A Existence of Fair Solutions

Theorem 4.1. For any robustness guarantee $\epsilon > 0$, an SEF and feasible adjustment scheme always exists.²

Proof. The idea is to penalize actions off the target policy by a sufficiently large value. We construct an adjustment scheme $(\delta_i)_{i \in i}$ where

$$\delta_i(s,a) = \begin{cases} 0, & \text{if } a = \pi^\star(s) \\ -\max_{i' \in [n]} \frac{2h}{1 - \gamma_{i'}} - \epsilon, & \text{otherwise} \end{cases}$$

for all $s \in S$ and $i \in [n]$. The scheme is SEF as δ_i is the same for all the agents.

To see that it is also feasible, observe that by following the target policy π^* , an agent obtains reward at least -h in every step. Hence, for all $s \in S$ and all $a \neq \pi^*(s)$, we have

$$Q_i^{\pi^{\star}}(s, \pi^{\star}(s) \mid \delta_i) \ge -\frac{h}{1-\gamma_i} \ge -\max_{i' \in [n]} \frac{h}{1-\gamma_{i'}}.$$

It then follows that

$$Q_i^{\pi^*}(s, \pi^*(s) \mid \delta_i) \ge \delta_i(s, a) + \frac{h}{1 - \gamma_i} + \epsilon$$

$$\ge \delta_i(s, a) + \gamma_i \cdot \sum_{s' \in S} P(s, a, s') \cdot V_i^{\pi^*}(s' \mid \delta_i) + \epsilon$$

$$= Q_i^{\pi^*}(s, a \mid \delta_i) + \epsilon,$$

where we used the fact that $V_i^{\pi^*}(s' \mid \delta_i) \leq \frac{h}{1-\gamma_i}$ for all s', which is due to the fact that the reward obtained at every step is at most h.

Theorem 4.3. When the agents have the same discount factor, a feasible adjustment scheme that is also SEF and non-negative always exists, for any robustness guarantee $\epsilon > 0$.

Proof. Suppose that $\gamma_1 = \cdots = \gamma_n = \gamma$. Let $H = \frac{2}{1-\gamma} \cdot h + \epsilon$. We construct the following scheme $\delta = (\delta_i)_{i \in [n]}$:

$$\delta_i(s,a) = \begin{cases} H + \frac{\gamma}{1-\gamma} \cdot H \cdot \sum_{s' \in S^{\mathsf{T}}} P(s,a,s'), & \text{if } a = \pi^*(s) \\ 0, & \text{otherwise} \end{cases}$$
(17)

for all $s \in S$ and $i \in [n]$, where S^{T} denotes the set of terminal states in S. The scheme is obviously non-negative and SEF. We show that it is also feasible.

Consider an arbitrary agent *i*. We first argue that $V_i^{\pi^*}(s \mid \delta_i) \in \left[\frac{H-h}{1-\gamma}, \frac{H+h}{1-\gamma}\right]$ for all $s \in S \setminus S^T$. Indeed, if the original reward function R_i was a zero function $(R_i(s, a) = 0)$, it can be easily verified that the solution to the Bellman equation would be: $V_i^{\pi^*}(s \mid \delta_i) = \frac{H}{1-\gamma}$ for all $s \in S \setminus S^T$ and $V_i^{\pi^*}(s \mid \delta_i) = 0$ for all $s \in S^T$. Now the original reward $R_i(s, a)$ is bounded in [-h, h], which means an additional reward in this range in each step and, hence, an additional cumulative reward in the interval $\left[\frac{-h}{1-\gamma}, \frac{h}{1-\gamma}\right]$. Adding this to $\frac{H}{1-\gamma}$ gives the desired range $\left[\frac{H-h}{1-\gamma}, \frac{H+h}{1-\gamma}\right]$.

Hence, $V_i^{\pi^*}(s \mid \delta_i) \in \left[\frac{H-h}{1-\gamma}, \frac{H+h}{1-\gamma}\right]$ for all $s \in S$. This further implies that, for any actions $a, b \in A$, it holds that

$$\sum_{i' \in S} P(s, a, s') \cdot V_i^{\pi^*}(s' \mid \delta_i) \ge \sum_{s' \in S} P(s, b, s') \cdot V_i^{\pi^*}(s' \mid \delta_i) - \frac{2h}{1 - \gamma}.$$
(18)

²Full proofs and omitted proofs can all be found in the appendix.

We have

$$\begin{aligned} Q_i^{\pi^{\star}}(s, \pi^{\star}(s) \mid \delta_i) &= R_i(s, \pi^{\star}(s)) + \delta_i(s, \pi^{\star}(s)) + \gamma \cdot \sum_{s' \in S} P(s, \pi^{\star}(s), s') \cdot V_i^{\pi^{\star}}(s' \mid \delta_i) \\ &\geq -h + H + \gamma \cdot \sum_{s' \in S} P(s, \pi^{\star}(s), s') \cdot V_i^{\pi^{\star}}(s' \mid \delta_i) \\ &\geq h + \epsilon + \gamma \cdot \sum_{s' \in S} P(s, a, s') \cdot V_i^{\pi^{\star}}(s' \mid \delta_i) \end{aligned}$$

for any $a \in A$, where the last line follows by (18) and the fact that $H = \frac{2\gamma}{1-\gamma} \cdot h + 2h + \epsilon$. By definition, we have $\delta_i(s, a) = 0$ for all $a \neq \pi^*(s)$. It follows that

$$\begin{aligned} Q_i^{\pi^*}(s, \pi^*(s) \mid \delta_i) &\geq R_i(s, a) + \delta_i(s, a) + \gamma \cdot \sum_{s' \in S} P(s, a, s') \cdot V_i^{\pi^*}(s' \mid \delta_i) + \epsilon \\ &= Q_i^{\pi^*}(s, a \mid \delta_i) + \epsilon. \end{aligned}$$

Therefore, δ is a feasible scheme.

B PoF Bounds

We analyze PoWEF first, and then PoEF and PoSEF.

B.1 PoWEF

To analyze the PoWEF, we first derive its lower bound. Lemma B.1. $PoWEF(n, m, \lambda) = \Omega(\lambda \cdot \sqrt{m}).$

Proof. Consider the family of instances illustrated in Figure 3 and we consider the two-agent version of this example (n = 2) that consists of only agents 1 and 2. We show that the PoWEF of this particular family of instances is $\Omega(\lambda \cdot \sqrt{|S| \cdot |A|})$ to establish the lower bound of PoWEF.

First, the cost of teaching π^* without fairness constraints is at most 1. Indeed, without fairness constraints, π^* is already the optimal policy of agent 2 up to a robustness of ϵ . As for agent 1, it suffices to set $\delta_1(c) = 1$. Hence, the total cost is 1.

Now consider the case with fairness constraints and suppose that $\delta = (\delta_1, \delta_2)$ is a WEF and feasible adjustment scheme. We argue that $\|\delta_1\| + \|\delta_2\| = \Omega(\lambda \cdot \sqrt{|S| \cdot |A|})$.

By symmetry, we can assume without loss of generality that each δ_i assigns the same reward for a state-action pair and its copies in the instance. Hence, in our analysis, it suffices to consider only the values associated with the original state-action pairs, which are representative of the values associated with their copies. Given this, we omit the state in the notation and write, e.g., $\delta_i(a) = \delta_i(s_l, a)$, as each action is associated with a unique state.

Consider the following two cases:

Case 1: $\delta_1(c) \leq 1/2$. Since δ_1 incentivizes agent 1 to use the target policy π^* , we have $Q_1^{\pi^*}(s_r, d) \geq Q_1^{\pi^*}(s_r, e) + \epsilon$, or equivalently,

$$\delta_1(d) + \epsilon + \frac{\gamma}{1-\gamma} \cdot (\delta_1(c) - 1) \ge \delta_1(e) + \epsilon.$$

Rearranging the terms gives

$$\delta_1(e) - \delta_1(d) \le \frac{\gamma}{1 - \gamma} \cdot (\delta_1(c) - 1) \le -\frac{1}{2} \cdot \frac{\gamma}{1 - \gamma}.$$

Note that for any two real numbers x and y, we have $x^2 + y^2 \ge \frac{(x-y)^2}{2}$. Hence,

$$\begin{split} \|\delta_1\| \ge \sqrt{L} \cdot \sqrt{\delta_1^2(e) + \delta_1^2(d)} \ge \sqrt{L} \cdot \sqrt{\frac{\left(\delta_1(e) - \delta_1(d)\right)^2}{2}} \\ \ge \sqrt{L} \cdot \frac{1}{\sqrt{8}} \cdot \frac{\gamma}{1 - \gamma} = \Omega(\lambda \cdot \sqrt{|S| \cdot |A|}) \end{split}$$

Case 2: $\delta_1(c) \geq 1/2$. By WEF, we have $\rho_1^{\pi^*}(\delta_1) \geq \rho_1^{\pi^*}(\delta_2)$ and $\rho_2^{\pi^*}(\delta_2) \geq \rho_2^{\pi^*}(\delta_1)$. Let $\varrho_i^{\pi^*}(\delta_j) = \rho_i^{\pi^*}(\delta_j) - \rho_i^{\pi^*}(0)$, where $\rho_i^{\pi^*}(0)$ denotes the agent's cumulative reward without any adjustment. Since now both agents 1 and 2 have the same discount factor γ , we have

$$\varrho_1^{\pi^*}(\delta_j) = \varrho_2^{\pi^*}(\delta_j)$$

for any j. Hence,

$$\rho_1^{\pi^*}(\delta_1) \ge \rho_1^{\pi^*}(\delta_2) \implies \rho_1^{\pi^*}(\delta_1) \ge \rho_1^{\pi^*}(\delta_2) = \rho_2^{\pi^*}(\delta_2),$$
and
$$\rho_2^{\pi^*}(\delta_2) \ge \rho_2^{\pi^*}(\delta_1) \implies \rho_2^{\pi^*}(\delta_2) \ge \rho_2^{\pi^*}(\delta_1) = \rho_1^{\pi^*}(\delta_1),$$

which means that $\varrho_1^{\pi^*}(\delta_1) = \varrho_2^{\pi^*}(\delta_2)$. Expanding this gives

$$\delta_1(a) + \left(\delta_1(d) + \frac{\gamma}{1-\gamma} \cdot \delta_1(c)\right) = \delta_2(a) + \left(\delta_2(d) + \frac{\gamma}{1-\gamma} \cdot \delta_2(c)\right).$$
(19)

Moreover, δ_2 incentivizes agent 2 to use the target policy π^* , so we have $Q_2^{\pi^*}(s_l, a) \ge Q_2^{\pi^*}(s_l, b) + \epsilon$, expanding which gives

$$\delta_2(a) + \epsilon \ge \delta_2(b) + \frac{\gamma}{1-\gamma} \cdot \delta_2(c) + \epsilon$$

Combining (19) with the above equation gives

$$2 \cdot \delta_2(a) - \delta_2(b) + \delta_2(d) - \delta_1(a) - \delta_1(d) \ge \frac{\gamma}{1 - \gamma} \cdot \delta_1(c) \ge \frac{1}{2} \cdot \frac{\gamma}{1 - \gamma}$$

Note that for any real numbers x_1, \ldots, x_k and nonzero coefficients a_1, \ldots, a_k , we have $\sum_{i=1}^k x_i^2 \ge \left(\sum_{i=1}^k a_i \cdot x_i\right)^2 / \sum_{i=1}^k a_i^2$. It follows that

$$\begin{split} \|\delta_1\| + \|\delta_2\| &\ge \sqrt{L} \cdot \sqrt{\delta_2^2(a) + \delta_2^2(b) + \delta_2^2(d) + \delta_1^2(a) + \delta_1^2(d)} \\ &\ge \sqrt{L} \cdot \frac{1}{\sqrt{32}} \cdot \frac{\gamma}{1 - \gamma} \\ &= \Omega(\lambda \cdot \sqrt{|S| \cdot |A|}). \end{split}$$

Therefore, in both cases, we have $\|\delta_1\| + \|\delta_2\| = \Omega(\lambda \cdot \sqrt{|S| \cdot |A|})$, which completes the proof. **Lemma B.2.** PoWEF $(n, m, \lambda) = O(\lambda \cdot \sqrt{m})$.

Proof. Suppose that without the fairness constraints the minimum costs for teaching π^* is C_i for each agent $i \in [n]$; let $\hat{\delta}_i$ be the adjustment achieving this minimum cost for each $i \in [n]$, and let $\hat{\delta} = (\hat{\delta}_i)_{i \in [n]}$. Hence, $|\hat{\delta}_i(s, a)| \leq ||\hat{\delta}_i|| = C_i$ for all i, s, and a.

We construct the following adjustment scheme $\delta = (\delta_i)_{i \in [n]}$ in an approach similar to that in the proof of Theorem 4.1 We let

$$\delta_i(s,a) = \begin{cases} 0, & \text{if } a = \pi^*(s) \\ -\frac{2}{1-\gamma_i} \cdot C_i, & \text{otherwise} \end{cases}$$
(20)

for all $s \in S$ and $i \in [n]$. With this δ , we have

$$\frac{\|\delta_i\|}{\|\widehat{\delta}_i\|} = \frac{\sqrt{\sum_{s \in S, a \in A} (\delta_i(s, a))^2}}{C_i} \le \frac{\sqrt{|S| \cdot |A|} \cdot \frac{2}{1 - \gamma_i} \cdot C_i}{C_i} = 2\lambda \cdot \sqrt{|S| \cdot |A|}.$$
(21)

Hence, the price of using δ is

$$\frac{\sum_{i \in [n]} \|\delta_i\|}{\sum_{i \in [n]} \|\widehat{\delta}_i\|} \le 2\lambda \cdot \sqrt{|S| \cdot |A|} = O\left(\lambda \cdot \sqrt{|S| \cdot |A|}\right).$$

Therefore, it remains to argue that δ is feasible and WEF.

Feasibility Compare the differences in the V-values when $\hat{\delta}$ and δ are applied. Since $V_i^{\pi^*}$ only depends on the rewards of state-action pairs chosen by π^* , we have

$$\begin{aligned} \left| V_i^{\pi^*} \left(s \mid \delta_i \right) - V_i^{\pi^*} \left(s \mid \widehat{\delta}_i \right) \right| &= \left| \mathbb{E} \left[\sum_{t=0}^{\infty} (\gamma_i)^t \cdot \left(\delta_i (s_t, \pi^*(s_t)) - \widehat{\delta}_i (s_t, \pi^*(s_t)) \right) \right| s_0 \sim \mathbf{z}, \pi^* \right] \right| \\ &= \left| \mathbb{E} \left[\sum_{t=0}^{\infty} (\gamma_i)^t \cdot \widehat{\delta}_i (s_t, \pi^*(s_t)) \right| s_0 \sim \mathbf{z}, \pi^* \right] \right| \\ &\leq \left| \sum_{t=0}^{\infty} (\gamma_i)^t \cdot C_i \right| \\ &= \frac{1}{1 - \gamma_i} \cdot C_i. \end{aligned}$$
(22)

Now compare the Q-values. We have

$$Q_{i}^{\pi^{\star}}(s,\pi^{\star}(s)|\delta_{i}) - Q_{i}^{\pi^{\star}}\left(s,\pi^{\star}(s)\Big|\hat{\delta}_{i}\right)$$

$$= \delta_{i}(s,\pi^{\star}(s)) - \hat{\delta}_{i}(s,\pi^{\star}(s)) + \gamma_{i} \cdot \mathbb{E}_{x \sim P(s,\pi^{\star}(s),\cdot)}\left(V_{i}^{\pi^{\star}}(x|\delta_{i}) - V_{i}^{\pi^{\star}}\left(x\Big|\hat{\delta}_{i}\right)\right)$$

$$\geq -C_{i} - \frac{\gamma_{i}}{1 - \gamma_{i}} \cdot C_{i} \qquad (by (22))$$

$$= -\frac{1}{1 - \gamma_{i}} \cdot C_{i}.$$

Whereas for any $a \neq \pi^{\star}(s)$,

$$\begin{split} Q_{i}^{\pi^{\star}}\left(s,a \mid \delta_{i}\right) &- Q_{i}^{\pi^{\star}}\left(s,a \mid \widehat{\delta}_{i}\right) = \delta_{i}(s,a) - \widehat{\delta}_{i}(s,a) + \gamma_{i} \cdot \mathbb{E}_{x \sim P(s,a,\cdot)}\left(V_{i}^{\pi^{\star}}\left(x \mid \delta_{i}\right) - V_{i}^{\pi^{\star}}\left(x \mid \widehat{\delta}_{i}\right)\right) \\ &\leq \delta_{i}(s,a) - \widehat{\delta}_{i}(s,a) + \frac{\gamma_{i}}{1 - \gamma_{i}} \cdot C_{i} \qquad \text{(by (22))} \\ &\leq -\frac{2}{1 - \gamma_{i}} \cdot C_{i} + C_{i} + \frac{\gamma_{i}}{1 - \gamma_{i}} \cdot C_{i} \qquad \text{(by (20) and } \left\|\widehat{\delta}_{i}\right\| = C_{i}) \\ &= -\frac{1}{1 - \gamma_{i}} \cdot C_{i} \end{split}$$

Combining the above two equations gives

$$Q_i^{\pi^*}\left(s, \pi^*(s) \,|\, \delta_i\right) - Q_i^{\pi^*}\left(s, a \,|\, \delta_i\right) \ge Q_i^{\pi^*}\left(s, \pi^*(s) \,\Big|\, \widehat{\delta}_i\right) - Q_i^{\pi^*}\left(s, a \,\Big|\, \widehat{\delta}_i\right)$$

for any $s \in S$ and $a \neq \pi^*(s)$. Indeed, since $\hat{\delta}$ is feasible, by definition we have

$$Q_{i}^{\pi^{\star}}\left(s,\pi^{\star}(s)\left|\,\widehat{\delta}_{i}\right.\right) \geq Q_{i}^{\pi^{\star}}\left(s,a\left|\,\widehat{\delta}_{i}\right.\right) + \epsilon$$

if $a \neq \pi^{\star}(s)$. It then follows that

$$Q_i^{\pi^{\star}}\left(s, \pi^{\star}(s) \,|\, \delta_i\right) - Q_i^{\pi^{\star}}\left(s, a \,|\, \delta_i\right) \ge \epsilon$$

for all $a \neq \pi^{\star}(s)$. Since the choice of *i* is arbitrary, by definition δ is feasible.

Fairness Indeed, since δ offers no additional reward for state-action pairs specified by the target policy π^* , we have $\rho_i^{\pi^*}(\delta_i) = \rho_i^{\pi^*}(0) = \rho_i^{\pi^*}(\delta_j)$ for all $i, j \in [n]$. Hence, δ is WEF.

B.2 PoEF and PoSEF

Next we turn to PoEF and PoSEF.

Lemma B.3. $\operatorname{PoEF}(n, m, \lambda) = \Omega(\lambda \cdot n \cdot \sqrt{m}).$

Proof. We use the class of instances illustrated in Figure 3 Similarly to the two-agent version of the instances we used in the proof of Lemma B.1, the cost of teaching π^* without fairness constraints is at most 1. It suffices to set $\delta_1(s_*, c) = 1$ for agent 1, and keep the reward functions of all other agents as is since π^* is already optimal for agents 2,..., n up to robustness ϵ .

Now consider the case with fairness constraints. Suppose that $\delta = (\delta_1, \dots, \delta_n)$ is an EF and feasible adjustment scheme, and without loss of generality $\delta_2 = \dots = \delta_n$. We argue that $\sum_{i \in [n]} \|\delta_i\| = \Omega(\lambda \cdot n \cdot \sqrt{|S| \cdot |A|})$ to complete the proof.

Similarly to the argument in the proof of Lemma B.1, by symmetry we can assume without loss of generality that each δ_i assigns the same reward for a state-action pair and its copy, so we omit the state in the notation of δ_i and write, e.g., $\delta_i(a) = \delta_i(s_l, a)$, as each action is associated with a unique state that is not a copy.

Consider the following two cases:³

Case 1: $\delta_2(c) \geq 1/2$. Since δ_2 incentivizes agent 2 to use the target policy π^* , we have $Q_2^{\pi^*}(s_l, a) \geq Q_2^{\pi^*}(s_l, b) + \epsilon$, or equivalently,

$$\delta_2(a) + \epsilon \ge \delta_2(b) + \frac{\gamma}{1-\gamma} \cdot \delta_2(c) + \epsilon$$

Rearranging the terms gives

$$\delta_2(a) - \delta_2(b) \ge \frac{\gamma}{1 - \gamma} \cdot \delta_2(c) \ge \frac{1}{2} \cdot \frac{\gamma}{1 - \gamma}$$

For any real numbers x and y, we have $x^2 + y^2 \ge \frac{(x-y)^2}{2}$. Hence,

$$\begin{split} \|\delta_2\| &\geq \sqrt{L} \cdot \sqrt{\delta_2^2(a) + \delta_2^2(b)} \geq \sqrt{L} \cdot \sqrt{\frac{(\delta_2(a) - \delta_2(b))^2}{2}} \\ &\geq \sqrt{L} \cdot \frac{1}{\sqrt{8}} \cdot \frac{\gamma}{1 - \gamma} = \Omega(\lambda \cdot \sqrt{|S| \cdot |A|}). \end{split}$$

Case 2: $\delta_2(c) \leq 1/2$. By EF, we have $\rho_1^{\pi^*}(\delta_1) \geq \rho_1^{\pi^*}(\delta_2)$ and $\rho_2^{\pi^*}(\delta_2) \geq \rho_2^{\pi^*}(\delta_1)$. The same as the proof of Lemma B.1, since the agents have the same discount factor, we have $\rho_1^{\pi^*}(\delta_1) - \rho_1^{\pi^*}(0) = \rho_2^{\pi^*}(\delta_2) - \rho_1^{\pi^*}(0)$, expanding which gives the following equation (the same as (19)).

$$\delta_1(a) + \left(\delta_1(d) + \frac{\gamma}{1-\gamma} \cdot \delta_1(c)\right) = \delta_2(a) + \left(\delta_2(d) + \frac{\gamma}{1-\gamma} \cdot \delta_2(c)\right).$$
(23)

Now by EF, agent 1 would not be better off if they were given δ_2 and deviated to a policy π with $\pi(s_l) = a$ and $\pi(s_r) = e$. Namely, $\rho_1^{\pi^*}(\delta_1) \ge \rho_1^{\pi}(\delta_2)$, or equivalently

$$\delta_1(a) + \delta_1(d) + \frac{\gamma}{1-\gamma} \cdot (\delta_1(c) - 1) \ge \delta_2(a) + \delta_2(e)$$

Combining (23) with the above equation gives

$$\delta_2(d) - \delta_2(e) \ge \frac{\gamma}{1 - \gamma} \cdot (1 - \delta_2(c)) \ge \frac{1}{2} \cdot \frac{\gamma}{1 - \gamma}$$

For any real numbers x and y, we have $x^2 + y^2 \ge \frac{(x-y)^2}{2}$. It follows that

$$\begin{split} \|\delta_2\| &\geq \sqrt{L} \cdot \sqrt{\delta_2^2(d) + \delta_2^2(e)} \\ &\geq \sqrt{L} \cdot \frac{1}{\sqrt{8}} \cdot \frac{\gamma}{1 - \gamma} = \Omega(\lambda \cdot \sqrt{|S| \cdot |A|}). \end{split}$$

³The analysis of these two cases are similar to the analysis in the proof of Lemma **B.1** but with a few differences. In particular, we focus on the adjustment for agent 2 in this proof and aim to show that $\|\delta_2\| = \Omega(\lambda \cdot \sqrt{|S| \cdot |A|})$ for both cases, whereas when WEF is considered we can only bound $\|\delta_1\|$ or $\|\delta_1\| + \|\delta_2\|$ in the proof of Lemma **B.1**

Therefore, in both cases, we have $\|\delta_2\| = \Omega(\lambda \cdot \sqrt{|S| \cdot |A|})$. Since $\delta_2 = \delta_3 = \cdots = \delta_n$, we have

$$\operatorname{cost}(\delta) \ge \sum_{i=2}^{n} \|\delta_i\| = \Omega(\lambda \cdot n \cdot \sqrt{|S| \cdot |A|}),$$

which completes the proof.

Lemma B.4. $\operatorname{PoSEF}(n, m, \lambda) = O(\lambda \cdot n \cdot \sqrt{m}).$

Proof. The proof is similar to the proof of Lemma B.2. We penalize actions off the policy and let

$$\delta_i(s,a) = \begin{cases} 0, & \text{if } a = \pi^\star(s) \\ -\max_{j \in [n]} \frac{3}{1-\gamma_j} \cdot C_j, & \text{otherwise} \end{cases}$$

for all $s \in S$ and $i \in [n]$. Hence, δ is SEF as all δ_i 's are the same.

Similarly to (21), with this adjustment scheme δ , we now have

$$\frac{\|\delta_i\|}{\max_{j\in[n]} \left\|\widehat{\delta}_j\right\|} = \frac{\sqrt{\sum_{s\in S, a\in A} (\delta_i(s,a))^2}}{\max_{j\in[n]} C_j} \le 3\lambda \cdot \sqrt{|S| \cdot |A|}.$$

Hence, the price of using δ is

$$\frac{\sum_{i \in [n]} \|\delta_i\|}{\sum_{i \in [n]} \|\hat{\delta}_i\|} \le \frac{\sum_{i \in [n]} \|\delta_i\|}{\max_{i \in [n]} \|\hat{\delta}_i\|} \le n \cdot 3\lambda \cdot \sqrt{|S| \cdot |A|} = O\left(\lambda \cdot n \cdot \sqrt{m}\right).$$

The feasibility of δ follows by the same argument in the proof of Lemma B.2.

Summarizing the above lemmas, we get the following main theorem.

Theorem 6.1. PoWEF $(n, m, \lambda) = \Theta(\lambda \cdot \sqrt{m})$, PoEF $(n, m, \lambda) = \Theta(\lambda \cdot n \cdot \sqrt{m})$, and PoSEF $(n, m, \lambda) = \Theta(\lambda \cdot n \cdot \sqrt{m})$.

Proof. The bound of the PoWEF follows by the lower and upper bounds established in Lemmas **B.1** and **B.2**.

Since SEF is a stronger requirement than EF, the bounds of the PoEF and PoSEF follow by Lemmas $B_{.3}$ and $B_{.4}$

C PoF Bounds with Non-negativity

Since a feasible and fair solution may not exist with non-negative adjustments, we analyze the case where the agents have the same discount factor. The existence of a feasible fair solution is guaranteed in this case according to Theorem [4.3].

C.1 PoWEF

Lemma C.1. PoWEF $(n, m, \lambda) = \Omega(\lambda \cdot n \cdot \sqrt{m})$ when the scheme is required to be non-negative and all the agents have the same discount factor.

Proof. Consider the family of instances illustrated in Figure 4. We show that the PoWEF of this particular family of instances is $\Omega(\lambda \cdot n \cdot \sqrt{m})$ to establish the lower bound.

First, the cost of teaching π^* without fairness constraints is at most 1: the target policy π^* is already optimal for agent 2, and it suffices to set $\delta_1(s_r, c) = 1$ to incentivize agent 1.

Now consider the case with fairness constraints and suppose that $\delta = (\delta_1, \dots, \delta_n)$ is a WEF and feasible adjustment scheme. Without loss of generality, we can assume that $\delta_2 = \delta_3 = \dots = \delta_n$, and we argue that $\|\delta_2\| = \Omega(\lambda \cdot \sqrt{m})$ to finish the proof.

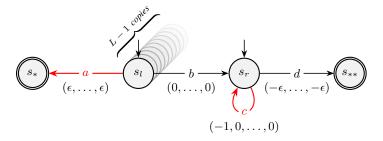


Figure 4: There are *n* agents, all with discount factor γ . $A = \{a, b, c, d\}$ and all transitions are deterministic. The initial rewards are annotated on the corresponding edges, and they are identical for agents $2, \ldots, n$. There are L - 1 copies of s_l , each connected to s_* and s_r the same way s_l is connected to these two states (and with the same initial rewards). The initial state distribution has probability 0.5/L on s_l as well as each of its copies, and 0.5 on s_r . The target policy is highlighted in red: $\pi^*(s) = a$ for $s = s_l$ and its copies, and $\pi^*(s_r) = c$.

By symmetry, we can assume without loss of generality that each δ_i assigns the same reward for a state-action pair and its copies in the instance. Hence, it suffices to consider only the values associated with the original state-action pairs, and we omit the state in the notation and write, e.g., $\delta_i(a) = \delta_i(s_l, a)$, as each action is associated with a unique state.

Consider the following two cases.

Case 1: $\delta_2(c) \geq 1/2$. Since δ_2 incentivizes agent 2 to use the target policy π^* , we have $Q_2^{\pi^*}(s_l, a) \geq Q_2^{\pi^*}(s_l, b) + \epsilon$, or equivalently,

$$\delta_2(a) + \epsilon \ge \delta_2(b) + \frac{\gamma}{1-\gamma} \cdot \delta_2(c) + \epsilon.$$

Since δ_2 is non-negative and by assumption $\delta_2(c) \ge 1/2$ in this case, we get that $\delta_2(a) \ge \frac{1}{2} \cdot \frac{\gamma}{1-\gamma}$. By symmetry this also holds for all copies of action a. It follows that

$$\|\delta_2\| \ge \frac{\sqrt{L}}{2} \cdot \frac{\gamma}{1-\gamma} = \Omega(\lambda\sqrt{m}).$$

Case 2: $\delta_2(c) \leq 1/2$. Note that since δ_1 is non-negative and it incentivizes agent 1 to select action c, it must be that $\delta_1(c) \geq 1$. By WEF, we have $\rho_2^{\pi^*}(\delta_2) \geq \rho_2^{\pi^*}(\delta_1)$, which means

$$0.5 \cdot (\epsilon + \delta_2(a)) + 0.5 \cdot \frac{1}{1 - \gamma} \cdot \delta_2(c) \ge 0.5 \cdot (\epsilon + \delta_1(a)) + 0.5 \cdot \frac{1}{1 - \gamma} \cdot \delta_1(c).$$

Rearranging the terms and using the facts that $\delta_1(c) \ge 1$ and all adjustments are non-negative, we get that $\delta(a) \ge \frac{1}{2} \cdot \frac{1}{1-\gamma}$ and

$$\|\delta_2\| \ge \frac{\sqrt{L}}{2} \cdot \frac{1}{1-\gamma} = \Omega(\lambda\sqrt{m}).$$

Therefore, in both cases, $\|\delta_2\| = \Omega(\lambda \cdot \sqrt{m})$. Since $\delta_2 = \delta_3 = \cdots = \delta_n$, we have $\cot(\delta) \geq \sum_{i=2}^n \|\delta_i\| = \Omega(\lambda \cdot n \cdot \sqrt{m})$, which completes the proof.

Lemma C.2. PoWEF $(n, m, \lambda) = O(\lambda \cdot n \cdot \sqrt{m})$ when the scheme is required to be non-negative and all the agents have the same discount factor.

Proof. Suppose that without the fairness constraints the minimum costs for teaching π^* is C_i for each agent $i \in [n]$; let $\hat{\delta}_i$ be the adjustment achieving this minimum cost for each $i \in [n]$, and let $\hat{\delta} = (\hat{\delta}_i)_{i \in [n]}$. Hence, $|\hat{\delta}_i(s, x)| \leq ||\hat{\delta}_i|| = C_i$ for all i, s, and x.

Note that since the agents have the same discount factor, the improvement ρ^{π^*} of the cumulative reward is the same for all $i \in [n]$:

$$\varrho^{\pi^{\star}}\left(\widehat{\delta}_{j}\right) := \rho_{i}^{\pi^{\star}}\left(\widehat{\delta}_{j}\right) - \rho_{i}^{\pi^{\star}}(0).$$

For each $i \in [n]$, we let

$$H_{i} = (1 - \gamma) \cdot \left(\max_{j \in [n]} \varrho^{\pi^{\star}} \left(\widehat{\delta}_{j} \right) - \varrho^{\pi^{\star}} \left(\widehat{\delta}_{i} \right) \right).$$

Then we construct the following adjustment scheme $\delta = (\delta_i)_{i \in [n]}$:

$$\delta_i(s,a) = \begin{cases} \widehat{\delta}_i(s,a) + H_i + \frac{\gamma}{1-\gamma} \cdot H_i \cdot \sum_{s' \in S^{\mathsf{T}}} P(s,a,s'), & \text{if } a = \pi^*(s) \\ 0, & \text{otherwise} \end{cases}$$
(24)

For any s and a, we have

$$\delta_i(s,a) \le \widehat{\delta}_i(s,a) + \frac{1}{1-\gamma} \cdot H_i$$

$$\le \widehat{\delta}_i(s,a) + \max_{j \in [n]} \varrho_i^{\pi^*} \left(\widehat{\delta}_j\right) \le \frac{2}{1-\gamma} \cdot \max_{j \in [n]} C_j.$$

where we use $\hat{\delta}_i(s, a) \leq \max_{j \in [n]} C_j$ and $\varrho_i^{\pi^*} \left(\hat{\delta}_j \right) \leq \frac{1}{1-\gamma} \cdot C_j$, and the latter is due to the fact that the agent gets an additional reward of at most C_j at each time step when $\hat{\delta}_j$ is applied. It follows that the price of using δ is

$$\frac{\operatorname{cost}(\delta)}{\operatorname{cost}\left(\widehat{\delta}\right)} \le \frac{\sum_{i \in [n]} \|\delta_i\|}{\max_{i \in [n]} \|\widehat{\delta}_i\|} \le \frac{n \cdot 2\lambda \cdot \max_{i \in [n]} C_i \cdot \sqrt{|S| \cdot |A|}}{\max_{i \in [n]} C_i} = O\left(\lambda \cdot n \cdot \sqrt{m}\right).$$

Therefore, it remains to argue that δ is feasible and WEF.

Now that non-negativity is imposed, we can assume without loss of generality that $\hat{\delta}_i(s, a) = 0$ for all $s \in S$ and $a \neq \pi^*(s)$. Therefore, the way δ is defined in (24) is equivalent to adding an additional reward H_i to agent i on top of what is already offered by $\hat{\delta}_i$. The term $\frac{\gamma}{1-\gamma} \cdot H_i \cdot \sum_{s' \in S^T} P(s, a, s')$ adjusts the reward in consideration of subsequent terminal states, so that it is as if the process continues forever with an additional H_i offered at every subsequent step. Consequently, this improves the V-value of every non-terminal state by $\frac{1}{1-\gamma} \cdot H_i$, i.e., for every $s \in S \setminus S^T$ and every pair $i, j \in [n]$ we have

$$V_i^{\pi^*}(s \mid \delta_j) = V_i^{\pi^*}\left(s \mid \widehat{\delta}_j\right) + \frac{1}{1 - \gamma} \cdot H_i.$$
(25)

Feasibility Since the V-values of all non-terminal states increase by the same amount, δ remains feasible. Specifically, since $\hat{\delta}$ is feasible, we have

$$Q_i^{\pi^{\star}}\left(s, \pi^{\star}(s) \left| \widehat{\delta}_i \right) \ge Q_i^{\pi^{\star}}\left(s, a \left| \widehat{\delta}_i \right) + \epsilon \right)$$

for all s and $a \neq \pi^{\star}(s)$. Now compare δ and δ . We have

$$\begin{split} Q_{i}^{\pi^{\star}}\left(s,\pi^{\star}(s)\mid\delta_{i}\right) &- Q_{i}^{\pi^{\star}}\left(s,\pi^{\star}(s)\mid\hat{\delta}_{i}\right) \\ &= \delta_{i}(s,\pi^{\star}(s)) - \hat{\delta}_{i}(s,\pi^{\star}(s)) + \gamma \cdot \mathbb{E}_{x \sim P(s,\pi^{\star}(s),\cdot)}\left(V_{i}^{\pi^{\star}}\left(x\mid\delta_{i}\right) - V_{i}^{\pi^{\star}}\left(x\mid\hat{\delta}_{i}\right)\right) \\ &= \delta_{i}(s,\pi^{\star}(s)) - \hat{\delta}_{i}(s,\pi^{\star}(s)) + \gamma \cdot \sum_{x \in S \setminus S^{\mathsf{T}}} P(s,\pi^{\star}(s),x) \cdot \left(V_{i}^{\pi^{\star}}\left(x\mid\delta_{i}\right) - V_{i}^{\pi^{\star}}\left(x\mid\hat{\delta}_{i}\right)\right) \\ &+ \gamma \cdot \sum_{x \in S^{\mathsf{T}}} P(s,\pi^{\star}(s),x) \cdot \left(V_{i}^{\pi^{\star}}\left(x\mid\delta_{i}\right) - V_{i}^{\pi^{\star}}\left(x\mid\hat{\delta}_{i}\right)\right) \\ &= H_{i} + \gamma \cdot \sum_{x \in S \setminus S^{\mathsf{T}}} P(s,\pi^{\star}(s),x) \cdot \left(V_{i}^{\pi^{\star}}\left(x\mid\delta_{i}\right) - V_{i}^{\pi^{\star}}\left(x\mid\hat{\delta}_{i}\right) - V_{i}^{\pi^{\star}}\left(x\mid\hat{\delta}_{i}\right)\right) \\ &+ \gamma \cdot \sum_{x \in S^{\mathsf{T}}} P(s,\pi^{\star}(s),x) \cdot \left(\frac{1}{1-\gamma} \cdot H_{i} + V_{i}^{\pi^{\star}}\left(x\mid\delta_{i}\right) - V_{i}^{\pi^{\star}}\left(x\mid\hat{\delta}_{i}\right)\right), \end{split}$$

Using (25) and the fact that the V-values of all the terminal states are zero, we further get that

$$\begin{aligned} Q_i^{\pi^\star}(s, \pi^\star(s) \,|\, \delta_i) &- Q_i^{\pi^\star}\left(s, \pi^\star(s) \,\Big|\, \widehat{\delta_i}\right) \\ &= H_i + \gamma \cdot \sum_{x \in S \setminus S^\mathsf{T}} P(s, \pi^\star(s), x) \cdot \frac{1}{1 - \gamma} \cdot H_i + \gamma \cdot \sum_{x \in S^\mathsf{T}} P(s, \pi^\star(s), x) \cdot \frac{1}{1 - \gamma} \cdot H_i \\ &= \frac{1}{1 - \gamma} \cdot H_i. \end{aligned}$$

Next, consider actions $a \neq \pi^{\star}(s)$. We have

$$\begin{aligned} Q_{i}^{\pi^{\star}}\left(s,a\left|\delta_{i}\right)-Q_{i}^{\pi^{\star}}\left(s,a\left|\widehat{\delta}_{i}\right\right) &=\delta_{i}(s,a)-\widehat{\delta}_{i}(s,a)+\gamma\cdot\mathbb{E}_{x\sim P\left(s,a,\cdot\right)}\left(V_{i}^{\pi^{\star}}\left(x\left|\delta_{i}\right)-V_{i}^{\pi^{\star}}\left(x\left|\widehat{\delta}_{i}\right)\right)\right) \\ &\leq\gamma\cdot\mathbb{E}_{x\sim P\left(s,a,\cdot\right)}\left(V_{i}^{\pi^{\star}}\left(x\left|\delta_{i}\right)-V_{i}^{\pi^{\star}}\left(x\left|\widehat{\delta}_{i}\right)\right)\right) \\ &\leq\frac{\gamma}{1-\gamma}\cdot H_{i}. \end{aligned}$$

It follows that

$$Q_i^{\pi^*}\left(s,\pi^*(s)\,|\,\delta_i\right) - Q_i^{\pi^*}\left(s,a\,|\,\delta_i\right) \ge Q_i^{\pi^*}\left(s,\pi^*(s)\,\left|\,\widehat{\delta}_i\right) - Q_i^{\pi^*}\left(s,a\,\left|\,\widehat{\delta}_i\right\right) \ge \epsilon$$

for any $s \in S$ and $a \neq \pi^*(s)$. Since the choice of *i* is arbitrary, δ is feasible.

Fairness By definition $\rho_i^{\pi^*}(\delta_j) = V_i^{\pi^*}(\mathbf{z} \mid \delta_j)$, where \mathbf{z} is the initial state distribution. Using (25), we then get that

$$\rho_{i}^{\pi^{\star}}(\delta_{j}) = \rho_{i}^{\pi^{\star}}\left(\widehat{\delta}_{j}\right) + \frac{1}{1-\gamma} \cdot H_{i}$$

$$= \rho_{i}^{\pi^{\star}}\left(\widehat{\delta}_{j}\right) + \max_{i' \in [n]} \varrho^{\pi^{\star}}\left(\widehat{\delta}_{i'}\right) - \varrho^{\pi^{\star}}\left(\widehat{\delta}_{i}\right)$$

$$\leq \rho_{i}^{\pi^{\star}}\left(\widehat{\delta}_{i}\right) + \max_{i' \in [n]} \varrho^{\pi^{\star}}\left(\widehat{\delta}_{i'}\right) - \varrho^{\pi^{\star}}\left(\widehat{\delta}_{i}\right) \qquad (\text{as }\widehat{\delta} \text{ is WEF})$$

$$= \rho_{i}^{\pi^{\star}}(0) + \max_{i' \in [n]} \varrho^{\pi^{\star}}\left(\widehat{\delta}_{i'}\right)$$

for all $i, j \in [n]$. The right side does not depend on j, which means $\rho_i^{\pi^*}(\delta_i) = \rho_i^{\pi^*}(\delta_j)$, for all j, so δ is WEF.

C.2 PoEF and PoSEF

Lemma C.3. PoEF $(n, m, \lambda) = \Omega(\lambda^2 \cdot n \cdot \sqrt{m})$ when the scheme is required to be non-negative and all the agents have the same discount factor.

Proof. Consider the family of instances illustrated in Figure 5. We show that the PoEF of this particular family of instances is $\Omega(\lambda^2 \cdot n \cdot \sqrt{m})$ to establish the lower bound.

First, the cost of teaching π^* without fairness constraints is at most 2: the target policy π^* is already optimal for agents 3,..., n, and it suffices to set $\delta_1(s_l, c) = 1$ to incentivize agent 1.

Now consider the case with fairness constraints and suppose that $\delta = (\delta_1, \dots, \delta_n)$ is EF and feasible. Without loss of generality, we can assume that $\delta_3 = \dots = \delta_n$, and we argue that $\|\delta_2\| = \Omega(\lambda^2 \cdot n \cdot \sqrt{m})$ to finish the proof.

By symmetry, we can assume without loss of generality that each δ_i assigns the same reward for a state-action pair and its copies in the instance. Hence, it suffices to consider only the values associated with the original state-action pairs, and we omit the state in the notation and write, e.g., $\delta_i(a) = \delta_i(s_l, a)$, as each action is associated with a unique state.

Observe that the structure of the MDP is symmetric with respect to agents 1 and 2. Hence, without loss of generality, we can also assume the same symmetry in δ :

$$\delta_1(a) = \delta_2(h), \quad \delta_1(h) = \delta_2(a), \quad \delta_1(c) = \delta_2(f), \quad \text{and } \delta_1(f) = \delta_2(c).$$
 (26)

$$(\epsilon)$$

Figure 5: There are *n* agents, all with discount factor γ . $A = \{a, b, c, \dots, h\}$ and all transitions are deterministic. The initial rewards of agents 1, 2, and 3 are annotated on the corresponding edges (if there is only one number, then all the agents have the same reward). Agents $4, \dots, n$ have the same reward function as agent 3. There are L - 1 copies of s'_l and s'_r , each connected to the other states the same way s_l and s_r are connected (and with the same initial rewards). The initial state distribution has probability 0.25/L on each of s'_l and s'_r as well as each of their copies, and 0.25 on each of s_l and s_r . The target policy is highlighted in red: $\pi^*(s'_l) = a$, $\pi^*(s_l) = c$, $\pi^*(s_r) = f$, and $\pi^*(s'_r) = h$ (and the same for the corresponding copies).

Next, we first show that $\delta_1(c) \geq \frac{1}{1-\gamma} - \epsilon$ and $\delta_1(f) \geq \frac{1}{1-\gamma} - \epsilon$. Since δ incentivizes agent 1 to take action c instead of d, we have $Q_1^{\pi^*}(s_l, c \mid \delta_1) \geq Q_1^{\pi^*}(s_l, d \mid \delta_1) + \epsilon$, expanding which gives

$$\frac{1}{1-\gamma} \cdot (\delta_1(c) - 1) \ge -\epsilon + \frac{\gamma}{1-\gamma} \cdot \delta_1(f) + \epsilon,$$

$$\delta_1(c) \ge \gamma \cdot \delta_1(f) + 1. \tag{27}$$

or

Since δ is EF, agent 1 cannot be better off with the following policy π and δ_2 : $\pi(s_l) = d$ and $\pi(s) = \pi^*(s)$ for all other s. Namely, $\rho_1^{\pi}(\delta_2) \leq \rho_1^{\pi^*}(\delta_1)$, or

$$(\delta_2(a) + \epsilon) \xrightarrow{V_1^{\pi}(s_l|\delta_2)} + \frac{1}{1-\gamma} \cdot \delta_2(f) + \frac{1}{1-\gamma} \cdot \delta_2(f) + (\delta_2(h) + \epsilon)$$

$$\leq (\delta_1(a) + \epsilon) + \frac{1}{1-\gamma} \cdot (\delta_1(c) - 1) + \frac{1}{1-\gamma} \cdot \delta_1(f) + (\delta_1(h) + \epsilon),$$

where we omit the initial probability 0.25 as the coefficients on both sides of the equation. Applying (26), we can reduce the above equation to

$$1 + \gamma \cdot \delta_1(c) - (1 - \gamma) \cdot \epsilon \le \delta_1(f).$$

Combining (27) with the above equation gives

$$\begin{split} \delta_1(f) &\geq \gamma^2 \cdot \delta_1(f) + \gamma + 1 - (1 - \gamma) \cdot \epsilon, \\ \Longrightarrow \quad \delta_1(f) &\geq \frac{1}{1 - \gamma} - \frac{\epsilon}{1 + \gamma} \geq \frac{1}{1 - \gamma} - \epsilon; \\ \text{and} \quad \delta_1(c) &\geq \gamma \cdot \delta_1(f) + 1 \geq \frac{1}{1 - \gamma} - \epsilon. \end{split}$$

The remainder of the proof is then similar to the proof of Lemma C.1 (where we had $\delta_1(c) \ge 1$ but now $\delta_1(c) \ge \frac{1}{1-\gamma} - \epsilon$). We analyze the following three cases.

Case 1: $\delta_3(c) \geq \lambda/2$. Since δ_3 incentivizes agent 3 to use the target policy π^* , we have $Q_3^{\pi^*}(s'_l, a) \geq Q_3^{\pi^*}(s'_l, b) + \epsilon$, or equivalently,

$$\delta_3(a) + \epsilon \ge \delta_3(b) + \frac{\gamma}{1-\gamma} \cdot \delta_3(c) + \epsilon$$

Since δ_3 is non-negative and by assumption $\delta_3(c) \ge \lambda/2$ in this case, we get that $\delta_3(a) \ge \frac{\lambda}{2} \cdot \frac{\gamma}{1-\gamma}$. By symmetry this also holds for all copies of action a. It follows that

$$\|\delta_3\| \ge \sqrt{L} \cdot \frac{\lambda}{2} \cdot \frac{\gamma}{1-\gamma} = \Omega(\lambda^2 \sqrt{m}).$$

Case 2: $\delta_3(f) \ge \lambda/2$. Applying the same arguments for Case 1 gives $\|\delta_3\| = \Omega(\lambda^2 \sqrt{m})$ in this case.

Case 3: $\delta_3(c) \leq \lambda/2$ and $\delta_3(f) \leq \lambda/2$. We have shown that $\delta_1(c) \geq \frac{1}{1-\gamma} - \epsilon$ and $\delta_1(f) \geq \frac{1}{1-\gamma} - \epsilon$. By WEF, we have $\rho_3^{\pi^*}(\delta_3) \geq \rho_3^{\pi^*}(\delta_1)$, which means

$$(\delta_3(a) + \epsilon) + \frac{1}{1-\gamma} \cdot \delta_3(c) + \frac{1}{1-\gamma} \cdot \delta_3(f) + (\delta_3(h) + \epsilon)$$

$$\geq (\delta_1(a) + \epsilon) + \frac{1}{1-\gamma} \cdot \delta_1(c) + \frac{1}{1-\gamma} \cdot \delta_1(f) + (\delta_1(h) + \epsilon).$$

Rearranging the terms and using non-negativity and the facts that $\delta_1(c) \geq \frac{1}{1-\gamma} - \epsilon$ and $\delta_1(f) \geq \frac{1}{1-\gamma} - \epsilon$, as well as the assumption that $\delta_3(c) \leq \lambda/2$ and $\delta_3(f) \leq \lambda/2$ in this case, we get that

$$\delta_3(a) + \delta_3(h) \ge \left(\frac{1}{1-\gamma}\right)^2 - \frac{2\epsilon}{1-\gamma} = \lambda^2 - 2\epsilon \cdot \lambda.$$

It follows that

$$\|\delta_3\| \ge \sqrt{\frac{L \cdot (\delta_3(a) + \delta_3(h))^2}{2}} = \Omega(\lambda^2 \sqrt{m}).$$

Therefore, in all cases, $\|\delta_3\| = \Omega(\lambda^2 \cdot \sqrt{m})$. Since $\delta_3 = \cdots = \delta_n$, we have $\operatorname{cost}(\delta) \ge \sum_{i=3}^n \|\delta_i\| = \Omega(\lambda^2 \cdot n \cdot \sqrt{m})$, which completes the proof.

Lemma C.4. PoSEF $(n, m, \lambda) = O(\lambda^2 \cdot n \cdot \sqrt{m})$ when the scheme is required to be non-negative and all the agents have the same discount factor.

Proof. Let $\gamma_1 = \cdots = \gamma_n = \gamma$. Suppose that without the fairness constraints, the minimum costs for teaching π^* is C_i for each agent $i \in [n]$; let $\hat{\delta}_i$ be the adjustment achieving this minimum cost for each $i \in [n]$, and let $\hat{\delta} = (\hat{\delta}_i)_{i \in [n]}$. Since the schemes are non-negative, we have $0 \leq \hat{\delta}_i(s, a) \leq C_i$ for all i, s, and a.

Now consider SEF and the following adjustment scheme (similar to (17)), where we let $H = \frac{1}{1-\gamma} \max_{i \in [n]} C_i$ and S^{T} be the set of terminal states.

$$\delta_i(s,a) = \begin{cases} H + \frac{\gamma}{1-\gamma} \cdot H \cdot \sum_{s' \in S^{\mathsf{T}}} P(s,a,s'), & \text{if } a = \pi^*(s) \\ 0, & \text{otherwise} \end{cases}$$
(28)

As defined above, δ is non-negative, and δ_i is identical for all $i \in [n]$, so δ is SEF. Moreover, we have $0 \le \delta_i(s, a) \le \frac{1}{1-\gamma} \cdot H$ for all i, s, and a. Hence,

$$\frac{\operatorname{cost}(\delta)}{\operatorname{cost}\left(\widehat{\delta}\right)} \le \frac{\sum_{i \in [n]} \|\delta_i\|}{\max_{i \in [n]} \|\widehat{\delta}_i\|} \le \frac{n \cdot \lambda \cdot H \cdot \sqrt{|S| \cdot |A|}}{\max_{i \in [n]} C_i} = O\left(\lambda^2 \cdot n \cdot \sqrt{m}\right)$$

It remains to argue that δ is also feasible.

Consider an arbitrary agent *i*. We first argue that

$$V_i^{\pi^*}(s \mid \delta_i) = V_i^{\pi^*}(s \mid 0) + \frac{1}{1 - \gamma} \cdot H$$
(29)

for all $s \in S \setminus S^T$, where $V_i^{\pi^*}(s \mid 0)$ denotes the original value function when no adjustment is provided. Indeed, since the V-function is additive for two reward functions, it suffices to argue that

in a process where the δ_i is the reward function, the corresponding V-values are $\frac{1}{1-\gamma} \cdot H$ for every $s \in S \setminus S^T$. This can be verified via the Bellman equation: The V-values are 0 for all the terminal states, whereas for the non-terminal states, the term $\frac{\gamma}{1-\gamma} \cdot H \cdot \sum_{s' \in S^T} P(s, a, s')$ makes it as if the process continues forever with a reward H generated in every subsequent step, whereby the V-values are exactly $\frac{1}{1-\gamma} \cdot H$. Hence, (29) then follows.

Next consider $\hat{\delta}$, we have

$$V_i^{\pi^{\star}}\left(s \left| \widehat{\delta}_i \right) = V_i^{\pi^{\star}}(s) + \mathbb{E}\left[\sum_{t=0}^{\infty} (\gamma_i)^t \cdot \widehat{\delta}_i(s_t, \pi^{\star}(s_t)) \left| s_0 \sim \mathbf{z}, \pi^{\star} \right].$$

Hence,

$$V_i^{\pi^*}(s \mid 0) \le V_i^{\pi^*}\left(s \mid \widehat{\delta}_i\right) \le V_i^{\pi^*}(s \mid 0) + \frac{1}{1 - \gamma} \cdot C,\tag{30}$$

where we let $C = \max_{i \in [n]} C_i$. The first inequality follows by the non-negativity of $\hat{\delta}$, and the second follows by the fact that $\hat{\delta}_i(s, a) \leq C_i \leq C$ for all i, s, and a.

Compare the differences in the Q-values when $\hat{\delta}$ and δ are applied. We have

$$\begin{split} Q_{i}^{\pi^{\star}}\left(s,\pi^{\star}(s)\mid\delta_{i}\right) &- Q_{i}^{\pi^{\star}}\left(s,\pi^{\star}(s)\mid\hat{\delta}_{i}\right) \\ &= \delta_{i}(s,\pi^{\star}(s)) - \hat{\delta}_{i}(s,\pi^{\star}(s)) + \gamma \cdot \mathbb{E}_{x \sim P(s,\pi^{\star}(s),\cdot)}\left(V_{i}^{\pi^{\star}}\left(x\mid\delta_{i}\right) - V_{i}^{\pi^{\star}}\left(x\mid\hat{\delta}_{i}\right)\right) \\ &= \delta_{i}(s,\pi^{\star}(s)) - \hat{\delta}_{i}(s,\pi^{\star}(s)) + \gamma \cdot \sum_{x \in S \setminus S^{\mathsf{T}}} P(s,\pi^{\star}(s),x) \cdot \left(V_{i}^{\pi^{\star}}\left(x\mid\delta_{i}\right) - V_{i}^{\pi^{\star}}\left(x\mid\hat{\delta}_{i}\right)\right) \\ &+ \gamma \cdot \sum_{x \in S^{\mathsf{T}}} P(s,\pi^{\star}(s),x) \cdot \left(V_{i}^{\pi^{\star}}\left(x\mid\delta_{i}\right) - V_{i}^{\pi^{\star}}\left(x\mid\hat{\delta}_{i}\right)\right) \\ &= H - \hat{\delta}_{i}(s,\pi^{\star}(s)) + \gamma \cdot \sum_{x \in S \setminus S^{\mathsf{T}}} P(s,\pi^{\star}(s),x) \cdot \left(V_{i}^{\pi^{\star}}\left(x\mid\delta_{i}\right) - V_{i}^{\pi^{\star}}\left(x\mid\hat{\delta}_{i}\right)\right) \\ &+ \gamma \cdot \sum_{x \in S^{\mathsf{T}}} P(s,\pi^{\star}(s),x) \cdot \left(\frac{1}{1-\gamma} \cdot H + V_{i}^{\pi^{\star}}\left(x\mid\delta_{i}\right) - V_{i}^{\pi^{\star}}\left(x\mid\hat{\delta}_{i}\right)\right), \end{split}$$

where the last equality follows by replacing $\delta_i(s, \pi^*(s))$ according to (28). Note that for all terminal states $x \in S^T$, we have $V_i^{\pi^*}(x \mid \delta_i) = V_i^{\pi^*}(x \mid \hat{\delta}_i) = 0$. Moreover, using (29) and (30), we have $V_i^{\pi^*}(x \mid \delta_i) - V_i^{\pi^*}(x \mid \hat{\delta}_i) \ge \frac{1}{1-\gamma} \cdot (H-C)$. Hence, the above equation continues as:

$$\begin{split} &Q_i^{\pi^{\star}}\left(s,\pi^{\star}(s) \mid \delta_i\right) - Q_i^{\pi^{\star}}\left(s,\pi^{\star}(s) \mid \hat{\delta}_i\right) \\ &\geq H - \hat{\delta}_i(s,\pi^{\star}(s)) + \gamma \sum_{x \in S \setminus S^{\mathrm{T}}} P(s,\pi^{\star}(s),x) \cdot \frac{1}{1-\gamma} \cdot (H-C) + \gamma \sum_{x \in S^{\mathrm{T}}} P(s,\pi^{\star}(s),x) \cdot \frac{1}{1-\gamma} \cdot H \\ &\geq H - C + \frac{\gamma \cdot H}{1-\gamma} - \frac{\gamma \cdot C}{1-\gamma} \\ &\geq \frac{\gamma}{1-\gamma} \cdot H. \end{split}$$

Next, we consider actions $a \neq \pi^{\star}(s)$.

$$\begin{aligned} Q_{i}^{\pi^{\star}}\left(s,a \mid \delta_{i}\right) - Q_{i}^{\pi^{\star}}\left(s,a \mid \widehat{\delta}_{i}\right) &= \delta_{i}(s,a) - \widehat{\delta}_{i}(s,a) + \gamma \cdot \mathbb{E}_{x \sim P(s,a,\cdot)}\left(V_{i}^{\pi^{\star}}\left(x \mid \delta_{i}\right) - V_{i}^{\pi^{\star}}\left(x \mid \widehat{\delta}_{i}\right)\right) \\ &\leq \gamma \cdot \mathbb{E}_{x \sim P(s,a,\cdot)}\left(V_{i}^{\pi^{\star}}\left(x \mid \delta_{i}\right) - V_{i}^{\pi^{\star}}\left(x \mid \widehat{\delta}_{i}\right)\right) \\ &\leq \frac{\gamma}{1 - \gamma} \cdot H, \end{aligned}$$

where the last transition follows by (28) and (30).

Combining the above two equations gives

$$Q_i^{\pi^{\star}}\left(s, \pi^{\star}(s) \mid \delta_i\right) - Q_i^{\pi^{\star}}\left(s, a \mid \delta_i\right) \ge Q_i^{\pi^{\star}}\left(s, \pi^{\star}(s) \mid \widehat{\delta}_i\right) - Q_i^{\pi^{\star}}\left(s, a \mid \widehat{\delta}_i\right)$$

for any $s \in S$ and $a \neq \pi^{\star}(s)$. Indeed, since $\widehat{\delta}$ is feasible, by definition we have

$$Q_i^{\pi^{\star}}\left(s, \pi^{\star}(s) \left| \widehat{\delta}_i \right) \ge Q_i^{\pi^{\star}}\left(s, a \left| \widehat{\delta}_i \right) + \epsilon.\right.$$

It then follows that

$$Q_i^{\pi^{\star}}\left(s, \pi^{\star}(s) \mid \delta_i\right) - Q_i^{\pi^{\star}}\left(s, a \mid \delta_i\right) \ge \epsilon$$

for all $a \neq \pi^{\star}(s)$. Since the choice of *i* is arbitrary, δ is feasible.

Summarizing the above two lemmas, we get the following result.

Theorem 6.2. When the scheme is required to be non-negative and all the agents have the same discount factor, it holds that $\operatorname{PoWEF}(n,m,\lambda) = \Theta(\lambda \cdot n \cdot \sqrt{m})$, $\operatorname{PoEF}(n,m,\lambda) = \Theta(\lambda^2 \cdot n \cdot \sqrt{m})$, and $\operatorname{PoSEF}(n,m,\lambda) = \Theta(\lambda^2 \cdot n \cdot \sqrt{m})$.

Proof. Lemmas C.1 and C.2 establish the bound of the PoWEF.

Since SEF is a stronger requirement than EF, Lemmas C.3 and C.4 establish the bounds of the PoEF and PoSEF. $\hfill \Box$