IC setting has been widely studied [3, 4, 5, 6,
7, 8, 9, 10, 11, 2, 12] over the past decade. Many recent works have focused on the problem with
non-convex and heterogeneous objectives [13, 14, 15] which are common in cross-device federated
learning (FL) [16, 17]. Towards this end, several algorithms [18, 19, 20, 21, 22, 23], all involving local
updates (à la local-SGD [3, 16]), have been proposed and analyzed under assumptions bounding the
heterogeneity of machines’ objectives. Although these algorithms demonstrate promising empirical
performances, it remains elusive whether these algorithms provably dominate the embarrassingly
parallelizable alternatives, i.e., mini-batch variants of the optimal sequential algorithms [24, 25, 26]
(a.k.a. centralized algorithms).

Until very recently, the situation was similar even in the simpler convex homogeneous setting where
Fm’s are all identical and convex, and Woodworth et al. [2] showed that the optimal algorithm
often does not require local updates at all. Even when Fm’s are not identical, for high levels of
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heterogeneity, accelerated mini-batch SGD [27] is optimal [28]. Should we expect something similar
in the non-convex setting? Or, can we prove that in some regime local-update algorithms improve
over the naive centralized baselines?

Method (Reference)
Convergence Rate, i.e. E ∥∇F (x̂)∥2 ⪯(Oracles used)

Full Participation Setting

SCAFFOLD†, MB-SGD† [18] ∆L
R +

(
σ2∆L
MKR

)1/2
(Stochastic)

MB-STORM (Thm. C.2, [26]) ∆L
R + σ2

MKR +
(

σ∆L
MKR

)2/3
(Stochastic)

Lower Bound (Centralized) ∆L
R + σ2

MKR +
(

σ∆L
MKR

)2/3
(Theorem 2.1)

STEM [20]
(∆L+ σ2 + ζ2)

(
1
R + 1

(MKR)2/3

)
(Stochastic)

BVR-L-SGD* [22]
∆τ
R + ∆L√

KR
+ σ2

MKR +
(

σ∆L
MKR

)2/3CE-LSGD (Thm. 3.1)
(Stochastic)

CE-LGD (Thm. 3.1) ∆τ
R + ∆L

KR(Exact)
Lower Bound

min
{

∆τ
R , ζ

2

R

}
+ ∆L

KR + σ2

MKR +
(

σ∆L
MKR

)2/3
(Theorem 3.2)

Partial Participation Setting

MB-STORM (Thm. D.4) ∆L
R + σ2

MKR +
(

σ∆L
m

√
KR

)2/3
+ ζ2

mR +
(

ζ∆L
mR

)2/3
(Stochastic)

Lower Bound (Centralized) ∆L
R + σ2

mKR +
(

σ∆L
mKR

)2/3
+ ζ2

mR +
(

ζ∆L
mR

)2/3
(Theorem D.2)

MIMELITEMVR[21] ∆τ
R + ∆L

KR + ζ2+σ2

R +
(

(ζ+σ)∆τ
R

)2/3
(Stochastic + Exact)
MIMEMVR [21] ∆τ

R + ∆L
KR + ζ2

mR +
(

ζ∆τ√
mR

)2/3
(Exact)

∆τ
R + ∆L√

KR
+ σ2

mKR +
(

σ∆L
mKR

)2/3
+
(

σ∆τ
m

√
KR

)2/3
+

ζ2

mR +
(

ζ∆τ
mR

)2/3
+
(

ζ∆L

m
√
KR

)2/3CE-LSGD (Thm. 3.3)
(Stochastic)

CE-LGD (Thm. 3.3) ∆τ
R + ∆L

KR + ζ2

mR +
(

ζ∆τ
mR

)2/3
(Exact)

min
{

∆τ
R , ζ

2

R

}
+ ∆L

KR + σ2

mKR +
(

σ∆L
mKR

)2/3
+ ζ2

mR +(
ζ∆L
mKR

)2/3Lower Bound
(Thm. 3.4)

Table 1: Comparison of convergence rate for different algorithms in the intermittent communication
setting. ζ and τ are the first and second-order heterogeneity (see Section 2) of the problem. Note that
τ ≤ 2L can be much smaller than L. *See Section 3 for a detailed comparison with BVR-L-SGD.
We expect the red and blue terms in the bounds to match by improving our bounds (c.f., Section 5).
†The variance term is optimal as the algorithms’ analyses don’t assume mean squared smoothness.

In this paper, we start by noting that in the absence of any heterogeneity assumption (c.f., Section
2), centralized algorithms already have the best worst-case convergence guarantee. Thus, only when

2



the heterogeneity is low can the local-update algorithms potentially have an advantage. This was
the motivation behind some of the recent works [18, 21, 22]. However, in the absence of any lower
bound that explicitly depends on the heterogeneity parameter (such as in [15, 29]), it is not possible
to definitively claim such an improvement. To alleviate this, we provide new communication lower
bounds which explicitly depends on the heterogeneity parameter. In addition, we develop a novel
algorithm which can take advantage of low heterogeneity and is (almost) optimal.

Method (Reference) Communication Complexity (R) Oracle Complexity (N )

Full Participation Setting

SCAFFOLD†, MB-SGD†
∆L
ϵ

σ2∆L
ϵ2[18]

MB-STORM (Theorem C.2) ∆L
ϵ

σ∆L
ϵ3/2[26]

Lower Bound (Centralized) ∆L
ϵ

σ∆L
ϵ3/2(Theorem 2.1)

STEM ∆L+σ2+ζ2

ϵ
(∆L)3/2+σ3+ζ3

ϵ3/2[20]

BVR-LSGD* [22] ∆τ
ϵ

σ∆L
ϵ3/2CE-LSGD (Theorem 3.1)

Lower Bound
min

{
∆τ
ϵ ,

ζ2

ϵ

}
σ∆L
ϵ3/2(Theorem 3.2)

Partial Participation Setting

MB-STORM ζ∆L
mϵ3/2

σ∆L
ϵ3/2

·
(
1 + σ

ζ

)
(Theorem C.2)

Lower Bound (Centralized) ζ∆L
mϵ3/2

σ∆L
ϵ3/2(Theorem 2.1)

MIMEMVR ζ∆τ
m1/2ϵ3/2

Uses Exact Oracles[21]

MIMELITEMVR ζ2+σ2

ϵ + (ζ+σ)∆τ
ϵ3/2

Uses Exact Oracles[21]

CE-LSGD ζ∆τ
mϵ3/2

ζ∆L
ϵ3/2

· L
τ + σ∆L

ϵ3/2
·
(
1 + στ

ζL

)
(Theorem 3.3)

Lower Bound
min

{
∆τ
ϵ ,

ζ2

ϵ

}
+ ζ2

mϵ
ζ∆L
ϵ3/2

+ σ∆L
ϵ3/2(Theorem 3.4)

Table 2: Comparison of optimal communication and oracle complexity required by different algo-
rithms to attain E∥∇F (x̂)∥22 ≤ ϵ. ζ and τ are the heterogeneity (see Section 2) of the problem.
τ ≤ 2L and can be much smaller than L. The results suppress only numerical constants and assume
that ϵ1/2 ⪯ min{(σ/M) · (τ/L),∆L/σ,∆τ/ζ, ζ/m}, i.e., ϵ is small enough. The first inequality
ensures we are in the green regime described in Figure 1 and guarantees that ∆LM/ϵ ⪯ σ∆L/ϵ3/2;
the second inequality guarantees that σ2/ϵ ⪯ σ∆L/ϵ3/2; the third inequality guarantees that
ζ2/mϵ ⪯ ζ∆τ/mϵ3/2; and the fourth inequality guarantees that ∆L/ϵ ≤ ζ∆L/mϵ3/2. We ex-
pect the red, green, and blue terms in the upper and lower bounds to match by improving our bounds
(c.f., Section 5). *Although BVR-L-SGD and CE-LSGD have the same fast convergence rate in
the full participation setting, BVR-L-SGD requires each client to compute large batch gradients for
many rounds of communications and is thus less communication efficient in practice (see discussion
in Section 3). †Note that the oracle complexity is optimal for these algorithms, as they were analyzed
under the bounded variance assumption (see Section 2).
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We summarize the contributions of our work as follows:

• We provide novel communication complexity lower bounds, under the assumption that Fm’s
have bounded first-order or second-order heterogeneity (see Section 2). We show that centralized
algorithms [24, 25, 26] can never achieve this optimal communication complexity, and most of the
existing local-update algorithms cannot attain it either.

• We develop a new algorithm CE-LSGD that we show to be min-max optimal when equipped
with exact gradient oracles and near-optimal when provided with stochastic gradient oracles
(c.f., Section 2). Our algorithm, like many other local-update algorithms, uses variance reduction
techniques [24, 26] but requires both fewer and lighter “heavy-batch” operations compared to the
existing methods (see discussion in Section 3).

• We also study the partial client participation setting, which is of particular interest in cross-device
federated learning (FL) [17] where there is an extremely large number of clients. Not only does
CE-LSGD improve over the best-known communication complexity, but it is the only algorithm
that doesn’t require exact oracle queries for variance reduction and still manages to be nearly
optimal. Our analysis also provides a convergence guarantee for MB-STORM (a special case
of CE-LSGD) in this setting that wasn’t known before. Furthermore, if endowed with exact
oracles, CE-LGD is almost min-max optimal even in the partial participation setting. Thus,
our results demonstrate the optimality of local update methods, at least in some regimes. Even in
simpler convex settings, we don’t know of any local update method (exact or stochastic) known
to be min-max optimal in the heterogeneous setting [30, 15]. We summarize our results and the
comparison to important baselines in Tables 1 and 2.

• As an auxiliary contribution, we provide a variant of our algorithm which uses stochastic hessian
vector product oracles and is thus useful for settings where only a single copy of the model can
be stored on the edge device. We also empirically compare our method against centralized and
local-update algorithms, demonstrating faster convergence and better communication efficiency.

Notation. We use B to denote the index set and |B| to denote its cardinality. For x ∈ Rd, we use
∥x∥ to denote its ℓ2-norm. For A ∈ Rd×d, ∥A∥ denotes the operator norm. [n] denotes the set
{1, 2, . . . , n}. We use ≈,⪯,⪰ to denote equality and inequality up to numerical constants.

2 Our Setting and the Centralized Baselines

In this section, we introduce some definitions and assumptions that will be used in our analysis. Our
goal is to find an ϵ-approximate stationary point of F , i.e., a point x ∈ Rd such that E[∥∇F (x)∥2] ≤ ϵ,
where the expectation is w.r.t. any randomness in the choice of x. We consider client objectives in the
class F(L) of differentiable and L-smooth functions, i.e., for all G ∈ F(L), ∥∇G(x)−∇G(y)∥ ≤
L ∥x− y∥. We also make assumptions that relate the functions of different clients to one another.
These are typically known as assumptions on the “heterogeneity” of the problem, and we consider
two classes of problems.
Definition 1. Assume {Fm ∈ F(L)}Mm=1 are first-order ζ-heterogeneous, i.e.,
supx∈Rd

∑M
m=1 ∥∇Fm(x) − ∇F (x)∥2/M ≤ ζ2. And for all ∆ ≥ 0, F (0) − infx∈Rd F (x) ≤ ∆,

i.e., the average objective has bounded sub-optimality at zero. Then we say that
{Fm}m∈[M ] ∈ F1

M(L,∆, ζ).

Definition 2. Assume twice-differentiable {Fm ∈ F(L)}Mm=1 are second-order τ -heterogeneous,
i.e., supm∈[M ],x∈Rd ∥∇2Fm(x) − ∇2F (x)∥ ≤ τ . And for all ∆ ≥ 0, F (0) − infx∈Rd F (x) ≤
∆, i.e., the average objective has bounded sub-optimality at zero. Then we say that
{Fm}m∈[M ] ∈ F2

M(L,∆, τ ).

We assume that each machine has access to the following multi-point oracle [31] [Section 5.3, 2].

Definition 3. Given a function G ∈ F(L,∆), On,L,σ
G : (Rd)n × Z → (R)n × (Rd)n is a

multi-point stochastic first order oracle if for some distribution D on Z , and for all x1, . . . , xn ∈
Rd, the oracle samples a random seed z ∼ D and returns estimators On,L,σ

G (x1, . . . , xn, z) =
({f(xi; z)}i∈[n], {g(xi; z)}i∈[n]) such that ∀i ∈ [n], Ez∼D(f(xi; z), g(xi; z)) = (G(xi),∇G(xi))
and Ez∼D ∥g(xi; z)−∇G(xi)∥2 ≤ σ2. Furthermore, the unbiased gradients satisfy L-mean
smoothness, i.e., for all x, y ∈ Rd, Ez∼D [∥g(x; z)− g(y; z)∥] ≤ L ∥x− y∥.
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As we mentioned before, we want to solve the problem in equation 1.1 in the the intermittent
communication (IC) setting, i.e., M machines work in parallel and are allowed to make K oracle
calls between two communication rounds for R consecutive rounds (see [1, 2] for detailed definition).
Therefore, we consider a generalization of zero-respecting algorithms denoted by AZR (see Appendix
A) in the IC setting. This class captures various distributed optimization algorithms, including mini-
batch SGD, accelerated mini-batch SGD, local SGD, and all the variance-reduction algorithms.
Algorithms that are not distributed zero-respecting are those whose iterates have components in
directions about which the algorithm has no information, meaning that, in some sense, it is just “wild
guessing”. We also denote the class of centralized algorithms in AZR by Acent

ZR (see Appendix A).
These algorithms query the oracles at the same point within each communication round and use the
combined MK oracle queries each round to get a “mini-batch” estimate of the gradient. Thus, the
class Acent

ZR includes algorithms such as mini-batch SGD, mini-batch SARAH [24] and mini-batch
STORM [26], but doesn’t include local-update algorithms in AZR such as local-SGD. Furthermore,
these mini-batch algorithms can be naturally implemented in the IC setting.

We first present a lower bound result applicable to centralized algorithms.

Theorem 2.1 (Centralized Lower Bound). For all τ,∆, ζ, σ ≥ 0, and 2L ≥ τ , every algorithm
A ∈ Acent

ZR optimizing a problem in F1
M (L,∆, ζ) ∪ F2

M (L,∆, τ), with access to an oracle O2,L,σ
Fm

over R ⪰ 1 communication rounds must output xAR such that,

E
[∥∥∇F (xAR)∥∥2] ⪰ ∆L

R
+

σ2

MKR
+

(
σ∆L

MKR

)2/3

.

The proof of this theorem follows the known oracle complexity lower bounds [32, 31] and is
included in Appendix B. This theorem shows that, mini-batch SARAH/STORM which are centralized
algorithms, already achieve the optimal communication and oracle complexity (see Table 1) for
algorithms in Acent

ZR optimizing problems in F2
M (L,∆, τ). In fact most existing non-centralized

methods including FEDAVG[16], SCAFFOLD [18] and FEDPAGE [19] do not have any analysis
showing improvement over the centralized baselines for problems in F2

M (L,∆, τ). These analyses
do not improve with smaller heterogeneity τ , even for convex optimization problems. At the same
time, the lower bound result holds for all τ ≤ 2L, which highlights the limitation of the centralized
baselines, showing they can not improve with lower heterogeneity. Certain existing local-update
algorithms such as MIMEMVR [21] and BVR-L-SGD [22] can indeed improve upon centralized
algorithms in the low heterogeneity regime. In the next section, we quantify this improvement and
show that our algorithm strictly dominates the centralized baselines and almost matches our lower
bound for algorithms in AZR.

3 Our Algorithm and Min-max Optimality

In this section, we present our communication-efficient algorithm abbreviated CE-LSGD and
illustrate it in Algorithm 1. Note that for m ∈ [M ], we use the notation ∇Fm,Bm(x) :=∑

l∈Bm g(x; zl ∼ Dm)/|Bm| to denote the stochastic mini-batch gradient obtained by querying
O2,L,σ

Fm
for |Bm| many times.

At each iteration of Algorithm 1, we need two rounds of communication, i.e., two back and
forth communications between the server and all clients. Our method uses the extra round of
communication, i.e., line 4 to line 9, to update the variance-reduced gradient vr using the current and
previous server models xr, xr−1, respectively. In the following discussion, we will use the iteration
number R and communication complexity of Algorithm 1 interchangeably.

At the core of our proposed method is the variance reduction term vr and the local gradient es-
timator vmr,k (lines 9 and 15 in Algorithm 1). The construction of the local gradient estimator is
motivated by the variance reduction technique of SARAH [24, 25]. Intuitively, the estimation
error between the proposed local gradient estimator vmr,k and the full gradient ∇F (wm

r+1,k), i.e.,

E∥vmr,k −∇F (wm
r+1,k)∥, can be decomposed into two dominating terms: E∥vr −∇F (xr)∥2 and

τ2K
∑K

k=1 E∥wm
r+1,k − wm

r+1,k−1∥2 . The first term is the estimation error between the variance

reduction term vr and the full gradient ∇F (xr). Since vr is updated based on the momentum-based
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Algorithm 1 Communication Efficient Local Stochastic Gradient Descent (CE-LSGD)
input Initialization x0, iteration number R, step size η, parameters b0, b, T and β ∈ [0, 1]

1: Let x−1 = x0
2: for r = 0, 1, . . . , R− 1 do
3: if r = 0 set ρ = 1, Q = 1, B = b0 else set ρ = β, Q = T , B = Q
4: Communicate (send) (xr, xr−1) to clients
5: on client m ∈ [M ] do
6: Sample Bm

r ∼ D⊗B
m , get ∇Fm,Bm

r
(xr), ∇Fm,Bm

r
(xr−1), where |Bm

r | = B

7: Communicate (rec)
(
∇Fm,Bm

r
(xr),∇Fm,Bm

r
(xr−1)

)
to the server

8: end on client
9: vr = 1

M

∑M
m=1 ∇Fm,Bm

r
(xr) + (1− ρ)

(
vr−1 − 1

M

∑M
m=1 ∇Fm,Bm

r
(xr−1)

)
10: Communicate (send) (xr, vr) to client m̃r, where m̃r ∼ Unif ([M ])
11: on client m̃r do
12: wm̃r

r+1,1 := wm̃r
r+1,0 := xr, v

m̃r
r,0 := vr

13: for k = 1, . . . , Q do
14: Sample Bm̃

r,k ∼ D⊗b
m̃ , get ∇Fm̃,Bm̃

r,k
(wm̃r

r+1,k), ∇Fm̃,Bm̃
r,k

(wm̃r

r+1,k−1), where |Bm̃
r,k| = b

15: vm̃r

r,k = ∇Fm̃,Bm̃
r,k

(wm̃r

r+1,k) + vm̃r

r,k−1 −∇Fm̃,Bm̃
r,k

(wm̃r

r+1,k−1)

16: wm̃r

r+1,k+1 = wm̃r

r+1,k − ηvm̃r

r,k

17: end for
18: Communicate (rec)

(
wm̃r

r+1,Q+1

)
to the server

19: end on client
20: Let xr+1 = wm̃r

r+1,Q+1

21: end for
output Choose x̃ uniformly from {wm̃r

r,k }r∈[R],k∈[Q]

variance reduction technique [26], this estimation error is dominated by L2E∥xr − xr−1∥2 , which

approaches zero as the algorithm converges. Similarly, the second term E∥wm
r+1,k − wm

r+1,k−1∥2

approaches zero as the algorithm converges and the τ factor controls the benefit we can obtain from
small heterogeneity. Intuitively, we can make more local updates for smaller values of τ , and the
algorithm converges faster. Our method reduces to mini-batch STORM if we choose the number of
local updates Q to be one (see Appendix C.1).

As we mentioned before, we are considering the IC setting, and thus we want to implement Algorithm
1 in this setting. To this end, we can choose the input T = K and b = 1 (see line 14) in Algorithm 1,
and we present the convergence guarantees of our method in the IC setting in the following discussions.
Next we present the convergence guarantee of CE-LSGD in the intermittent communication:
Theorem 3.1. Suppose {Fm}m∈[M ] ∈ F2

M (L,∆, τ) for L,∆, τ ≥ 0, τ ≤ 2L then,

(a) if each client m ∈ [M ] has a stochastic oracle O2,L,σ
Fm

, and assuming ∆L
R ⪯ σ2

√
MK

, then

the output x̃ of Algorithm 1 using β = max
{

1
R ,

(∆L)2/3(MK)1/3

σ4/3R2/3

}
, b0 = KR, and η =

min
{

1
L ,

1
Kτ ,

(βM)1/2

LK1/2

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L√
KR

+
σ2

MKR
+

(
σ∆L

MKR

)2/3

;

(b) if each client m ∈ [M ] has a deterministic oracle O2,L,0
Fm

, then the output x̃ of Algorithm 1 using
β = 1 and η = min

{
1
L ,

1
Kτ

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L

KR
.

In Appendix C, we derive this result by carefully tuning β, b0. We show that the convergence rate
attained by our algorithm is almost optimal by proving the following lower bound result.
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Theorem 3.2. For all L, σ, τ,∆, ζ ≥ 0, τ ≤ 2L, ζ ≤
√
∆L, every algorithm A ∈ Azr, optimizing

a problem in F1
M (L,∆, ζ) ∪ F2

M (L,∆, τ) with K > 0 intermittent accesses to two-point first-order
oracles {O2,L,σ

Fm
}m∈[M ] on all the machines, outputs xAR after R ⪰ 1 rounds such that

E
[∥∥∇F (xAR)∥∥2] ⪰ min

{
ζ2

R
,
∆τ

R

}
+

∆L

KR
+

σ2

MKR
+

(
σ∆L

MKR

)2/3

.

We can make two observations by comparing the upper and lower bounds for problems in
F2

M (L,∆, τ). First, in the deterministic setting (σ = 0), our upper bound matches the lower
bound; hence CE-LGD is min-max optimal. Thus, our result improves over all the existing results
in this setting, including MIMEMVR [21]. Second, in the stochastic setting (σ > 0), our algorithm’s
upper bound is optimal except for the second term in Theorem 3.1, which has a ∆L/(

√
KR) factor

as opposed to the ∆L/(KR) term in the lower bound. We discuss this gap further in Section C.2.

Our construction for Theorem 3.2 uses the non-convex hard instance proposed by Carmon et al.
[32] and splits it across different machines to get a communication complexity lower bound. This
idea has been used previously to give lower bounds in the heterogeneous setting [33, 15, 34]. We
prove the result in Appendix B. From looking at Table 1, we can note that BVR-L-SGD [22] also
attains a similar upper bound as our method. In Appendix C.2, we show that with deterministic
oracle BVR-L-SGD also attains the min-max optimal rate. This is not surprising, knowing that
several variance-reduced algorithms [25, 26, 24] are simultaneously optimal even in the sequential
setting. Still, our method requires fewer and lighter variance reduction operations, which leads to
better scalability from the algorithmic design perspective. In the next section, we carefully examine
the difference between these methods.

3.1 The Perspective of Reducing Communication

Figure 1: Illustration of the best communication
complexity R and oracle complexity N that our
method can obtain for different ϵ and τ . Green
regime: Our method can obtain the optimal com-
munication and oracle complexity. Orange regime:
Our method can obtain the optimal communication
using a larger oracle complexity. Red regime: Our
method only needs one round of communication
using a larger oracle complexity.

So far, we have looked at convergence rates in
the intermittent communication model, where
K,R is fixed. However, another perspective is
reducing the communication complexity to the
minimum possible with the minimum required
oracle complexity. Both these complexities can
be expressed in terms of ϵ using the convergence
guarantees we showed, where we want to attain
an ϵ-approximate stationary point. This view is
often more useful when communication rounds
comprise the bulk of the required physical time.
This scenario is common in FL, where devices
become available intermittently, which delays
the synchronous updates. With this in mind,
we summarize the communication and oracle
complexities attained by both our method and
BVR-L-SGD [22] in Figure 1 when optimizing
with stochastic oracles. Notice that the figure
has three different regimes based on the relative
scaling of τ versus ϵ. We focus on the green
regime characterized by ϵ1/2 ∈ (0, τσ/(LM)].
This regime is of most practical interest in deep
learning, where modern over-parameterized models often drive ϵ to really small values. And when ϵ
is small enough, this regime covers a wide range of values of τ .3.

In the green regime, both CE-LSGD and BVR-L-SGD require K = σL/(τMϵ1/2) local steps
to achieve the optimal communication and oracle complexities. However, BVR-L-SGD requires
multiple heavy-batch stochastic gradient computations on each machine with batch size bmax. In
particular, for BVR-L-SGD, we have ρBVR = bmax/K = στ/(Lϵ1/2), which suggests that for
S = L∆/σ

√
ϵ communication rounds, it requires each machine to compute ρBVR times heavier

batch stochastic gradients compared to the other communication rounds. As for CE-LSGD, we have
3 We talk about the other regimes while giving the full statement of Theorem 3.1 in Appendix C
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Figure 2: Training loss of CE-LSGD and BVR-L-SGD on CIFAR-10 data-set versus the number
of communication rounds in the intermittent communication setting with different local-updates K.
We use M = 10 machines, and synthetically generate heterogeneous data-sets (see Section 4) with
q = 0.1. All oracle queries use a mini-batch of size b = 16, i.e., each machine has Kb oracle queries
between two communication rounds. We note that our method has a faster convergence in all the
settings, which highlights its communication efficiency. Fixed step-sizes η for both the methods were
tuned in {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} (to obtain best loss) following [22], our method set the
momentum β = 0.3, bourmax = K, while bBV R

max = 5000 according to [22].

b0 = σ3/(L∆Mϵ1/2), which gives us ρour = b0/K = σ2τ/(L2∆). This suggests that our method
only requires each machine to compute ρour times larger batch stochastic gradient, and that too only
once. Furthermore, ρour/ρBVR = σϵ1/2/(L∆) ≤ 1. Thus, the size of our large batch gradient is
also smaller than the one for BVR-L-SGD, and our method has fewer and lighter heavy-batch
operations.

Suppose one implements both these methods in the intermittent communication model, i.e., by
breaking the large batch computation across multiple rounds, with local budget K = σL/(τMϵ1/2).
In that case, the effective communication complexity of both methods is ∆τ/ϵ, and this subtle
difference gets washed away. However, in Figure 2, we show that this equivalence up to numerical
constants doesn’t hold in practice, where our method converges faster than BVR-L-SGD. In Table 2,
we summarize the communication and oracle complexities attained by different algorithms in the
green regime.

3.2 The Partial Participation Setting

In settings such as cross-device federated learning [17], there are often millions of clients (think of
android mobile users), and it is not feasible to consider training on all of the clients synchronously.
It is more natural to consider a partial sampling of clients for each communication round. More
formally, we can re-state our distributed optimization problem as follows:

min
x∈Rd

F (x) := Em∼P [Fm(x)] , (3.1)

where P is a probability distribution on the clients, we assume at each communication round, we
can sample M clients independently from P . We also need to modify the IC setting: during each
communication round, Sr ∼ Pm clients participate, and each queries their oracle K times. This
setting has also been considered in Karimireddy et al. [21]. We consider the problem classes
F1

P(L,∆, ζ) and F2
P(L,∆, τ) that are natural generalizations of F1

M (L,∆, ζ) and F2
M (L,∆, τ) to

the partial participation setting as follows, formally defined in Appendix A.

We adapt Algorithm 1 to the partial participation setting in Algorithm 2 by communicating with only
M clients at each round and using M0 clients for the first round to initialize the variance reduction
term. We prove the following guarantee for Algorithm 2.
Theorem 3.3. Suppose for all m in support of P , Fm ∈ F1

P(L,∆, ζ) ∩ F2
P(L,∆, τ) then,

(a) if each client m has a stochastic oracle O2,L,σ
Fm

, and assuming that ∆τ
R + ∆L√

KR
⪯ σ2

√
MK

+ ζ2

√
M

,

the output x̃ of Algorithm 2 using b0 = K, M0 = MR, β = max

{
1
R ,
(

∆(τ+L/
√
K)

√
M

R(σ2/K+ζ2)

)2/3}
,
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and η = min
{

1
L ,

1
Kτ ,

1√
KL

,
√
βM√
KL

,
√
βM
τK

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L√
KR

+
σ2

MKR
+

(
σ∆L

MKR

)2/3

+
ζ2

MR
+

(
ζ∆τ

MR

)2/3

+

(
∆(στ + Lζ)

M
√
KR

)2/3

;

(b) if each client m has a deterministic oracle O2,L,0
Fm

, and assuming that ∆τ
R ⪯ ζ2

√
M

, then the output

x̃ of Algorithm 2 using M0 =MR, β = max

{
1
R ,
(

∆τ
√
M

ζ2R

)2/3}
, and η = min

{
1
L ,

1
Kτ ,

√
βM
τK

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L

KR
+

ζ2

MR
+

(
ζ∆τ

MR

)2/3

.

In Tables 1 and 2, we show that with an exact oracle (i.e., σ = 0), CE-LGD attains a strictly faster
convergence rate than the best-known algorithm MIMEMVR [21] that also uses an exact oracle. More
specifically, CE-LGD’s communication complexity ζ∆τ/Mϵ3/2, improves over the communication
complexity of ζ∆τ/

√
Mϵ3/2 for MIME-MVR. We can also recover the guarantee for MB-STORM

in the partial participation setting, noting that it is a special case of CE-LSGD (see Appendix C.1).
As far as we know, this guarantee isn’t known in the literature but straightforwardly follows from our
analysis. Furthermore, we prove the following lower bounds showing that the convergence rates of
CE-LSGD are almost optimal.

Theorem 3.4. For all L, σ, τ,∆, ζ ≥ 0, τ ≤ 2L, ζ ≤
√
∆L, every algorithm A ∈ Azr optimizing

a problem in F1
P(L,∆, ζ) ∪ F2

P(L,∆, τ) with K > 0 intermittent accesses to two-point first-order
oracles {O2,L,σ

Fm
}m∈support(P) on all the machines outputs xAR after R ⪰ 1 rounds such that

E
[∥∥∇F (xAR)∥∥2] ⪰ min

{
∆τ

R
,
ζ2

R

}
+

∆L

KR
+

σ2

MKR
+

(
σ∆L

MKR

)2/3

+
ζ2

MR
+

(
ζ∆L

MKR

)2/3

.

According to Theorem 3.3 and Theorem 3.4, in the deterministic setting (i.e., σ = 0), the only gap
between the rate for CE-LGD and the lower bound is in the last term of CE-LGD’s upper bound,
i.e., the blue term in Table 1. We conjecture that CE-LGD is optimal in the partial participation
setting, and our lower bound can be improved. This would also imply a gap between the optimal
communication complexity of the full and partial participation settings (O(1/ϵ) v/s O(1/ϵ3/2), see
Table 2). All of the known results with our partial participation setting [21] attain at best order 1/ϵ3/2
communication complexity, which is consistent with our conjecture. More discussions about the gaps
in this setting can be found in Appendix D.1.

4 Simulations

We evaluate the performance of our method by optimizing a two-layer fully connected network for
multi-class classification on the CIFAR-10 [35] data-set. Since we are in the heterogeneous setting,
we need to artificially generate a data-set. We follow the same data processing procedure as in [22].
We first make sure that all the ten classes in CIFAR-10 have the same number of samples (roughly
around 5000), and assign q × 100% of class m’s samples to client m ∈ [10] where q is chosen from
{0.1, 0.35, 0.6, 0.85}. For each class m, we evenly split the remaining (1− q)× 100% samples to
the other 9 clients except client m. Thus, q controls the heterogeneity of our data-set, with small q
corresponding to small heterogeneity.

We perform two different experiments. In the first experiment, we directly compare our method, i.e.,
CE-LSGD, with BVR-L-SGD in the intermittent communication setting (see Figure 2). We observe
that while both the methods converge to a similar quality of solution eventually, our method is more
communication efficient. In the second experiment, we compare our method with BVR-L-SGD [22]
as well as FEDAVG [16], SCAFFOLD [18], MB-SARAH [24] and MB-SGD [5] for the same
number of updates/iterations. The last two methods are centralized baselines, and we use the local
computation to compute a mini-batch stochastic gradient. We again observe that CE-LSGD and
BVR-L-SGD have comparable performance which is better than all the other methods.
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Figure 3: Comparing CE-LSGD to centralized and local-update methods, for fixed K = 32 and
varying heterogeneity controlled by q on CIFAR-10 [35] data-set. Like Figure 2 we use mini-batch
size b = 16 for each oracle query. Thus each method makes Kb oracle queries every round per
machine. All the methods for different q are tuned separately, following a similar hyper-parameter
search as in Figure 2.

5 Discussion and Open Problems

In this paper, we provide a new communication-efficient local update algorithm CE-LSGD and
analyze it in the full and partial client participation settings with intermittent communication. In
the deterministic setting, i.e., with access to exact oracles, our algorithm is optimal for the full
participation setting and almost optimal for the partial participation setting. Moreover, when equipped
with stochastic oracles, our algorithm attains the best-known convergence guarantees to our knowledge
in both participation models. Our lower bound results provide a much-needed baseline to measure
algorithmic developments in non-convex distributed optimization and help us characterize CE-LGD’s
optimality.

In Appendix E, we provide an extension of CE-LSGD which uses a stochastic Hessian vector
product oracle [12, 36] instead of a multi-point oracle, and recovers similar optimal communication
complexity. This is relevant for memory-constrained online settings where it might not be feasible to
preserve several copies of a model on the client device for making simultaneous queries for variance
reduction algorithms.

Our work leaves several open questions. We believe our lower bound is loose in the deterministic
partial participation setting. We expect a ζ∆τ/Mϵ3/2 term in the lower bound, just like our upper
bound in Theorem 3.3 (c.f., the blue terms in Tables 1 and 2). Thus, we conjecture that there is a gap
between the optimal communication complexities in the full and partial participation settings, order
1/ϵ versus 1/ϵ3/2. We hope to improve our lower bound in the future work.

We expect that CE-LSGD should attain the min-max optimal rate in the stochastic full participation
setting. There is a 1/

√
K gap in our optimization term for both participation models, which vanishes

in the deterministic setting (see Table 1). As discussed in Section C.2, it is unclear to us how to
remove this gap.

There are several gaps w.r.t. the lower bounds in the stochastic partial participation setting (c.f., the
blue, green, and red terms in Table 2). We believe some of these can be alleviated by improving
the deterministic lower bound, but others seem to imply that our analysis is loose. As we discussed
before, one indication that our upper bound is loose is the gap in the rate we obtain for MB-STORM
by adapting our analysis for Theorem 3.3 (c.f., the red term in Table 1, section D.1).
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