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Abstract

We study the constrained reinforcement learning problem, in which an agent
aims to maximize the expected cumulative reward subject to a constraint on the
expected total value of a utility function. In contrast to existing model-based
approaches or model-free methods accompanied with a ‘simulator’, we aim to
develop the first model-free, simulator-free algorithm that achieves a sublinear
regret and a sublinear constraint violation even in large-scale systems. To this
end, we consider the episodic constrained Markov decision processes with linear
function approximation, where the transition dynamics and the reward function can
be represented as a linear function of some known feature mapping. We show that
Õ(
√
d3H3T ) regret and Õ(

√
d3H3T ) constraint violation bounds can be achieved,

where d is the dimension of the feature mapping,H is the length of the episode, and
T is the total number of steps. Our bounds are attained without explicitly estimating
the unknown transition model or requiring a simulator, and they depend on the
state space only through the dimension of the feature mapping. Hence our bounds
hold even when the number of states goes to infinity. Our main results are achieved
via novel adaptations of the standard LSVI-UCB algorithms. In particular, we
first introduce primal-dual optimization into the LSVI-UCB algorithm to balance
between regret and constraint violation. More importantly, we replace the standard
greedy selection with respect to the state-action function in LSVI-UCB with a
soft-max policy. This turns out to be key in establishing uniform concentration for
the constrained case via its approximation-smoothness trade-off. Finally, we also
show that one can achieve an even zero constraint violation for large enough T by
trading the regret a little bit but still maintaining the same order with respect to T .

1 Introduction

In many practical applications of online reinforcement learning (RL) (e.g., financial regulations,
safety), there exist additional constraints on the learned policy in the sense that it also needs to ensure
that the expected total utility (cost, resp.) exceeds a given threshold (is below a threshold, resp.).
Constrained RL problem is formulated as a constrained Markov Decision Process (CMDP), in which
the celebrated exploration-exploitation trade-off in online RL becomes more challenging due to the
additional need to find a balance between reward regret and constraint violations.
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To develop online sample-efficient algorithms for CMDPs, prior works have largely resorted to
model-based approaches, where the control policy is constructed based on a learned model [1–7].
However, due to the explicit estimation and storage of the unknown transition model, model-based
approaches often lead to large time and space complexities. These issues are exacerbated in the large
state space. Hence, there are several recent works starting to investigate model-free algorithms for
CMDPs, which directly update the value function or the policy without first estimating the model [8–
10]. However, all of these works consider an easier setting compared to standard RL in that they
assume access to a simulator [11] (a.k.a. a generative model [12]), which is a strong oracle that allows
the agent to query arbitrary state-action pairs and return the reward and the next state, hence greatly
alleviating the intrinsic difficulty of exploration in RL. To the best of our knowledge, [13] were the
first to study model-free and simulator-free algorithms for CMDPs. The above mentioned work on
model-free algorithm considers the finite-state tabular setting and the regret scales polynomially with
the number of states. Thus, the result would not be useful for large-scale RL applications where the
number of states could even be infinite. To address this curse of dimensionality, modern RL has
adopted function approximation techniques to approximate the (action-)value function of a policy,
which greatly expands the potential reach of RL, especially via deep neural networks. However,
little is known for the performance guarantee of model-free algorithms in CMDPs beyond tabular
settings, even in the case of linear function approximation. Motivated by this, we are interested in the
following question:

Can we achieve provably sample-efficient and model-free exploration for CMDPs beyond tabular
settings (without a simulator)?

Contribution. To answer the above question, we consider the episodic CMDPs with linear function
approximation, where the transition dynamics and the reward function can be represented as a linear
function of some known feature mapping. Our main contributions are as follows.

• We show that with a proper parameter choice, our proposed algorithm achieves Õ(
√
d3H3T ) regret

and Õ(
√
d3H3T ) constraint violation bounds with a high probability, where d is the dimension of

the feature mapping, H is the length of the episode, and T is the total number of steps. We also
show that it is in fact possible to achieve zero constraint violation by trading the regret a little bit
while maintaining the same order with respect to T .

• Our bounds are attained without explicitly estimating the unknown transition model or requiring a
simulator, and they depend on the state space only through the dimension of the feature mapping.
To the best of knowledge, these sub-linear bounds are the first results for model-free, simulator-free
online RL algorithms for CMDPs with function approximations. We even improve the bound
(Õ(T 0.8)) proposed in the model-free finite state tabular setting by [13] (Table 1).

• We combine the primal-dual algorithm with the classic model-free, simulator-free LSVI-UCB
algorithm [14] to balance between regret and constraint violations. This naturally leads to the
construction of a new composite state-action function (i.e., Q-function), which is the sum of the
Q-function for the reward and the Q-function for the utility weighted by the dual variable. Due to
this new type of Q-function in CMDPs, a key challenge arises when establishing the value-aware
uniform concentration, which lies at the heart of the performance analysis of model-free exploration.
More specifically, the standard greedy selection with respect to this composite Q-function fails
in finding non-trivial covering number for the function class of individual value functions (i.e.,
V -function) for the reward and the utility respectively. To address this fundamental issue, we
instead adopt a soft-max policy by utilizing its nice property of approximation-smoothness trade-off
via its parameter, i.e., temperature coefficient.

1.1 Related Work

Model-based RL algorithms have been proposed for the CMDP [1–3, 5–7]. Apart from [7], the rest
considered tabular set-up. In the tabular model-based set-up, the best known regret and constraint
violations achieved are Õ(

√
|S|2|A|T ) where |S| and |A| are the dimensions of the state and action

spaces respectively. Hence, such results can not cope up with the large state space. [7] considered
linear kernel MDP whereas we consider linear MDP. These two are not the same in general. We
describe the differences with the algorithm proposed in [7] in Section 4.1.

Model-free RL algorithms have also been proposed [8–10] to solve CMDP. However, all of the above
require a generator model, which simulates from any state and action. [13] proposed a ‘triple-Q’
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Table 1: Regret and Constraint Violations on Episodic MDP for algorithms which do not use
simulators. (LFA: Linear Function Approximation, MOD-FREE: Model-Free)

ALGORITHM LFA? MOD-FREE? REGRET VIOLATIONS

OPDOP [7] YES × Õ(
√
d2H5T ) Õ(

√
d2H5T )

OPT-PRIMALDUAL CMDP +[1] NO × Õ(
√

H5|S|2|A|T ) Õ(
√

H5|S|2|A|T )
OPTDUAL-CMDP +[1] NO × Õ(

√
H3|S|2|A|T ) Õ(

√
H3|S|2|A|T )

OPTPRESS-PRIMALDUAL [6] NO × Õ(
√

H5|S|3|A|T ) O(1)

TRIPLE-Q [13] NO
√

Õ(H3.2T 0.8
√

|S||A|) 0

OUR APPROACH YES
√

Õ(
√
d3H3T ) Õ(

√
d3H3T )*

* WE CAN REDUCE THE VIOLATION TO 0 FOR LARGE ENOUGH T (FINITE) WHILE MAINTAINING THE SAME
ORDER OF REGRET WITH RESPECT TO T (APPENDIX H).

+ WE REPLACE ρ (ξ IN OUR PAPER) BY O(H) SIMILAR TO OUR PAPER AND N BY |S|.

algorithm which does not require a ’simulator’. However, it only considered tabular setting. The
regret bound shown in [13] is Õ(T 0.8) which is far from the optimal for the model-based case
Õ(
√
T ). Please see Table 1 to see our contribution compared to the state-of-the-art approaches. [15]

proposed a RL algorithm for the scenario where a constraint needs to be satisfied at each step of an
episode. We consider a constraint where the cumulative utility over the length of the episodes must
exceed a threshold. Hence, the set of constraints is fundamentally different. The authors in [15] also
assumed that a safe-action is known for each state which we do not assume in our setting.

2 Problem Formulation

We consider an episodic constrained MDP, denoted by (S,A,P, H, r, g) where S is the state space,
A is the action space, H is the fixed length of each episode, P = {Ph}Hh=1 is a collection of
transition probability measures, r = {rh}Hh=1 is a collection of reward functions, and g = {gh}Hh=1
is a collection of utility functions. We assume that S is a measurable space with possibly infinite
number of elements, A is a finite action set. Ph(·|x, a) is the transition probability kernel which
denotes the probability to reach a state when action a is taken at state x. rh : S × A → [0, 1], and
gh : S ×A → [0, 1] and are assumed to be deterministic. However, we can readily extend to settings
when rh and gh are random.

Each episode k ∈ [K] starts with the fixed state x1. It can be readily generalized to the setting
where x1 is drawn from a distribution. Then at each step h ∈ [H] in episode k, the agent observes
state xkh ∈ S, picks an action akh ∈ A, receives a reward rh(xkh, a

k
h), and a utility gh(xkh, a

k
h). The

MDP evolves to xkh+1 that is drawn from Ph(·|xkh, akh). The episode terminates at step H + 1.
Without loss of generality, we assume that rH+1 = gH+1 = 0. In this paper, we consider the
challenging scenario where the agent only observes the bandit information rh(xkh, a

k
h) and gh(xkh, a

k
h)

at the visited state-action pair (xkh, a
k
h). The policy-space of an agent is ∆(A|S, H); {{πh(·|·)}Hh=1 :

πh(·|x) ∈ ∆(A),∀x ∈ S, and h ∈ [H]}. Here ∆(A) is the probability simplex over the action space.
For any xkh ∈ S , k ∈ [K], and h ∈ [H], πh,k(akh|xkh) denotes the probability that the action akh ∈ A
is taken at episode k when the state is xkh.

Let V π
r,h(x) denote the expected value of the total reward function starting from step h and state x

when the agent selects action using the policy π = {πh}Hh=1

V π
r,h(x) = Eπ

 H∑
i=h

ri(xi, ai)|xh = x

 , (1)

where E is taken with respect to the policy π and the transition probability kernel P. Let Qπ
r,h(x, a)

denote the expected value of the total reward starting from step h and the state-action pair (x, a) and
follows the policy π as

Qπ
r,h(x, a) = Eπ

 H∑
i=h

ri(xi, ai)|xh = x, ah = a

 . (2)
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Similarly, we define the value function for the utility V π
g,h(x), and the action-value function for the

utility Qπ
g,h(x, a). We denote V π

j,h(x), and Qπ
j,h(x, a) for j = r, g.

Definition 1. For brevity, we denote PhV
π
j,h+1(x, a) = Ex′∼Ph(·|x,a)V

π
j,h+1(x

′) for j = r, g.

Using this notation, the Bellman’s equation associated with the policy π becomes

Qπ
j,h(x, a) = (rh +PhV

π
j,h+1)(x, a) (3)

Note that V π
j,h(x) = ⟨πh(·|x), Qπ

j,h(x, ·)⟩A, where ⟨πh(·|x), Qπ
j,h(x, ·)⟩A =∑

a∈A πh(a|x)Qπ
j,h(x, a).

The objective of the learning agent is to find an optimal solution of the following problem

maximize π∈∆(A|S,H)V
π
r,1(x1), subject to V π

g,1(x1) ≥ b. (4)

Note that even though we have only once constraint, it can be readily generalized to the scenario
with multiple constraints. In order to avoid trivial solutions, we consider b ∈ (0, H]. We denote the
optimal policy as π∗ which solves the above optimization problem. Since π∗ is obtained by having
complete information, it is also denoted as the best policy in the hindsight.

Without any constraint information a priori, an agent can not know the policies that satisfy the
constraint. Instead, we allow the policy to violate the constraint and minimize the regret while
minimizing the total constraint violations over the K episodes. Such an approach is also considered
in the existing literature [1, 7, 9]. We now define the performance metric which we seek to minimize.

Performance Metric. Let the policy employed by the agent at episode k be πk =
[π1,k, . . . , πh,k, . . . , πH,k]

T . The performance metric we are considering is the following

Regret(K) =

K∑
k=1

V π∗

r,1 (x1)− V
πk
r,1 (x1)

Violation(K) =

 K∑
k=1

(b− V πk
g,1 (x1))


+

, (5)

where [z]+ = max{z, 0}. The regret is defined as the difference between the total reward value by
following the optimal policy π∗, and the total reward value obtained by following agent’s policy πk at
episode k over K episodes. The constraint violation is defined as the difference between the threshold
value Kb and the total utility function attained by following the policies over all the episodes K.

Linear Function Approximation. To handle a possible large number of states, we consider the
following linear MDPs.
Assumption 1. The CMDP is a linear MDP with feature map ϕ : S × A → Rd, if for any h,
there exists d unknown signed measures µh = {µ1

h, . . . , µ
d
h} over S such that for any (x, a, x′) ∈

S ×A× S,

Ph(x
′|x, a) = ⟨ϕ(x, a), µh(x

′)⟩ (6)

and there exists vectors θr,h, θg,h ∈ Rd such that for any (x, a) ∈ S ×A,

rh(x, a) = ⟨ϕ(x, a), θr,h⟩ gh(x, a) = ⟨ϕ(x, a), θg,h⟩
Assumption 1 adapts the definition of linear MDP [14, 16] to the constrained case. By the above
definition, the transition model, the reward, and the utility functions are linear in terms of feature map
ϕ. We remark that despite being linear, Ph(·|x, a) can still have infinite degrees of freedom since
µh(·) is unknown. Note that tabular MDP is part of linear MDP [14].

Note that [7, 17] studied another related concept known as linear kernel MDP. In the linear kernel
MDP, the transition probability is given by Ph(x

′|x, a) = ⟨ψ(x′, x, a), θh⟩. In general, linear MDP
and linear kernel MDPs are two different classes of MDP [17].

Similar to Proposition 1 in [14], we can show that for a linear MDP and for any policy π there exists
{wπ

j,h}Hh=1 such that Qπ
j,h(x, a) = ⟨wπ

j,h, ϕ(x, a)⟩ for any (x, a, h) ∈ S ×A× [H]. We, thus, focus
on linear action-value function.

Dual problem and Slater’s Condition. We first introduce few notations which we will use throughout
this paper.
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Definition 2. V π,Y
h (·) = V π

h,r(·) + Y V π
h,g(·), and Qπ,Y

h (x, a) = Qπ
r,h(x, a) + Y Qπ

g,h(x, a), where
Y is the dual variable.

Thus, V π,Y
h (·) and Qπ,Y

h (·, ·) are respectively the composite value function and Q-functions re-
spectively. We can cast the problem (4) as a saddle point problem maxπ minY L(π, Y ) where
L(π, Y ) = V π

r,1(x1) + Y (V π
g,1(x1) − b) = V π,Y

1 − Y b, where π is the primal policy and Y is the
dual variable. However, the lagrangian is non-concave in π [18] even though it is convex in Y .
Nevertheless, the strong duality holds [19]. Hence, there exists optimal dual variable Y ∗, such that
maxπ L(π, Y ∗) will correspond to the optimal reward value function.

We assume the following slater’s condition in this paper.

Assumption 2 (Slater’s Condition). There exists γ > 0, and π̄ ∈ ∆(A|D,H), such that V π̄
g,1(x1) ≥

b+ γ,

Lemma 1 (Boundedness of Y ∗). The optimal dual-variable Y ∗ ≤
V π∗

r,1 (x1)− V π̄
r,1(x1)

γ
≤ H

γ
.

The slater’s condition is mild in practice and commonly adopted in previous works [7, 1, 20]. We use
the properties of the slater’s condition to bound the performance of our proposed algorithm.

Definition 3. We set ξ = 2H/γ.

3 Our Approach

Algorithm 1 Model Free Primal-Dual Algorithm for Linear Function Approximation

1: Initialization: Y1 = 0, wj,h = 0, ξ = 2H/γ,α =
log(|A|)K

2(1 + ξ +H)
, η = ξ/

√
KH2, β =

C1dH
√
log(4 log|A|dT/p)

2: for episodes k = 1, . . . ,K do
3: Receive the initial state xk1 .
4: for step h = H,H − 1, . . . , 1 do
5: Λk

h ←
∑k−1

τ=1 ϕ(x
τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

T + λI

6: wk
r,h ← (Λk

h)
−1[
∑k−1

τ=1 ϕ(x
τ
h, a

τ
h)[rh(x

τ
h, a

τ
h) + V k

r,h+1(x
τ
h+1)]]

7: wk
g,h ← (Λk

h)
−1[
∑k−1

τ=1 ϕ(x
τ
h, a

τ
h)[gh(x

τ
h, a

τ
h) + V k

g,h+1(x
τ
h+1)]]

8: Qk
r,h(·, ·)← min{⟨wk

r,h, ϕ(·, ·)⟩+ β(ϕ(·, ·)T (Λk
h)

−1ϕ(·, ·))1/2, H}
9: Qk

g,h(·, ·)← min{⟨wk
g,h, ϕ(·, ·)⟩+ β(ϕ(·, ·)T (Λk

h)
−1ϕ(·, ·))1/2, H}

10: πh,k(a|·) =
exp(α(Qk

r,h(·, a) + YkQ
k
g,h(·, a)))∑

a exp(α(Q
k
r,h(·, a) + YkQk

g,h(·, a)))
11: V k

r,h(·) =
∑

a πh,k(a|·)Qk
r,h(·, a)

12: V k
g,h(·) =

∑
a πh,k(a|·)Qk

g,h(·, a)
13: for step h = 1, . . . ,H do
14: Compute Qk

r,h(x
k
h, a), Q

k
g,h(x

k
h, a), π(a|xkh) for all a.

15: Take action akh ∼ πh,k(·|xkh) and observe xkh+1.
16: Yk+1 = max{min{Yk + η(b− V k

g,1(x1)), ξ}, 0}

We now describe our proposed algorithm in Algorithm 1. This algorithm is based on the primal-dual
adaptation of the LSVI-UCB [14]. For a given dual variable, the primal policy is updated, and then
the dual value is updated based on the estimated utility value function. At each episode, the algorithm
consists of three parts. The first part (Steps 4-12) consists of updating the parameters wk

r,h, w
k
g,h

and Λk
h which are used to update the Qk

j,h and V k
j,h at episode k. Λk

h is the Gram-matrix for the
regularized least square problem (see Eqn. (8), later). Note that the Steps 8-12 are not evaluated for
each state, rather, they are evaluated only for the encountered states till episode k − 1. Hence, we do
not need to iterate over potentially infinite number of states. For the first episode, since k − 1 = 0
and τ = 1, we have wk

j,h = 0, ∀j and Λk
h = λI. We note that Qk

j,H+1(·, ·) = 0 for j = r, g.
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The value functions are updated (Steps 11-12) based on Q function and the policy. The policy is
based (Step 10) on a soft-max policy unlike the greedy one in the unconstrained case [14]. Soft-max
policy SOFT-MAXα(X) = {SOFT-MAXi

α(X)}|A|
i=1 for any vector X ∈ R|A| is a |A|-dimensional

vector with parameter α where the i-th component

SOFT-MAXi
α(X) =

exp(αXi)∑|A|
n=1 exp(αXn)

(7)

At step h, πh,k(a|x) is computed based on the soft-max policy on the composite Q-function vector
{Qk

r,h(x, a) + YkQ
k
g,h(x, a)}a∈A where Yk is the lagrangian multiplier. When α =∞, this becomes

equal to the greedy policy. The second part (Steps 13-15) is the execution of the soft-max policy
based on the composite Q-value for the encountered state xkh.

Q function and Value function Estimation. We need to estimate the value-function and Q-function
with respect to the policy πk. However, there are challenges. We do not know Ph in Bellman’s
equation (3), rather PhV

πk

j,h+1 should be replaced by the empirical samples. Further, in the large
state space, we can not iterate over all (x, a). Rather, we parameterize Qπ∗

j,h(·, ·) by a linear form
⟨wk

j,h(·, ·), ϕ(·, ·)⟩. The intuition is to obtain wk
j,h from the Bellman’s equation using the regularized

least-square regression. We obtain wk
j,h for j = r, g according to the following equation

wk
j,h ← arg min

w∈Rd

k−1∑
τ=1

[jh(x
τ
h, a

τ
h) + V k

j,h+1(x
τ
h+1)− wTϕ(xτh, a

τ
h)]

2 + λ||w||22 (8)

Then, an additional bonus term β(ϕ(·, ·)T (Λk
h)

−1ϕ(·, ·))1/2 is added as in [14]. β is constant which
we will characterize in the next section. Such an additional term is used for upper confidence bound
in LSVI-UCB [14]. The same additional term is used for both Qk

r,h and Qk
g,h. Note the difference

with the LSVI-UCB, here, we need to estimate the value function corresponding to the soft-max
policy πk where in LSVI-UCB, a greedy policy corresponding to the Q-function is used.

Policy. We update a soft-max policy which selects actions according to the estimated ‘composite’
Q-function at the k-th episode. The reason behind using the soft-max policy instead of a greedy policy
will be apparent in the next section when we state the main results and the proof ideas. Note from
the strong duality, for optimal dual variable Y ∗, optimal primal policy π∗ maximizes the composite
value function V π∗,Y ∗

(Definition 2). Thus, the optimal policy should be a greedy one based on
this optimal dual value Y ∗. However, the greedy policy is not Lipschitz, hence, it does not provide
uniform concentration bound for each individual value function, an essential step in the regret bound
(Section 4.2). Hence, compared to the unconstrained scenario, we need more exploration in the policy
space where the apparent reason is that we do not know the optimal dual variable beforehand. Since
we use the soft-max policy, there is a gap compared to the optimal value even when the lagrangian
multiplier Yk becomes equal to Y ∗. However, if α in the soft-max policy also scales with K, then we
can bound the gap from the optimal value function (Section 4.2).

Dual Update. To infer the constraint violation, we estimate V k
g,1 for V πk

g,1 . We update the lagrangian
multiplier Yk by moving towards minimizing the lagrangian L(π, Y ) over Y ≥ 0 in line 16, where
η > 0 is a step-size and ξ is the upper bound on the dual variable such that optimal dual variable Y ∗

is contained within [0, ξ]. The dual update is similar to the step described in [7, 1].

The dual update works as a trade-off between the reward maximization and the constraint violation
reduction. If b− V k

g,1 ≥ 0, that means with a high probability, the constraint will be violated for the
policy πk. Hence, the dual value is increased in order to focus on minimizing the constraint violation.
Otherwise, the agent tries to maximize the reward value function.

Space and Time Complexities. We remark that Algorithm 1 only needs to store Yk,
wk

r,h, w
k
g,h, rh(x

k
h, a

k
h), gh(x

k
h, a

k
h),Λ

k
h, and {ϕ(xkh, a)}a∈A for all (h, k) ∈ [H] × [K], hence, it

takes O(d2H + dAT ) space. When we compute (Λk
h)

−1 using Sherman-Morrison formula, the com-
putation of V k

j,h+1 is dominated by computing Qk
j,h+1 and the policy πk. Hence, it takes O(d2AT )

time. Note that since our approach is model-free and we do not need to evaluate integrals as in [7] in
order to estimate PhV

k
h+1.

Note that both η and α use the knowledge of K. In case, K is unknown, one can use the “doubling
trick" [21] which will only scale the regret and constraint violation by a constant factor.
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4 Analysis

We now state the main result. We prove that Algorithm 1 achieves regret and constraint violation
which are sublinear in T = KH where T is the total number of steps.

4.1 Main Results

Theorem 1. Fix p > 0. If we set λ = 1, β = C1dH
√
ι in Algorithm 1 where ι = log(log(|A|)4dT/p)

for some absolute constant C1. With probability (1− p),

Regret(K) ≤ C
√
d3H3Tι2 + ξ

√
HT

Violation(K) ≤ C ′2(1 + ξ)

ξ

√
d3H3Tι2

for some absolute constants C, and C ′.

We remark the difference with the existing results. Since ξ = 2H/γ (by Definition 3), our result
indicates that our approach obtains Õ(

√
d3H3T ) regret and the same order of constraint violation

where Õ absorbs logarithmic factor on T . The regret and constraint violation are sub-linear in T ,
and similar dependence is observed in [1, 7]. Also note that compared to the unconstrained case
[14], there is an additional log(|A|)) factor in the value of ι which arises because we use soft-max
policy instead of the greedy policy which adds to the covering number. The regret and constraint
violation do not depend on the dimension of the state space, rather, it depends on the dimension of
the feature space. To the best of our knowledge this is the first result which shows both Õ(

√
T ) regret

and constraint violation in the model-free set up (tabular or linear) without requiring a simulator.

Comparison with [7]: Compared to [7] which also considers linear function approximation (however,
it considers linear kernel MDP rather linear MDP) we improve the result in [7] by a factor of H .
Second, compared to [7], which is a model-based policy-based algorithm, ours is a model-free
value-based algorithm. Due to this, the above uniform concentration challenge does not exist in [7].
Moreover, our model-free algorithm also enjoys an easy implementation and improved computation
efficiency since it does not estimate the next step expected value function as in [7] which requires an
integration oracle to compute a d-dimensional integration at every step. [7] also needs to store the
previous policies and estimated value functions, hence, it needs O(T ) additional space complexity.
We have an additional

√
d factor in front of the regret and constraint violation. Similar difference

in regret is also observed between the model-based linear kernel unconstrained MDP [22] and
model-free linear unconstrained MDP [14] even in the unconstrained case.

Similar to the discussion in Section 3.1 on [23], our result directly translates to a sample complexity
guarantee (or, PAC guarantee). For example, we can learn a policy π such that V π∗

r,1 (x1)−V π
r,1(x1) ≤

ϵ, and b − V π
g,1(x1) ≤ ϵ after Õ(d3H4/ϵ2) number of samples. Here, the policy π is obtained

after running Algorithm 1 for Õ(d3H3/ϵ2) number of episodes, and then selecting policy πk with
probability 1/K for any k ∈ [K].

Recently, [24] proposed an algorithm with provable sample complexity guarantee for linear CMDP.
However, the regret and violation guarantees are different from the sample complexity guarantees
as the former ones are any time guarantee. The proposed algorithms are different since the goal is
different. In particular, the uniform concentration bound challenge does not appear there. Note that
using the explore-then-commit algorithm [23], one can achieve Õ(T 2/3) regret for large T (from
Õ(1/ϵ2) sample complexity bound achieved in [24]) which is worse than ours. Additionally, we
achieve zero violation (Remark 2) while maintaining the same order of regret with respect to T .

4.2 Outline of the Proof

In this section, we provide an outline of our proof, which is mainly divided into three steps. We first
establish a decomposition of the sum of reward regret and constraint violation. Then, we will bound
two key terms that are related to optimism and prediction error, respectively. Finally, using standard
optimization tools, we can achieve the main results. We highlight that the key challenges lie in the
second step where a balance between the optimistic term and prediction error term is handled via the
introduced soft-max policy.
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Step 1: Bounding the sum of Regret and violation scaled by dual variable Similar to [1], we first
establish the following decomposition, which upper bounds the sum of regret and violation. This will
serve as the basis when applying optimization tools in Step 3.
Lemma 2 (Decomposition). For any Y ∈ [0, ξ], we have

K∑
k=1

(V π∗

r,1 (x1)− V
πk
r,1 (x1)) + Y

K∑
k=1

(b− V πk
g,1 (x1)) ≤

1

2η
Y 2 +

η

2
H2K+

K∑
k=1

(
V π∗

r,1 (x1) + YkV
π∗

g,1 (x1)
)
−
(
V k
r,1(x1) + YkV

k
g,1(x1)

)
︸ ︷︷ ︸

T1

+

K∑
k=1

(
V k
r,1(x1)− V

πk
r,1 (x1)

)
+ Y

K∑
k=1

(
V k
g,1(x1)− V

πk
g,1 (x1)

)
︸ ︷︷ ︸

T2

Note that T1 is similar to the term related to optimism in the unconstrained case with the difference
being that we now have two value functions weighted by the dual variable Yk. Similarly, T2 is similar
to prediction error term with the additional weight by Y . Since the first term in the above inequality
can be easily bounded with a proper choice of η, we are only left to bound T1 and T2, respectively.

Step 2: Bounding T1 and T2 To bound T2 and T1, we need to bound the difference between the
individual estimated value function V k

j,h and the individual value function V π
j,h corresponding to a

given policy π at episode k. As in the unconstrained case, the key step is to control the fluctuations in
least-squares value iteration. In particular, we need to show that for all (k, h) ∈ [K]× [H] with high
probability ∥∥∥∥∥∥

k−1∑
τ=1

ϕ(xτh, a
τ
h)
[
V k
j,h+1(x

τ
h+1)−PhV

k
j,h+1(x

τ
h, a

τ
h)
]∥∥∥∥∥∥

(Λk
h)

−1

is upper bounded by lower order term (e.g., O(d
√
logK). To this end, value-aware uniform con-

centration is required to handle the dependence between V k
j,h+1 and samples {xτh+1}

k−1
τ=1, which

renders the standard self-normalized inequality infeasible in the model-free setting. The general idea
here is to fix a function class Vj,h in advance and then show that each possible value function in our
algorithm V k

j,h is within this class which has polynomial log-covering number. In the following, we
fix an h ∈ [H] and drop the subscript h for notation simplicity.

Uniform Concentration Bound for class of value function: We first note that this uniform
concentration bound is the main motivation for us to choose a soft-max policy as we will see
that the standard greedy policy would fail in this case. That is, in order to guarantee that for
each possible V k

j , there is an ϵ-close function in Vj , it would basically lead to a very large
covering number. To address this, we introduce soft-max policy and define the following cor-
responding function classes. We first define the following class for Q-function for j = r, g.
Qj = {Qj |Qj(·, ·) = min{⟨wj , ϕ(·, ·)⟩+β

√
ϕ(·, ·)T (Λh)−1ϕ(·, ·), H}. Then, we define the follow-

ing value function class Vj . Vj = {Vj |Vj(·) =
∑

a π(a|·)Qj(·, a);Qj ∈ Qj , π ∈ Π}, where Π is
given by the following class Π = {π|π(a|·) = SOFT-MAXa

α((Qr(·, ·) + Y Qg(·, ·));∀a ∈ A, Qr ∈
Qr, Qg ∈ Qg, Y ∈ [0, ξ]}, where SOFT-MAX is defined in (7).

Why soft-max? At this moment, we can explain why the introduction of soft-max in our algorithm
is critical. Suppose we follow the standard greedy selection, which corresponds to α = ∞ in
above. The key issue in this approach is that one needs a large ϵ-covering for Vj so that each
possible V k

j can be well-approximated (i.e., ϵ-close) by function in Vj . This is in sharp contrast
to the unconstrained case where Vj has a polynomial log-covering number. To see this difference,
in the unconstrained case, we only have V k

r that is greedy with respect to Qk
r . By the fact that

maxa is a contraction map, an ϵ-covering of the Qk
r implies an ϵ-covering of V k

r and meanwhile
the covering number of Qr is reasonably small (Lemma 14) by standard arguments. This no longer
holds in the constrained case due to the use of a composite Q-function. In particular, note that
if the policy is greedy w.r.t. the composite Q-function, then an ϵ-covering of Qk

j fails to be an
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ϵ-covering of V k
j in general since the greedy policy is not smooth in that a slight change of the

composite Q-function could lead to a substantial change of the output action. This leads to a
large distance for individual value functions due to the different action choices, even though the
Q-function is close (Please see Appendix G for an example). Hence, one can not approximate
individual value function within ϵ-bound using greedy policy based on composite Q-function. This
fact motivates us to turn to SOFT-MAXα, which is Lipschitz continuous with a Lipschitz constant at
most 2α. Thus, our main idea is as follows. Given Qk

r , Qk
g and Yk, we can first find fixed Q̃r ∈ Qr ,

Q̃g ∈ Qg and Ỹ ∈ [0, ξ] such that
∥∥∥Qk

r − Q̃r

∥∥∥
∞
≤ ϵ1,

∥∥∥Qk
g − Q̃g

∥∥∥
∞
≤ ϵ2,

∥∥∥Y k − Ỹ
∥∥∥
∞
≤ ϵ3 and∥∥∥(Qk

r + YkQ
k
g)− (Q̃r + Ỹ Q̃g)

∥∥∥
∞
≤ ϵ with a reasonably small covering number. Then, thanks to

the smoothness of soft-max function, we have∥πk − π̃∥1 ≤ 2αϵ (Lemma 15). Combining this with
the closeness of individual Q-function yields the closeness of individual V -function (Lemma 13).
Hence, it ensures that the class Vj in our set-up has log-covering number of O(d log(K)).

Choosing hyper-parameter α to achieve bound: A larger value of α means that we need a smaller
ϵ, hence a larger covering number. Then, one may wonder if we can choose an arbitrarily small value
for α. However, the term T1 will be enlarged if we choose too small α. Note that in the unconstrained
case, T1 is upper bounded by zero due to optimism under greedy policy. Now, since we are using
soft-max, we need to bound the approximation error between the soft-max and greedy one. As
expected, in this case, a larger α leads to a smaller approximation error.

From the discussions above, we can see that the approximation-smoothness trade-off of the soft-max
function is well captured by our T1 and T2, respectively. Therefore, we need to carefully choose the
value of α to balance these two. In particular, with α = log(|A|)K

2H , we have the following bounds on
T1 and T2, respectively.

Lemma 3. With probability 1− p/2, we have T1 ≤ K
H log(|A|)

α
. Hence, for α =

log(|A|)K
2(1 + ξ +H)

,

we have T1 ≤ 2H(1 + ξ +H) with probability 1− p/2.

Lemma 4. With probability at least 1 − p/2, T2 ≤ O((Y + 1)
√
d3H3Tι2), where ι =

log[log(|A|)4dT/p]
Remark 1. The additional log|A| factor in ι arises as a trade-off for selecting soft-max policy as it is
evident in Lemma 3. When we compensate by making α scaled with log|A| in Lemma 3, it increases
the covering-number by log|A| as well in the ι term.

Step 3: Final Result by combining all the pieces: By replacing Y = 0, η = ξ/(
√
KH2), and

combining Lemma 2,3, and 4, we obtain the regret bound. We also obtain the constraint violation
using the idea from [1].
Remark 2. We can reduce the violation to zero while maintaining the same order on regret with
respect to T (Appendix H). We consider a tighter optimization problem where we add ζ in the
constraint of (4). In Appendix H, we bound the difference between the optimal value function for
the tighter and the original problem as a function of ζ. Since the tighter problem is also CMDP, we
attain the regret and violation bound as in Theorem 1 with b+ ζ in place of b. Hence, by choosing
ζ, we can show that it is possible to achieve Õ(

√
T ) regret and zero violation for large enough K

(Theorem 3 in Appendix H) albeit with an extra H factor in front of regret bound.

5 Experiments

We evaluate Algorithm 1 on a simulated model for job scheduling to validate our theoretical results.
We consider that the number of jobs belongs to the discrete state {0, 1, . . . , 9} where 0 means that
there is no job. Total time horizon (H) is divided in 10 steps. After H steps, a new episode begins.
At the start of the each episode, the state of the job is assumed to be 9, i.e., the job stack is full. The
agent needs to decide whether to send job (a = 1) or not (a = 0) to a machine. We assume that if
a = 1, the agent sends 2 jobs to a machine and incurs a cost as the machine spends some resources to
process the job. We assume that the rewards are step dependent. In particular, we assume that at time
steps from 3 to 6, the reward is 1− 0.9a, In other time steps, the reward is 1− 0.2a. This mimics the
setup where at certain time, it might be more costly to process a job (for example, electricity cost
might be higher, or the machine needs to abandon an important job).
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Figure 1: The plot for cumulative regret and constraint violation as a function of K. Each plot is an
average of 10 trials.

We assume that even if the scheduler schedules a job, the machine might not be able to complete the
2 jobs. In particular,

xh+1 =


max{xh − 2a, 0} w.p. 0.8
max{xh − a, 0} w.p. 0.1
xh, otherwise

Thus, if a = 0, the state xh+1 = xh. The agent gets an utility of g(xh, ah, xh+1) = (xh − xh+1)/2.
We want that utility to be greater than or equal to 4 at the end of every episode. This will ensure that
at most 1 job can remain at the end of each episode.

We run Algorithm 1 for 2 × 105 episodes (K). The parameters we used are the followings: α =

K/(1 + 2H/γ + H), η = 2H/(γ
√
KH2). We set γ = 1. We have also set ϵ = 0.1 in order to

ensure that the violation goes towards 0 as K increases. Note that the setup can be represented in
a tabular form. Since linear MDP contains tabular form, the feature space representation becomes
simple, in particular, ϕ(s, a) = es,a where es,a is 1 for the state-action pair (s, a), and 0 otherwise.
The dimension of the feature space is |S||A|. The cumulative regret and constraint violations are
shown in Figure 1. As predicted by our theory, the regret scales only as

√
K. On the other hand, the

cumulative violation oscillates. However, the violation approaches 0 as K increases. The oscillation
of violation is due to the fact that dual variable also oscillates in order to illicit conservative response
when the cumulative violation increases, and illicit aggressive response when the violation decreases.

6 Conclusion and Future Work

We propose a model-free RL-based algorithm for linear MDP. We have achieved Õ(
√
d3H3T )

regret and Õ(
√
d3H3T ) constraint violation. To the best of our knowledge, this is the first result

which shows Õ(
√
T ) regret and Õ(

√
T ) constraint violation without requiring a generator for the

model-free case. We have extended the LSVI-UCB algorithm in the primal-dual type framework. We
have underlined the technical challenges in doing so and explained how the greedy policy fails to
achieve an uniform concentration bound for individual value function. Subsequently, we show that a
soft-max type algorithm achieves that.

Compared to [7], our regret is off by
√
d factor which is due to the fact that we need to use uniform

concentration bound. The similar gap is also observed for the unconstrained set-up as well. Whether
we can tighten this dependence on d remains an important future research direction. Whether we
can tighten the dependence on H also constitutes a future research direction. Extending the work
to the setup where the feature-space needs to be learnt is also important. Recent works [25–27]
on feature-space learning for unconstrained MDPs may provide some insights in this direction.
Consideration of non-linear MDP also constitutes a future research direction.
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Organization of Appendix: In Section A, we state some results which we use throughout. In
Section B, we prove Lemma 2. In Section C, we prove Lemmas 3 and 4. In Section C.1, we state
and prove base results Lemmas 8, 9, and 10 which are necessary to prove the Lemmas 3 and 4.
Subsequently, we prove Lemmas 3 and 4 in sequence in Sections C.2 and C.3. In Section D, we
prove Theorem 1. In Section E we prove Lemma 8 and highlight that how soft-max policy enables
us to obtain a low-covering number for our class of value functions. In Section F, we state some
results proved in the existing literature which we have used in proving our results. In Section G, we
explain why greedy policy based on the composite Q-function fails using an example. In Section H,
we describe the results on how zero violation can be attained.

Notations: Throughout the rest of this paper, we denote Qk
r,h, Q

k
g,h, w

k
r,h, w

k
g,h,Λ

k
h as the Q-value

and the parameter values estimated at the episode k. V k
j,h(·) = ⟨πh,k(·|·), Qk

j,h(·, ·)⟩A. πh,k(·|x) is
the soft-max policy based on the composite Q-function at the k-th episode as Qk

r,h + YkQ
k
g,h. To

simplify the presentation, we denote ϕkh = ϕ(xkh, a
k
h).

Without loss of generality, we assume ||ϕ(x, a)||2≤ 1 for all (x, a) ∈ S × A, ||µh(S)||2≤
√
d,

||θj,h||2≤
√
d for j = r, g and all h ∈ [H].

A Preliminary Results

Lemma 5. Under Assumption 1, for any fixed policy π, let wπ
h be the corresponding weights such

that Qπ
j,h = ⟨ϕ(x, a), wπ

j,h⟩, for j ∈ {r, g}, then we have for all h ∈ [H],

||wπ
j,h||≤ 2H

√
d (9)

Proof. From the linearity of the action-value function, we have

Qπ
j,h(x, a) = jh(x, a) +PhV

π
j,h(x, a)

= ⟨ϕ(x, a), θj,h⟩+
∫
S
V π
j,h+1(x

′)⟨ϕ(x, a), dµh(x
′)⟩

= ⟨ϕ(x, a), wπ
j,h⟩ (10)

where wπ
j,h = θj,h +

∫
S V

π
j,h+1(x

′)dµh(x
′).

Now, ||θj,h||≤
√
d, and ||

∫
S V

π
j,h+1(x

′)dµh(x
′)||≤ H

√
d. Thus, the result follows.

Lemma 6. For any (k, h), the weight wk
j,h satisfies

||wk
j,h||≤ 2H

√
dk/λ (11)

Proof. For any vector v ∈ Rd we have

|vTwk
j,h|= |vT (Λk

h)
−1

k−1∑
τ=1

ϕτh(x
τ
h, a

τ
h)(jh(x

τ
h, a

τ
h) +

∑
a

πh+1,k(a|xτh+1)Q
k
j,h+1(x

τ
h+1, a))| (12)

here πh,k(·|x) is the Soft-max policy.

Note that Qk
j,h+1(x, a) ≤ H for any (x, a). Hence, from (12) we have

|vTwk
j,h| ≤

k−1∑
τ=1

|vT (Λk
h)

−1ϕτh|.2H

≤

√√√√k−1∑
τ=1

vT (Λh
k)

−1v

√√√√k−1∑
τ=1

ϕτh(Λ
k
h)

−1ϕτh.2H

≤ 2H||v||
√
dk√
λ

(13)

Note that ||wk
j,h||= maxv:||v||=1|vTwk

j,h|. Hence, the result follows.
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B Proof of Lemma 2

We first state and prove the following result which is similar to the one proved in [7].
Lemma 7. For Y ∈ [0, ξ],

K∑
k=1

(Y − Yk)(b− V k
g,1(x1)) ≤

Y 2

2η
+
ηH2K

2
(14)

Proof.

|Yk+1 − Y |2= |Proj[0,ξ](Yk + η(b− V k
g,1(x1)))− Proj[0,ξ](Y )|2

≤ (Yk + η(b− V k
g,1(x1)))− Y )2

≤ (Yk − Y )2 + η2H2 + 2ηYk(b− V k
g,1(x1)) (15)

Summing over k, we obtain

0 ≤ |YK+1 − Y |2≤ |Y1 − Y |2+2η

K∑
k=1

(b− V k
g,1(x1))(Yk − Y ) + η2H2K

K∑
k=1

(Y − Yk)(b− V k
g,1(x1)) ≤

|Y1 − Y |2

2η
+
ηH2K

2
(16)

Since Y1 = 0, we have the result.

Now, we prove Lemma 2.

Proof. Note that

Y

K∑
k=1

(b− V πk
g,1 (x1)) =

∑
k

(Y − Yk)(b− V k
g,1(x1)) + Yk(b− V k

g,1) + Y (V k
g,1(x1)− V

πk
g,1 (x1))

≤ 1

2η
Y 2 +

η

2
H2K +

K∑
k=1

(Ykb− YkV k
g,1(x1)) + Y (V k

g,1(x1)− V
πk
g,1 (x1))

≤ 1

2η
Y 2 +

η

2
H2K +

K∑
k=1

(YkV
π∗

g,1 (x1)− YkV k
g,1(x1)) +

K∑
k=1

Y (V k
g,1(x1)− YkV

πk
g,1 (x1))

where the first inequality follows from Lemma 7, and the second inequality follows from the fact that
V π∗

g,1 (x1) ≥ b. Hence, the result simply follows from the above inequality.

C Proof of Lemmas 3 and 4

First, we prove some base results which we use to prove both Lemmas 3 and 4 in Section C.1.
Subsequently, we prove Lemma 3 in Section C.2 and Lemma 4 in Section C.3.

C.1 Proof of Base Results

We state and prove Lemmas 8,9, and 10.

First, we state the concentration lemma which is essential in controlling the fluctuations in the least
square value iteration.
Lemma 8. There exists a constant C2 such that for any fixed p ∈ (0, 1), if we let E be the event that∥∥∥∥∥∥

k−1∑
τ=1

ϕτj,h[V
k
j,h+1(x

τ
h+1)−PhV

k
j,h+1(x

τ
h, a

τ
h)

∥∥∥∥∥∥
(Λk

h)
−1

≤ C2dH
√
χ (17)

for all j ∈ {r, g}, χ = log[4(C1 + 1) log(|A|)dT/p], for some constant C1, then Pr(E) = 1− p/2.
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The proof of Lemma 8 is technical and relegated to Appendix E. An extra log(|A|) term appears
because α appears in the covering number.

We now, recursively bound the difference between the value function maintained in Algorithm 1
(without the bonus term) and the value function for any policy for both the reward and utility value
functions. We bound this using the expected difference at the next step plus an error term. This error
term can be upper bounded by the bonus term with a high-probability.
Lemma 9. There exists an absolute constant β = C1dH

√
ι, ι = log(log(|A|)4dT/p), and for any

fixed policy π, on the event E defined in Lemma 8, we have

⟨ϕ(x, a), wk
j,h⟩ −Qπ

j,h(x, a) = Ph(V
k
j,h+1 − V π

j,h+1)(x, a) + ∆k
h(x, a) (18)

for some ∆k
h(x, a) that satisfies |∆k

h(x, a)|≤ β
√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a).

Proof. We only prove for j = r, the proof for j = g is similar.

Note that Qπ
r,h(x, a) = ⟨ϕ(x, a), wπ

r,h⟩ = rh(x, a) +PhV
π
r,h+1(x, a).

Hence, we have

wk
r,h − wπ

r,h = (Λk
h)

−1
k−1∑
τ=1

ϕτh[r
τ
h + V k

r,h+1(x
τ
h+1)]− wπ

r,h

= −λ(Λk
h)

−1(wπ
r,h) + (Λk

h)
−1

k−1∑
τ=1

ϕτh[V
k
r,h+1(x

τ
h+1)−PhV

k
r,h+1(x

τ
h, a

τ
h)]

+ (Λk
h)

−1
k−1∑
τ=1

ϕτh[PhV
k
r,h+1(x

τ
h, a

τ
h)−PhV

π
r,h+1(x

τ
h, a

τ
h)] (19)

Now, we bound each term in the right hand side of expression in (19). We call those terms as q1, q2,
and q3 respectively.

First, note that

|⟨ϕ(x, a),q1⟩| = |λ⟨ϕ(x, a), (Λk
h)

−1(wπ
r,h)⟩|

≤
√
λ||wπ

r,h||
√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a) (20)

Second, from Lemma 8, for the event in E , we have

|⟨ϕ(x, a),q2⟩|≤ CdH
√
χ
√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a) (21)

where χ = log(4(C1 + 1) log(|A|)dT/p). Third,

⟨ϕ(x, a),q3⟩ = ⟨ϕ(x, a), (Λk
h)

−1
k−1∑
τ=1

ϕτh[Ph(V
k
r,h+1 − V π

r,h+1)(x
τ
h, a

τ
h)]⟩

= ⟨ϕ(x, a), (Λk
h)

−1
k−1∑
τ=1

ϕτh(ϕ
τ
h)

T

∫
(V k

r,h+1 − V π
r,h+1)(x

′)dµh(x
′)⟩

= ⟨ϕ(x, a),
∫
(V k

r,h+1 − V π
r,h+1)(x

′)dµh(x
′)⟩ − ⟨ϕ(x, a), λ(Λk

h)
−1

∫
(V k

r,h+1 − V π
r,h+1)(x

′)dµh(x
′)⟩

(22)

The last term in (22) can be bounded as the following

|⟨ϕ(x, a), λ(Λk
h)

−1

∫
(V k

r,h+1 − V π
r,h+1)(x

′)dµh(x
′)⟩|≤ 2H

√
dλ
√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a) (23)

since ||
∫
(V k

r,h+1−V π
r,h+1)(x

′)dµh(x
′)||2≤ 2H

√
d as ||µh(S)||≤

√
d. The first term in (22) is equal

to

Ph(V
k
r,h+1 − V π

r,h+1)(x, a) (24)
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Note that ⟨ϕ(x, a), wk
r,h⟩ −Qπ

r,h(x, a) = ⟨ϕ(x, a), wk
r,h − wπ

r,h⟩ = ⟨ϕ(x, a),q1 + q2 + q3⟩. Since
λ = 1, we have from (20), (21,(23), and (24)

|⟨ϕ(x, a), wk
r,h⟩ −Qπ

r,h(x, a)−Ph(V
k
r,h+1 − V π

r,h+1)(x, a)|≤ C3dH
√
χ
√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a)

(25)

for some constant C3 which is independent of C1. Finally, note that

C3
√
χ =

√
log(4(C1 + 1) log(|A|)dT/p)

= C3

√
ι+ log(C1 + 1)

≤ C1

√
ι (26)

where ι = log(4 log(|A|)dT/p). The last inequality follows from the fact that ι ∈ [log 4,∞) as |A|≥
2, and C3 is independent of C1. Hence, we can always pick C3

√
log 4 + log(C1 + 1) ≤ C1

√
log 4

which satisfies (26) for all values of ι ∈ [log 4,∞).

Next, using the above lemma, we bound the difference between the composite value function
maintained by the algorithm and the composite value function for a policy with the Lagrangian Yk.
Lemma 10. With prob. 1− p, (for the event in E)

Qπ
r,h(x, a) + YkQ

π
g,h(x, a) ≤ Qk

r,h(x, a) + YkQ
k
g,h(x, a)−Ph(V

k
h+1 − V

π,Yk

h+1 )(x, a) (27)

Proof. From Lemma 9 and the fact that |Qπ
r,h|≤ H , we have w.p. 1− p/2,

Qπ
r,h(x, a) ≤ min{⟨ϕ(x, a), wk

r,h⟩+ β
√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a), H}

+Ph(V
π
r,h+1 − V k

r,h+1)(x, a)

= Qk
r,h(x, a) +Ph(V

π
r,h+1 − V k

r,h+1)(x, a)

where the last equality follows from the definition of Qk
r,h.

Similarly, with probability 1− p/2,

YkQ
π
g,h(x, a) ≤ YkQk

g,h(x, a) + YkPh(V
π
g,h+1 − V k

g,h+1)(x, a)

Hence, from union bound, with probability 1− p,

Qπ
r,h(x, a) + YkQ

π
g,h(x, a) ≤ Qk

r,h + YkQ
k
g,h(x, a) +Ph(V

π,Yk

h+1 − V
k
h+1)(x, a)

C.2 Proof of Lemma 3

First, we state and prove a supporting result which bounds the value functions corresponding to the
greedy policy and the soft-max policy at a given step. We show that this gap can be controlled by the
parameter α.

Lemma 11. Then, V̄ k
h (x)− V k

h (x) ≤ log|A|
α

where
Definition 4. V̄ k

h (·) = maxa[Q
k
r,h(·, a) + YkQ

k
g,h(·, a)].

V̄ k
h (·) is the value function corresponds to the greedy-policy with respect to the compositeQ-function.

Proof. Note that

V k
h (x) =

∑
a

πh,k(a|x)[Qk
r,h(x, a) + YkQ

k
g,h(x, a)] (28)

17



where

πh,k(a|x) =
exp(α[Qk

r,h(x, a) + YkQ
k
g,h(x, a)])∑

a exp(α[Q
k
r,h(x, a) + YkQk

g,h(x, a)])
(29)

Denote ax = argmaxa[Q
k
r,h(x, a) + YkQ

k
g,h(x, a)]

Now, recall from Definition 4 that V̄ k
h (x) = [Qk

r,h(x, ax) + YkQ
k
g,h(x, ax)]. Then,

V̄ k
h (x)− V k

h (x) = [Qk
r,h(x, ax) + YkQ

k
g,h(x, ax)]

−
∑
a

πh,k(a|x)[Qk
r,h(x, a) + YkQ

k
g,h(x, a)]

≤

(
log(

∑
a exp(α(Q

k
r,h(x, a) + YkQ

k
g,h(x, a))))

α

)
−
∑
a

πh,k(a|x)[Qk
r,h(x, a) + YkQ

k
g,h(x, a)]

≤ log(|A|)
α

(30)

where the last inequality follows from Proposition 1 in [28].

We are now ready to show Lemma 3.

Proof. We prove the lemma by Induction.

First, we prove for the step H .

Note that Qk
j,H+1 = 0 = Qπ

j,H+1.

Under the event in E as described in Lemma 8 and from Lemma 9, we have for j = r, g,

|⟨ϕ(x, a), wk
j,H(x, a)⟩ −Qπ

j,H(x, a)|≤ β
√
ϕ(x, a)T (Λk

H)−1ϕ(x, a)

Hence, for any (x, a),

Qπ
j,H(x, a) ≤ min{⟨ϕ(x, a), wk

j,H⟩+ β
√
ϕ(x, a)T (Λk

H)−1ϕ(x, a), H}

= Qk
j,H(x, a) (31)

Hence, from the definition of V̄ k
h ,

V̄ k
H(x) = max

a
[Qk

r,H(x, a) + YkQ
k
g,h(x, a)] ≥

∑
a

π(a|x)[Qπ
r,H(x, a) + YkQ

π
g,H(x, a)]

= V π,Yk

H (x) (32)

for any policy π. Thus, it also holds for π∗, the optimal policy. Hence, from Lemma 11, we have

V π∗,Yk

H (x)− V k
H(x) ≤ log(|A|)

α

Now, suppose that it is true till the step h+ 1 and consider the step h.

Since, it is true till step h+ 1, thus, for any policy π,

Ph(V
π,Yk

h+1 − V
k
h+1)(x, a) ≤

(H − h) log(|A|)
α

(33)

From (27) in Lemma 10 and the above result, we have for any (x, a)

Qπ
r,h(x, a) + YkQ

π
g,h(x, a) ≤ Qk

r,h(x, a) + YkQ
k
g,h(x, a) +

(H − h) log(|A|)
α

(34)

18



Hence,

V π,Yk

h (x) ≤ V̄ k
h (x) +

(H − h) log(|A|)
α

(35)

Now, again from Lemma 11, we have V̄ k
h (x)− V k

h (x) ≤ log(|A|)
α

. Thus,

V π,Yk

h (x)− V k
h (x) ≤ (H − h+ 1) log(|A|)

α
(36)

Now, since it is true for any policy π, it will be true for π∗. From the definition of V π,Yk , we have(
V π∗

r,h (x) + YkV
π∗

g,h(x)
)
−
(
V k
r,h(x) + YkV

k
g,h(x)

)
≤ (H − h+ 1) log(|A|)

α
(37)

Hence, the result follows by summing over K and considering h = 1.

C.3 Proof of Lemma 4

In order to prove the Lemma 4, we state and prove the following result.

First, we introduce a notation. Let

Dk
j,h,1 = ⟨(Qk

j,h(x
k
h, ·)−Q

πk

j,h(x
k
h, ·)), πh,k(·|xkh)⟩ − (Qk

j,h(x
k
h, a

k
h)−Q

πk

j,h(x
k
h, a

k
h))

Dk
j,h,2 = Ph(V

k
j,h+1 − V

πk

j,h+1)(x
k
h, a

k
h)− [V k

j,h+1 − V
πk

j,h+1](x
k
h+1) (38)

Lemma 12. On the event defined in E in Lemma 8, we have

V k
j,1(x1)− V

πk
j,1 (x1) ≤

H∑
h=1

(Dk
j,h,1 +Dk

j,h,2) +

H∑
h=1

2β
√
ϕ(xkh, a

k
h)

T (Λk
h)

−1ϕ(xkh, a
k
h) (39)

Proof. By Lemma 9, for any x, h, a, k

⟨wk
j,h(x, a), ϕ(x, a)⟩+ β

√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a)−Qπk

j,h

≤ Ph(V
k
j,h+1 − V

πk

j,h+1)(x, a) + 2β
√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a) (40)

Thus,

Qk
j,h(x, a)−Q

πk

j,h(x, a) ≤ Ph(V
k
j,h+1 − V

πk

j,h+1)(x, a) + 2β
√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a)

Ph(V
k
j,h+1 − V

πk

j,h+1)(x, a) + 2β
√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a)− (Qk

j,h(x, a)−Q
πk

j,h(x, a)) ≥ 0

(41)

Since V k
j,h(x) =

∑
a πh,k(a|x)Qk

j,h(x, a) and V πk

j,h (x) =
∑

a πh,k(a|x)Q
πk

j,h(x, a) where
πh,k(a|·) = SOFT-MAXa

α(Q
k
r,h + YkQ

k
g,h) ∀a.

Thus, from (41),

V k
j,h(x

k
h)− V

πk

j,h (x
k
h) =

∑
a

πh,k(a|xkh)[Qk
j,h(x

k
h, a)−Q

πk

j,h(x
k
h, a)]

≤
∑
a

πh,k(a|xkh)[Qk
j,h(x

k
h, a)−Q

πk

j,h(x
k
h, a)]

+ 2β
√
ϕ(xkh, a

k
h)

T (Λk
h)

−1ϕ(xkh, a
k
h) +Ph(V

k
j,h+1 − V

πk

j,h+1)(x
k
h, a

k
h)− (Qk

j,h(x
k
h, a

k
h)−Q

πk

j,h(x
k
h, a

k
h))

(42)

Thus, from (42), we have

V k
j,h(x

k
h)− V

πk

j,h (x
k
h) ≤ Dk

j,h,1 +Dk
j,h,2 + [V k

j,h+1 − V
πk

j,h+1](x
k
h+1) + 2β

√
ϕ(xkh, a

k
h)

T (Λk
h)

−1ϕ(xkh, a
k
h)

(43)
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Hence, by iterating recursively, we have

V k
j,1(x1)− V

πk
j,1 (x1) ≤

H∑
h=1

(Dk
j,h,1 +Dk

j,h,2) +

H∑
h=1

2β
√
ϕ(xkh, a

k
h)

T (Λk
h)

−1ϕ(xkh, a
k
h) (44)

The result follows.

We, are now ready to prove Lemma 4.

Proof. Note from Lemma 12, we have

K∑
k=1

V k
j,1(x1)− V

πk
j,1 (x1) ≤

K∑
k=1

H∑
h=1

(Dk
j,h,1 +Dk

j,h,2) +

K∑
k=1

H∑
h=1

2β
√
ϕ(xkh, a

k
h)

T (Λk
h)

−1ϕ(xkh, a
k
h)

(45)

We, now, bound the individual terms. First, we show that the first term corresponds to a Martingale
difference.

For any (k, h) ∈ [K] × [H], we define Fk
h,1 as σ-algebra generated by the state-action sequences,

reward, and constraint values, {(xτi , aτi )}(τ,i)∈[k−1]×[H] ∪ {(xki , aki )}i∈[h].

Similarly, we define the Fk
h,2 as the σ-algebra generated by {(xτi , aτi )}(τ,i)∈[k−1]×[H] ∪

{(xki , aki )}i∈[h] ∪ {xkh+1}. xkH+1 is a null state for any k ∈ [K].

A filtration is a sequence of σ-algebras {Fk
h,m}(k,h,m)∈[K]×[H]×[2] in terms of time index

t(k, h,m) = 2(k − 1)H + 2(h− 1) +m (46)

which holds that Fk
h,m ⊂ Fk′

h′,m′ for any t ≤ t′.

Note from the definitions in (38) that Dk
j,h,1 ∈ Fk

h,1 and Dk
j,h,2 ∈ Fk

h,2. Thus, for any (k, h) ∈
[K]× [H],

E[Dk
j,h,1|Fk

h−1,2] = 0, E[Dk
j,h,2|Fk

h,1] = 0 (47)

Notice that t(k, 0, 2) = t(k− 1, H, 2) = 2(H − 1)k. Clearly, Fk
0,2 = Fk−1

H,2 for any k ≥ 2. Let F1
0,2

be empty. We define a Martingale sequence

Mk
j,h,m =

k−1∑
τ=1

H∑
i=1

(Dτ
j,i,1 +Dτ

j,i,2) +

h−1∑
i=1

(Dk
j,i,1 +Dk

j,i,2) +

m∑
l=1

Dk
j,h,l

=
∑

(τ,i,l)∈[K]×[H]×[2],t(τ,i,l)≤t(k,h,m)

Dτ
j,i,l (48)

where t(k, h,m) = 2(k− 1)H +2(h− 1) +m is the time index. Clearly, this martingale is adopted
to the filtration {Fk

h,m}(k,h,m)∈[K]×[H]×[2], and particularly

K∑
k=1

H∑
h=1

(Dk
j,h,1 +Dk

j,h,2) =MK
j,H,2 (49)

Thus, MK
j,H,2 is a Martingale difference satisfying |MK

j,H,2|≤ 4H since |Dk
j,h,1|, |Dk

j,h,2|≤ 2H From
the Azuma-Hoeffding inequality, we have

Pr(MK
j,H,2 > s) ≤ 2 exp(− s2

16TH2
) (50)

With probability 1− p/2 at least for any j = r, g,∑
k

∑
h

MK
j,H,2 ≤

√
16TH2 log(4/p) (51)

20



Now, we bound the second term. Note that the minimum eigen value of Λk
h is at least λ = 1 for all

(k, h) ∈ [K]× [H]. By Lemma 17,
K∑

k=1

(ϕkh)
T (Λk

h)
−1ϕkh ≤ 2 log

[
det(Λk+1

h )

det(Λ1
h)

]
(52)

Moreover, note that ||Λk+1
h ||= ||

∑k
τ=1 ϕ

k
h(ϕ

k
h)

T + λI||≤ λ+ k, hence,

K∑
k=1

(ϕkh)
T (Λk

h)
−1ϕkh ≤ 2d log

[
λ+ k

λ

]
≤ 2dι (53)

Now, by Cauchy-Schwartz inequality, we have
K∑

k=1

H∑
h=1

√
(ϕkh)

T (Λk
h)

−1ϕkh ≤
H∑

h=1

√
K[

K∑
k=1

(ϕkh)
T (Λk

h)
−1ϕkh]

1/2

≤ H
√
2dKι (54)

Note that β = C1dH
√
ι.

Thus, we have with probability 1− p/2,
K∑

k=1

V k
r,1(x1)− V

πk
r,1 (x1) + Y

K∑
k=1

(V k
g,1(x1)− V

πk
g,1 (x1))

≤ (Y + 1)[
√

2TH2 log(4/p) + C4

√
d3H3Tι2] (55)

Hence, the result follows.

D Proof of Theorem 1

We, first, show the regret bound. Note from Lemma 2, Lemma 3, and Lemma 4, we have for
Y ∈ [0, ξ] at least w.p. 1− p,

K∑
k=1

(V π∗

r,1 (x1)− V
πk
r,1 (x1)) + Y

K∑
k=1

(b− V πk
g,1 (x1))

≤ Y 2

2η
+
η

2
H2K +

HK log|A|
α

+ Õ((Y + 1)
√
d3H3Tι2) (56)

Replacing Y with 0 in (56), we have
K∑

k=1

(V π∗

r,1 (x1)− V
πk
r,1 (x1) ≤

η

2
H2K +

HK log|A|
α

+O(
√
d3H3Tι2) (57)

By noting that η =
ξ√
KH2

, and α =
log|A|K

2(1 + ξ +H)
, we have the result.

We, now, show the violation bound. Note from Lemma 2, Lemma 3, and Lemma 4 that w.p. 1− p (at
least),

K∑
k=1

(V π∗

r,1 (x1)− V
πk
r,1 (x1) + Y (b− V πk

g,1 (x1))) ≤
1

2η
Y 2 +

η

2
H2K +

HK log|A|
α

+

(1 + Y )O(
√
H3Tι2) (58)

Now, put η =
ξ√
KH2

, α =
log|A|K

2(1 + ξ +H)
, and Y ≤ ξ, then, we have

K∑
k=1

(V π∗

r,1 (x1)− V
πk
r,1 (x1) + Y (b− V πk

g,1 (x1))) ≤ (1 + ξ)O(
√
H3Tι2) + ξ

√
KH2 (59)
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Now, there exists a policy π′ such that V π′

r,1 =
1

K

∑K
k=1 V

πk
r,1 , V π′

g,1 =
1

K

∑K
k=1 V

πk
g,1 . By the

occupancy measure, V π
r,1 and V π

g,1 are linear in occupancy measure induced by π. Thus, the average
of K occupancy measure also produces an occupancy measure which induces policy π′ and V π′

r,1, and
V π′

g,1. We take Y = 0 when
∑K

k=1(b− V
πk
g,1 (x

k
1)) < 0, otherwise Y = ξ. Hence, we have

(V π∗

r,1 (x1)−
1

K

K∑
k=1

V πk
r,1 (x1) + ξ(b− 1

K

K∑
k=1

V πk
g,1 (x1))+

= (V π∗

r,1 (x1)− V π′

r,1(x1) + ξ[b− V π′

g,1(x1)]+

≤ (1 + ξ)O(
√
d3H3Tι2)

K
+ ξ

√
KH2

K

Since ξ = 2H/γ, and using the result of strong duality (Lemma 19), we have

(b− 1

K

K∑
k=1

V πk
g,1 (x

k
1))+ ≤

2(1 + ξ)

Kξ
O(
√
d3H3Tι2) (60)

Hence, the result follows.

E Proof of Lemma 8

To simplify the notation, we remove h from the subscript from Qk
j,h and V k

j,h in this Section.

In order to prove the Lemma 8, we first compute the ϵ-covering number for the class of value
functions (Lemma 13). In order to compute that we first compute the ϵ-covering number of the
individual Q-functions (Lemma 14) which is essential to compute the covering number for composite
Q-functions (Corollary 1). Subsequently, we show that if the two Q-functions and the Lagrange
multipliers are close, the policies are also close (Lemma 15).

We first introduce the set of Q-functions.

Definition 5. Let Qj = {Q|Q(·, ·) = min{wT
j ϕ(·, ·) + β

√
ϕT (·, ·)TΛ−1ϕ(·, ·), H}}

The set Q is parameterized by wj , and Λ. We have ||wj ||≤ 2H
√
dk/λ (from Lemma 6). The

minimum eigen value of Λ satisfies λmin ≥ 1. Hence, the Frobenius norm of Λ−1 is bounded. Note
that Qk

j ∈ Qj for j = r, g.

We now introduce the class of value function for j = r, g.
Definition 6. Let Vj = {Vj |Vj(·) =

∑
a π(a|·)Qj(·, a);Qr ∈ Qr, Qg ∈ Qj , Y ∈ [0, ξ]} for

j = r, g, where

Π = {π|∀a ∈ A, π(a|·) = SOFT-MAXa
α((Qr(·, ·) + Y Qg(·, ·))Qr ∈ Qr, Qg ∈ Qg, Y ∈ [0, ξ]}.

The class of value function Vj is parameterized by wr, wg, Λ, and Y ∈ [0, ξ]. Note that even the
individual value function depends on the Q-functions for both the reward and utility since the policy
depends on the composite Q-function.

First, we need to see whether V k
j ∈ Vj . Recall the definition of V k

j at the k-th episode V k
j (·) =∑

a πk(a|·)Qk
j (·, a) where

πk(a|·) = SOFT-MAXa
α((Qr(·, ·) + YkQg(·, ·)).

Since Qj ∈ Qj for all j, and 0 ≤ Yk ≤ ξ, thus, Vj ∈ Vj .

We now bound the ϵ-covering number for the class of value function

Lemma 13. There exists a Ṽj ∈ Vj parameterized by (w̃r, w̃g, β̃,Λ, Ỹ ) such that DIST (Vj , Ṽj) ≤ ϵ
where

DIST(Vj , Ṽj) = sup
x
|Vj(x)− Ṽr(x)|. (61)
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Let NVj
ϵ be the ϵ-covering number for the set Vj , then,

logNVj
ϵ ≤ d log

(
1 + 8H

√
dk√
λϵ′

)
+ d2 log

[
1 + 8d1/2β2/(λ(ϵ′)2)

]
+ log

(
1 +

ξ

ϵ′

)
(62)

where ϵ′ =
ϵ

H2α(1 + ξ +H) + 1

Note that ϵ-covering number is dependent on ξ. This is because the policy depends on the Lagrange
multiplier Y which is upper bounded by ξ. Thus, we also need ϵ-covering for the Lagrange multiplier
in order to obtain ϵ-close value function. Note that the ϵ-covering does not depend on sample
dependent terms. Rather it only depends on general wj,h, Λ, and Y . Since the policy parameter is α,
we also have ϵ-covering number is dependent on α.

In order to prove the above lemma, we first state and prove some additional results.

We, first, obtain the NQj
ϵ covering number for the set Qj . Towards this end, we first, introduce some

notations.
Definition 7. Let Cϵw be an ϵ/2- cover of the set {w ∈ Rd|||w||≤ 2H

√
dk/λ} with respect to the

2-norm. Let CϵA be an ϵ2/4-cover of the set {A ∈ Rd×d|||A||F≤ d1/2β2λ−1} with respect to the
Frobenius norm.
Lemma 14.

|Cϵw|≤ (1 + 8H
√
dk/λ/ϵ)d, |CϵA|≤ [1 + 8d1/2β2/(λϵ2)]d

2

(63)

The ϵ-covering number for the set Qj , for j = r, g, NQj
ϵ of the set Qj for j = r, g satisfies the

following

logNQj
ϵ ≤ d log

(
1 +

8H
√
dk√

λϵ

)
+ d2 log[1 + 8d1/2β2/(λϵ)2] (64)

The distance metric is the∞-norm, i.e., dist(Q1, Q2) = supx,a|Q1(x, a)−Q2(x, a)|.

Proof. For notational simplicity, we represent A = β2Λ−1, and reparamterized the class Qj by
(wj ,A). Now,

dist(Q1, Q2) = sup
x,a
|[wT

1 ϕ(x, a) +
√
ϕT (x, a)A1ϕ(x, a)]− [wT

2 ϕ(x, a) +
√
ϕT (x, a)A2ϕ(x, a)]|

≤ sup
ϕ:||ϕ||≤1

|[wT
1 ϕ+

√
ϕTA1ϕ]− [wT

2 ϕ+
√
ϕTA2ϕ]|

≤ sup
ϕ:||ϕ||≤1

|(w1 − w2)
Tϕ|+ sup

ϕ:||ϕ||≤1

√
|ϕT (A1 −A2)ϕ|

= ||w1 − w2||+
√
||A1 −A2|| ≤ ||w1 − w2||+

√
||A1 −A2||F (65)

where the second-last inequality follows from the fact that |
√
x−√y|≤

√
|x− y|. For matrices ||·||,

and ||·||F denote matrix operator norm and the Frobenius norm respectively.

Recall that Cw is an ϵ/2- cover of the set {w ∈ Rd|||w||≤ 2H
√
dk/λ} with respect to the 2-norm.

Also recall that CA be an ϵ2/4-cover of the set {A ∈ Rd×d|||A||F≤ d1/2β2λ−1}. Thus, from
Lemma 18,

|Cϵw|≤ (1 + 8H
√
dk/λ/ϵ)d, |CϵA|≤ [1 + 8d1/2β2/(λϵ2)]d

2

For any Qj ∈ Qj , there exists a Q̃j parameterized by (w2,A2) where w2 ∈ Cϵw and A2 ∈ CϵA such
that dist(Qj , Q̃j) ≤ ϵ. Hence, NQj

ϵ ≤ |Cϵw||CϵA|, which gives the result since log(·) is an increasing
function.

Since the class of Q-function is independent of the policy we do not have ξ and α in the ϵ-covering
number.

From the above lemma and since Yk ≤ ξ, we have the following,
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Corollary 1. If dist(Qk
r , Q̃r) ≤ ϵ′, dist(Qk

g , Q̃g) ≤ ϵ′, and |Ỹk − Yk|≤ ϵ′, then, dist(Qk
r +

YkQ
k
g , Q̃r + ỸkQ̃g) ≤ ϵ′(1 + ξ +H).

Proof. Note that Q̃j ∈ Qj belongs to the ϵ′ covering of the set Q.

dist(Qk
r + YkQ

k
g , Q̃r + ỸkQ̃g) = sup

x,a
|(Qk

r (x, a) + YkQ
k
g(x, a))− (Q̃r(x, a) + ỸkQ̃g(x, a))|

≤ sup
x,a
|(Qk

r (x, a) + YkQ
k
g(x, a))− (Q̃r(x, a) + YkQ̃g(x, a))|+sup

x,a
|(Ỹk − Yk)Qk

g(x, a)|

≤ sup
x,a
|Qk

r (x, a)− Q̃r(x, a)|+Yk sup
x,a
|Qk

g(x, a)− Q̃g(x, a)|+ϵ′H

≤ ϵ′(1 + Yk) + ϵ′H

≤ ϵ′(1 +H + ξ) (66)

where the first inequality follows from the property of supremum and the norm. The second inequality
follows from the norm, and the fact that |Ỹk − Yk|≤ ϵ′, and |Qk

g(x, a)|≤ H . The third inequality
follows from the fact that dist(Qj , Q̃j) ≤ ϵ′.

We now show that if the there exist Q̃j , and Ỹk which are close to Qj and Yk, then the soft-max
policy is also close.

Lemma 15. Suppose that π is the soft-max policy (temp. coefficient 1/α) corresponding to the
composite Q-functions (Qk

r + YkQ
k
g), i.e., ∀a ∈ A

π(a|·) = SOFT-MAXa
α((Qr(·, ·) + YkQg(·, ·)).

π̃ is the soft-max policy vector with the same temp. coefficient 1/α corresponding to the composite
Q-function (Q̃r + ỸkQ̃g), i.e, ∀a ∈ A,

π̃(a|·) = SOFT-MAXa
α((Q̃r(·, ·) + ỸkQ̃g(·, ·)).

then, for any state x,

||π(·|x)− π̃(·|x)||1≤ 2αϵ′(1 + ξ +H) (67)

where π(·|x) = {π(a|x)}a∈A and π̃(·|x) = {π̃(a|x)}a∈A when dist(Qk
j,h, Q̃j) ≤ ϵ′ for j = r, g,

and |Ỹk − Yk|≤ ϵ′.

Proof. Let Expα(P ) be a soft-max corresponding to the vector P , i.e., the i-th component of
Expα(P ) is

exp(αPi)∑
i exp(αPi)

.

Note from Theorem 4.4 in [29] then, we have

||Expα(P1)− Expα(P2)||1≤ 2α||P1 − P2||∞ (68)

for two vectors P1 and P2.

Now note that in our case for a given state x, π is equivalent to Expα(Qk
r,h(x, ·) + YkQ

k
g,h(x, ·)),

and π̃ is equivalent to Expα(Q̃r(x, ·) + ỸkQ̃g(x, ·)). Then from (68) and the fact that dist(Qk
r,h +

YkQ
k
g,h, Q̃r + ỸkQ̃g) ≤ ϵ′(1 + ξ +H) (by Corollary 1) we have

||π(·|x)− π̃(·|x)||1≤ 2αϵ′(1 + ξ +H) (69)

Hence, the result follows.

Based on the above two lemmas we show that when the Q-functions are close, the value functions in
the class Vj are also close.
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Lemma 16. There exists Ṽj ∈ Vj such that

DIST(V k
j , Ṽj) ≤ H2αϵ′(1 + ξ +H) + ϵ′, (70)

where dist(Q̃j , Qj) ≤ ϵ′, Q̃j ∈ Qj for all j;

Ṽj(·) =
∑
a

[π̃(a|·)Q̃j(·)],

π̃(a|·) = SOFT-MAXa
α((Q̃r(·, ·) + ỸkQ̃g(·, ·)), ∀a ∈ A

|Ỹk − Yk|≤ ϵ′.

Proof. For any x,

V k
j (x)− Ṽj(x)

= |
∑
a

π(a|x)Qk
j (x, a)−

∑
a

π̃(a|x)Q̃j(x, a)|

= |
∑
a

π(a|x)Qk
j (x, a)−

∑
a

π(a|x)Q̃j(x, a) +
∑
a

π(a|x)Q̃j(x, a)−
∑
a

π̃(a|x)Q̃j(x, a)|

≤ |
∑
a

π(a|x)Qk
j (x, a)−

∑
a

π(a|x)Q̃j(x, a)|+|
∑
a

π(a|x)Q̃j(x, a)−
∑
a

π̃(a|x)Q̃j(x, a)|

≤ ϵ′ + ||π(·|x)− π̃(·|x)||1||Q̃j(x)||∞
≤ ϵ′ +H2αϵ′(1 + ξ +H) (71)

where we use the fact that dist(Qk
j , Q̃r) ≤ ϵ′, and

∑
a π(a|x) = 1 for the first term and the Holder’s

inequality in the second term for the second last inequality. For the last inequality, we use Lemma 15,
and the fact that Q̃j(x, a) ≤ H for any (x, a). Hence, we have the result.

Note that when α =
log(|A|)K

2(1 + ξ +H)
as we have in Algorithm 1, the right hand side in (70) becomes

ϵ′ + log(|A|)KHϵ′ (72)

We introduce one more notation which we use to prove Lemma 13.

Definition 8. Let Cϵξ be an ϵ cover for Y ∈ [0, ξ]. Hence, |Cϵξ|≤
(
1 +

ξ

ϵ

)
Note that Cϵξ consists of points which is ϵ-close to any point within the interval [0, ξ]. Since we have
defined ϵ-cover for all the parameters, we are now ready to prove Lemma 13.

Proof. Fix an ϵ. Let ϵ′ =
ϵ

H2α(1 + ξ +H) + 1
, then from Lemma 16, we have DIST(V k

j , Ṽj) ≤ ϵ.

Thus, we only need to find parameters in the ϵ′-covering of theQ-functions as described in Lemma 14
in order to obtain ϵ-close value function.

Recall the Definition 7. Then, there exists w̃r, w̃g ∈ Cϵ
′

w such that ||w̃r − wr||≤
ϵ′

2
, ||w̃g − wg||≤

ϵ′

2
.

Further, there exists A2 ∈ Cϵ
′

A such that ||A− Ã||F≤
ϵ′2

4
, A = β2(Λk)−1, Ã = β2(Λ̃)−1, for some

Λ̃, and Yk, Ỹk such that |Yk − Ỹk|≤ ϵ′. Then we obtain Q̃j parameterized by (w̃j , β, Λ̃) for j = r, g,
such that dist(Qj , Q̃j) ≤ ϵ′ (by Lemma 14).

Now define Ṽj =
∑

a π̃(a|·)Q̃j , where

π̃(a|·) = SOFT-MAXa
α((Q̃r(·, ·) + ỸkQ̃g(·, ·)).
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Thus, from Lemma 16, we have DIST(V k
j , Ṽj) ≤ ϵ. Hence, there exists Ṽj parameterized by

w̃r, w̃g, Ỹk, Ã, such that Dist(Ṽj , V k
j ) ≤ ϵ. Hence, NV

ϵ ≤ |Cϵ
′

w ||Cϵ
′

A||Cϵ
′

ξ |. Thus, from Lemma 14 and

Definition 8, the ϵ-covering number NVj
ϵ for the set Vj satisfies the following

logNVj
ϵ ≤ d log

(
1 + 8H

√
dk√
λϵ′

)
+ d2 log

[
1 + 8d1/2β2/(λ(ϵ′)2)

]
+ log

(
1 +

ξ

ϵ′

)
.

Hence, the result follows.

From Lemma 13, note that we need ϵ′ covering for the Q-functions where ϵ′ =
ϵ

(H2α(1 + ξ +H) + 1)
if we need to bound DIST (Vj , Ṽj) by ϵ.

Now, we are ready to prove Lemma 8.

Proof. By Lemma 13, we know that there exists Ṽj in the ϵ-covering for Vj such that for every x,

Vj(x) = Ṽj(x) + ∆V (x) (73)
where supx ∆V (x) ≤ ϵ.
Hence,∥∥∥∥∥∥

k∑
τ=1

ϕτ (Vj(xτ )−E[Vj(xτ )|Fτ−1])

∥∥∥∥∥∥
2

(Λk)−1

≤ 2

∥∥∥∥∥∥
k∑

τ=1

ϕτ (Ṽj(xτ )−E[Ṽj(xτ )|Fτ−1])

∥∥∥∥∥∥
2

(Λk)−1

+ 2

∥∥∥∥∥∥
k∑

τ=1

ϕτ (∆V (xτ )−E[∆V (xτ )|Fτ−1])

∥∥∥∥∥∥
2

(Λk)−1

(74)

The last expression is bounded by
8k2ϵ2

λ
.

Now, we bound the first term. Note from Lemma 13 that in order to obtain Ṽj which satisfies (73),
we need to obtain we need NV

ϵ number of elements to obtain such (w̃r, w̃g, β, Λ̃, Ỹ ). Such Ṽj is
independent of samples. Hence, we can use the Elliptical lemma for self-normalization (Theorem 2).
From Theorem 2 and the union bound we obtain∥∥∥∥∥∥

k∑
τ=1

ϕτ (Ṽj(xτ )−E[Ṽj(xτ )|Fτ−1])

∥∥∥∥∥∥
2

(Λk)−1

≤ 2H2

d log(k + λ

λ

)
+ log

(
NV

ϵ

δ

) (75)

where NV
ϵ is upper bounded in (62). β is equal to C1dH

√
ι for some constant C1, and ι =

log(log(|A|)4dT/p). Further, ξ = 2H/γ (by Definition 3). We obtain from (75)∥∥∥∥∥∥
k∑

τ=1

ϕτ (Ṽj(xτ )−E[Ṽj(xτ )|Fτ−1])

∥∥∥∥∥∥
2

(Λk)−1

≤

4H2

d
2
log

(
k + λ

λ

)
+ d log

(
1 +

8H
√
dk

ϵ′
√
λ

)
+ d2 log

(
1 +

8d1/2β2

ϵ′2λ

)
+ log

(
1 +

2H

γϵ′

)
+ log

(
4

p

)
(76)

where ϵ′ =
ϵ

(H2α(1 + ξ +H) + 1)
. Set ϵ =

dH

k
, λ = 1. Thus, ϵ′ =

dH

(2Hα(1 + ξ +H) + 1)k
.

Plugging in the above, and putting α =
log(|A|)K

2(1 + ξ +H)
, we obtain from (76)

||
k∑

τ=1

ϕτ (Ṽj(xτ )−E[Ṽj(xτ )|Fτ−1])||2Λ−1
k

≤ C2H
2d2 log

(
4(C1 + 1) log(|A|)dT

p

)
(77)
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for some constant C2 where C1 = 256(1 + 1/γ). Hence, the result follows.

F Supporting Results

The following result is shown in [30] and in Lemma D.2 in [14].

Lemma 17. Let {ϕt}t≥0 be a sequence in ℜd satisfying supt≥0||ϕt||≤ 1. For any t ≥ 0, we define
Λt = Λ0 +

∑t
j=0 ϕjϕ

T
j ϕj . Then if the smallest eigen value of Λ0 be at least 1, we have

log

[
det(Λk+1

h )

det(Λ1
h)

]
≤

K∑
k=1

(ϕkh)
T (Λk

h)
−1ϕkh ≤ 2 log

[
det(Λk+1

h )

det(Λ1
h)

]
(78)

Theorem 2. [Concentration of Self-Normalized Process [30]] Let {ϵt}∞t=1 be a real-valued stochastic
process with corresponding filtration {Ft}∞t=0. Let ϵt|Ft−1 be a zero mean and σ sub-Gaussian, i.e.,
E[ϵt|Ft−1] = 0, and

∀ζ ∈ ℜ, E[eζϵt |Ft−1] ≤ eζ
2σ2/2. (79)

Let {ϕt}∞t=1 be a ℜd-valued Stochastic process where ϕt ∈ Ft−1. Assume Λ0 ∈ ℜd×d is a positive-
define matrix, let, Λt = Λ0 +

∑t
j=0 ϕjϕ

T
j ϕj . Then for any δ > 0 with probability at least 1− δ, we

have

||
t∑

s=1

ϕsϵs||2Λ−1
t
≤ 2σ2 log

[
det(Λt)

1/2 det(Λ0)
−1/2

δ

]
(80)

The next result characterizes the covering number of an Euclidean ball (Lemma 5.2 in [31]).

Lemma 18. [Covering Number of Euclidean Ball] For any ϵ > 0, the ϵ-covering number of the
Euclidean ball in Rd with radius R is upper bounded by (1 + 2R/ϵ)d.

We have used the following result from the optimization which is proved in Lemma 9 in [7].

Lemma 19. Let Y ∗ be the optimal dual variable, and C ≥ 2Y ∗, then, if

V π∗

r,1 (x1)− V π̃
r,1(x1) + C[b− V π̃

g,1(x1)]+ ≤ δ (81)

then

[b− V π̃
g,1(x1)]+ ≤

2δ

C
. (82)

G Why does the Greedy Policy Fail?

In this section, using an example we show that the greedy-policy is not Lipschitz. Further, we can
not use the greedy-policy on the composite Q-function to obtain the ϵ-close covering for individual
reward and utility value functions.

Consider the following toy-example: Suppose that the cardinality of the action space |A| is 2.
Qr,h(x, a1) = M , Qr,h(x, a2) = 1, Qg,h(x, a1) = 1, Qg,h(x, a2) = M + ϵ/2. Consider Y = 1,
then, greedy policy based on the composite Q-function is to choose action a2.

Note the ϵ-closest values can be anywhere in the ball within ϵ radius centered around Qj,h, and Y .
Assume that the closest ϵ-cover for Qj,h be Q̃j,h such that Q̃r,h(x, a1) =M + ϵ/2, Q̃r,h(x, a2) =

1− ϵ/2, Q̃g,h(x, a1) = 1 + ϵ/2, Q̃g,h(x, a2) =M , and Ỹ = 1− ϵ/2. Then, we have the composite
Q-functions as

Q̃r,h(x, a1) + Ỹ Q̃g,h(x, a1) =M + ϵ/2 + (1− ϵ/2)(1 + ϵ/2)

Q̃r,h(x, a2) + Ỹ Q̃g,h(x, a2) = 1− ϵ/2 + (1− ϵ/2)M (83)
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Hence, it is clear that the greedy policy based on the composite Q-function is to choose action
a1. Hence, the policy is not Lipschitz. Thus, even though the change in the Q-function is only by
ϵ-amount the decision changes from taking action a2 to taking action a1 in a deterministic fashion.

Now, we see the changes in the value function. Since the policy is greedy and the policy is to choose
a2 for the Q-function Qj,h, then, Vr,h(x) = Qr,h(x, a2) = 1. On the other hand, the policy is to
choose a1 for theQ-functions Q̃j,h. Hence, Ṽr,h(x) =M+ϵ/2, hence, |V k

r,h(x)− Ṽr,h(x)|> M−1,
and can be made arbitrarily large by making M arbitrarily large. Thus, the individual value functions
can not be made close even though Qj,h and Q̃j,h are close. This is the reason we can not obtain
ϵ-covering number if the greedy policy is based on the composite Q-functions.

Note that in the unconstrained case (equivalent to Yk = 0), the decision would be to choose a1 for
both Qr,h and Q̃r,h if the policy is set at the greedy one. Hence, the value function would only differ
by at most ϵ-amount. Hence, the greedy policy works for the unconstrained case.

H Analysis for Zero Constraint Violation

The main idea behind attaining zero constraint violation is to consider the following tighter optimiza-
tion problem–

maximize π∈∆(A|S,H)V
π
r,1(x1) subject to V π

g,1(x1) ≥ b+ ζ. (84)

Since we replace b by b + ζ, we are basically solving the above tighter optimization problem. By
ensuring that ζ ≤ γ/2, we can ensure that Slater’s condition is always satisfied, and strong duality
holds. We show that by carefully choosing ζ, we can achieve zero constraint violation with the same
order on regret with respect to T . First, we introduce some notations which we use throughout this
section.

Let πζ,∗ be the optimal solution of the optimization problem in (84). Since the Slater’s condition
holds, the strong duality holds by [19]. The optimal dual variable Y ζ of this tighter problem is

Y ζ ≤
V πζ,∗

(x1)− V π̄
r,1(x1)

b+ γ − (b+ ζ)
≤ 4H/γ (85)

where the last inequality follows from the fact that ζ ≤ γ/2.

Now, we state the main result—
Theorem 3. In Algorithm 1, replacing b = b+ ζ , and ξ = 4H/γ. We obtain, with probability 1− p,

Regret(K) ≤ CO(
√
d3H3Tι2) +KHζ/δ

Violation(K) ≤ max{C ′O(2(1 + ξ)

ξ

√
d3H3Tι2)−Kζ, 0} (86)

where ζ = min{C ′O

(
2(1 + ξ)

ξ

√
d3H3Tι2

K

)
, γ/2}.

When C ′O

(
2(1 + ξ)

ξ

√
d3H3Tι2

K

)
≤ γ/2, then the constraint is upper bounded by 0. Hence, for

large enough K, we can achieve zero violation. However, by plugging the value of ζ, we obtain the
upper bound on regret as

Regret(K) ≤ CO(
√
d3H3Tι2) + C ′HO

(
2(1 + ξ)

ξ

√
d3H3Tι2

)

where we replace the upper bound of ζ by C ′O

(
2(1 + ξ)

ξ

√
d3H3Tι2

K

)
. Thus, the upper bound on

regret is Õ(
√
d3H5T ). Hence, the order on regret with respect to T is maintained. However, there

is an additional H factor in front of the regret. A concurrent work [32] on model-based discounted
horizon tabular setup using a generator model shows that extra H is unavoidable if one wants to
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achieve zero violation.* Even though the setup is different, it seems that the extra H factor is
unavoidable.

Proof. First, we prove the upper bound on regret. The regret can be decomposed as the following -

Regret(K) =

K∑
k=1

(V π∗

r,1 (x1)− V πζ,∗
(x1)) +

K∑
k=1

(V πζ,∗

r,1 (x1)− V πk(x1)) (87)

The first term can be bounded with the help of the following lemma (the proof for finite state is in
[13], the extension to linear MDP is provided after this proof)–

Lemma 20. If πζ,∗ is the optimal solution of (84), then

V π∗

r,1 (x1)− V πζ,∗

r,1 (x1) ≤ H
ζ

γ
. (88)

Since the tighter optimization problem is also CMDP, we note that the second term in the right hand
side of (87) is essentially the regret of the tighter CMDP.

Hence, from Theorem 1 and Lemma 20 we obtain the expression of the regret bound in Theorem 3.

Constraint Violation: Again applying Theorem 1 to the tighter optimization problem (84), we obtain
K∑

k=1

(b+ ζ − V πk
g,1 (x1))+ ≤ C ′O(2(1 + ξ)

ξ

√
d3H3Tι2)

K∑
k=1

(b+ ζ − V πk
g,1 (x1)) ≤

K∑
k=1

(b+ ζ − V πk
g,1 (x1))+ ≤ C ′O(2(1 + ξ)

ξ

√
d3H3Tι2)

Hence,
K∑

k=1

(b+ ζ − V πk
g,1 (x1)) ≤ C ′O(2(1 + ξ)

ξ

√
d3H3Tι2)

Thus,
K∑

k=1

(b− V πk
g,1 (x1)) ≤ C ′O(2(1 + ξ)

ξ

√
d3H3Tι2)−Kζ

Hence, we have
K∑

k=1

[b− V πk
g,1 (x1)]+ ≤ max{C ′O(2(1 + ξ)

ξ

√
d3H3Tι2)−Kζ, 0}

Thus, the result follows.

Proof of Lemma 20: We, first, introduce a few notations.

Let νπh (x) for h = 2, . . . ,H be

νπh (x) =

∫
x′

∑
a

πh(a|x′)ϕ(x′, a)Tµh−1(x)dν
π
h−1(x

′)

and ν1(x) is the initial distribution of the state. νπh (x) is the distribution of the state at step h while
following the policy π. It is the state occupation measure at step h.

Also, νh(x, a) = πh(a|x)νh(x) is the state-action occupation measure at step h. Hence,

V π
j,1(x1) =

∑
h

∫
x,a

jh(x, a)dνh(x, a) (89)

*[32] provides a sample complexity guarantee for the discounted horizon setup with discount factor γ. One
can convert the result in the discounted setup to the episodic setup by equating 1/(1− γ) = H .
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Now, ν∗h(x, a) corresponds to the state-action occupancy measure for the optimal policy π∗. Then,
νζh(x, a) = (1− ζ/γ)ν∗h(x, a) + ζ/γνπ̄h (x, a). Now, we are resy to prove Lemma 20.

We have ∑
h

∫
x,a

gh(x, a)dν
ζ
h(x, a) ≥ (1− ζ/γ)b+ ζ/γ(b+ γ) = b+ ζ (90)

Hence, the state-action occupancy measure νζ1 (x, a) is feasible for the tightened CMDP. Now, we
have∑
h

∫
x,a

rh(x, a)dν
ζ
h(x, a) =(1− ζ/δ)

∑
h

∫
x,a

rh(x, a)dν
∗
h(x, a) + ζ/δ

∑
h

∫
x,a

rh(x, a)dν
π̄
h (x, a)

≥ (1− ζ/δ)V ∗
r,1(x1)

Since νζ1 (x, a) is feasible, then V πζ,∗

r,1 (x1) ≥
∑

h

∫
x,a

rh(x, a)dν
ζ
h(x, a). Thus,

V ∗
r,1(x1)− V

ζ,∗
r,1 (x1) ≤ ζ/δV ∗

r,1(x1) ≤
ζ

δ
H (91)

Hence, the result follows.
Remark 3. Note that [13] and [6] use Lyapunov Drift analysis to obtain constraint violation for
finite state space (tabular setting). To obtain the zero violation, their approach is also similar to ours
where they also consider a tighter optimization problem, and then, carefully choosing the parameter
of the tighter optimization. However, one key difference is that– they did not use any upper bound on
the dual variable. Rather they rely on the Hajek’s Lemma [33] to establish a finite bound on the dual
variable for the good event. The question is whether we can use similar technique in the model-free
linear function approximation.

Note that we need to have an upper bound on the dual-variable (irrespective of the good and bad
event) since the ϵ-covering number (Lemma 13) depends on ξ, the upper bound on the dual variable.
Hence, we need to truncate the dual variable if it exceeds ξ. However, if we truncate the dual-variable,
we can not use the Lyapunov-Drift analysis to bound the violation. Since in the Lyapunov-drift
analysis, it relies on the fact that the magnitude of the dual-variable (or, the queue length) lower
bounds the total violation (see the analysis at page 21 in [6]). Since the magnitude of the dual-
variable is bounded for the good-event, one then obtain the upper bound of the violation. However,
one can not extend the same analysis if we truncate the dual-variable.

Hence, our analysis is based on the results from the convex optimization (Lemma 19). Our approach
to obtain zero violation for large enough K relies on different tools compared to the Lyapunov-Drift
analysis and new of a kind.

I Comparison with other approaches to show uniform concentration lemma
for individual value function in model-free setup

[34] considered a zero-sum. linear Markov game setup. The paper proposed an approach where they
truncate wk

h, Λk
h to ϵ-close value of w, and Λ respectively. Subsequently, they obtained equilibrium

policies using these ϵ-close values. Then the proposed algorithm uses the above equilibrium policy
attained using ϵ-close values. Since these ϵ-close values are predetermined using the ϵ-covering set
of w and Λ (as we have described the ϵ-covering set in Lemma 14), hence, one can apply uniform
concentration lemma for each individual value function [34] with error of at most ϵ. We can also
apply the similar trick in our set-up where we truncate the obtained wk

j,h, and Λk
h to one of the ϵ-close

values and then we can set the policy as the greedy one with respect to the composite approximated
state-action value function. The above method would also provide a log ϵ-covering number of
O(log(K)) for each individual value function.

However, our soft-max based approach has several advantages compared to the above approach.

(i) Computation efficiency. The alternative method explicitly rounds the Q-function to its ϵ-close one
in the algorithm, which requires an additional O(d2) computation even with an efficient implemen-
tation (i.e., rounding on the fly) (See Section 3.3 in [34]). In contrast, our soft-max works directly
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with the actual Q-function without any ϵ-close rounding. That is, ϵ-net argument is only used in the
analysis in our setting.

(ii) Stochastic policy. A key fact about constrained MDPs is that the optimal policy is usually
stochastic. Although the greedy-policy in the alternative method can approach the optimal policy in an
average sense, in each episode, it could be far away from the optimal policy. Even though in our setting,
α scales with K, our approach puts ’almost’ similar probability among the composite Q-functions
with ’almost’ same values. However, in the greedy policy, it chooses the action corresponding to the
highest state-action value function. Thus, such an approach can never be close to the optimal policy.

iii) General applicability. The alternative method relies heavily on the fact that there exists an efficient
implementation of rounding on the fly in linear MDPs so that there is no need to construct an explicit
ϵ-net. However, beyond linear MDPs, it might not be possible to find an efficient rounding algorithm
on the fly, and hence an even larger additional computation is required. In contrast, our soft-max
based algorithm builds on the intrinsic smoothness-approximation trade-off in soft-max to establish
uniform concentration and approximate optimism, which could potentially be generalized to other
settings. Further, soft-max policy is popular, hence, our approach would provide the base for proving
regret and violation bound for the general function approximation setup beyond the linear function
approximation.
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