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A The Omitted Proofs1

Lemma 1. The averaged class-wise dispersibility is always greater than or equal to the averaged2

sample-wise dispersibility i.e., Ds ≤ Dc. Besides, the equality holds if and only if f(xi) =3

f(xj),∀i, j ∈ {1, · · · , N}.4

Proof. Since entropy is a concave function [1], according to Jensen’s inequality, we have:5

H

(∑N
i=1 f(xi) · I{yi = j}∑N

i=1 I{yi = j}

)
≥

N∑
i=1

I{yi = j}∑N
i=1 I{yi = j}

H (f(xi)) = H (f(xi)) . (1)

Since each sample x has and only has one label y ∈ {1, · · · ,K}, we have:6

H (f(xi)) =

K∑
j=1

H (f(xi)) · I{yi = j},∀i ∈ {1, · · · , N}. (2)

As such,7

Dc ≥
1

N

K∑
j=1

N∑
i=1

I{yi = j} ·H (f(xi)) =
1

N

N∑
i=1

H (f(xi)) ≜ Ds. (3)

Moreover, since entropy is strictly concave (i.e., non-linear) [1], in equation (1)&(3), the equality8

holds if and only if f(xi) = f(xj),∀i, j ∈ {1, · · · , N}.9

10

Theorem 1. Let f(·;w) indicates the DNN with parameter w, G(·;θ) denotes the poisoned image
generator with parameter θ, and D = {(xi, yi)}Ni=1 is a given dataset with K classes, we have

max
θ

N∑
i=1

H (f(G(xi;θ);w)) ≤ max
θ

K∑
j=1

N∑
i=1

I{yi = j}·H

(∑N
i=1 f(G(xi;θ);w) · I{yi = j}∑N

i=1 I{yi = j}

)
.

Proof. The proof is straightforward given Lemma 1, based on replacing f(xi) with f(G(xi;θ);w)11

and maximizing both sides simultaneously.12
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B The Optimization Process of our UBW-C14

Recall that the optimization objective of our UBW-C is as follows:15

max
θ

∑
(x,y)∈Ds

[L(f(G(x;θ);w∗), y) + λ ·H (f(G(x;θ);w∗))] , (4)

s.t. w∗ = argmin
w

∑
(x,y)∈Dp

L(f(x;w), y), (5)

where λ is a non-negative trade-off hyper-parameter.16

In general, the aforementioned process is a standard bi-level optimization, which can be effectively17

and efficiently solved by alternatively optimizing the upper-level and lower-level sub-problems [2].18

To solve the aforementioned problem, the form of G is one of the key factors. Inspired by the hidden19

trigger backdoor attack [3] and the Sleeper Agent [4], we also adopt different generators during the20

training and inference process to enhance attack effectiveness and stealthiness, as follows:21

Let Gt and Gi denote the generator used in the training and inference process, respectively. We22

intend to generate sample-specific small additive perturbations for selected training images based23

on Gt so that their gradient ensemble has a similar direction to the gradient ensemble of poisoned24

‘testing’ images generated by Gi. Specifically, we set Gt(x) = x + θ(x), where ||θ(x)||∞ ≤ ϵ25

and ϵ is the perturbation budget; We set Gi(x) = (1−α)⊗ x+α⊗ t, where α ∈ {0, 1}C×W×H26

denotes the given mask and t ∈ X is the given trigger pattern. In general, the trigger patterns used27

for training is invisible for stealthiness while those used for inference is visible for effectiveness. The28

detailed lower-level and upper-level sub-problems are as follows:29

Upper-level Sub-problem. Given the current model parameters w, we optimize the trigger patterns30

{θ(x)|x ∈ Ds} of selected training samples (for poisoning) based on the gradient matching:31

max
{θ(x)|x∈Ds, ||θ(x)||∞≤ϵ}

∇wLt · ∇wLi

||Lt|| · ||Li||
, (6)

where32

Li =
1

N
·
∑

(x,y)∈D

[L(f(Gi(x);w), y) + λ ·H (f(Gi(x);w))] , (7)

Lt =
1

M
·
∑

(x,y)∈Ds

L(f(x+ θ(x);w), y), (8)

N and M denote the number of training samples and the number of selected samples, respectively.33

The upper-level sub-problem is solved by projected gradient ascend (PGA) [5].34

Lower-level Sub-problem. Given the current trigger patterns {θ(x)|x ∈ Ds}, we can obtain the35

poisoned training dataset Dp and then optimize the model parameters w via36

min
w

∑
(x,y)∈Dp

L(f(x;w), y). (9)

The lower-level sub-problem is solved by stochastic gradient descent (SGD) [5].37

Besides, there are three additional optimization details that we need to mention, as follows:38

1) How to Select Training Samples for Poisoning. We select training samples with the largest39

gradient norms instead of random selection for poisoning since they have more influence. It is allowed40

in our UBW since the dataset owner can determine which samples should be modified.41

2) How to Select ‘Test’ Samples for Poisoning. Instead of using all training samples to calculate Eq.42

(7), we only use those from a specific source class. This approach is used to further enhance UBW43

effectiveness, since the gradient ensemble of samples from all classes may be too ‘noisy’ to learn for44

Gt. Its benefits are verified in the following Section F.45
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Figure 1: The example of samples involved in different backdoor watermarks. In the BadNets,
blended attack, WaNet, and UBW-P, the labels of poisoned samples are inconsistent with their
ground-truth ones. In the label-consistent attack, Sleeper Agent, and UBW-C, the labels of poisoned
samples are the same as their ground-truth ones. In particular, the label-consistent attack can only
poison samples in the target class, while other methods can modify all samples.

3) The Relation between Dispersibility and Attack Success Rate. In general, the optimization of46

dispersibility contradicts to that of the attack success rate to some extent. Specifically, let us consider47

a classification problem with K different classes. When the averaged sample-wise dispersibility48

used in optimizing UBW-C reaches its maximum value, the attack success rate is only K−1
K , since49

the predicted probability vectors are all uniform; When the attack success rate reaches 100%, both50

averaged prediction dispersibility and sample-wise dispersibility cannot reach their maximum.51

In particular, similar to other backdoor attacks based on bi-level optimization (e.g., LIRA [6] and52

Sleeper Agent [4]), we notice that the watermark performance of our UBW-C is not very stable across53

different random seeds (i.e., has relatively large standard deviation). We will explore how to stabilize54

and improve the performance of UBW-C in our future work.55

C Detailed Experimental Settings56

C.1 Detailed Settings for Dataset Watermarking57

Datasets and Models. In this paper, we conduct experiments on two classical benchmark datasets,58

including CIFAR-10 [7] and (a subset of) ImageNet [8], with ResNet-18 [9]. Specifically, we59

randomly select a subset containing 50 classes with 25, 000 images from the original ImageNet for60

training (500 images per class) and 2, 500 images for testing (50 images per class). For simplicity, all61

images are resized to 3× 64× 64, following the settings used in Tiny-ImageNet [10].62

Baseline Selection. We compare our UBW with representative existing poison-only backdoor attacks.63

Specifically, for attacks with poisoned labels, we adopt BadNets [11], blended attack (dubbed as64

‘Blended’) [12], and WaNet [13] as the baseline methods. They are the representative of visible65

attacks, patch-based invisible attacks, and non-patch-based invisible attacks, respectively. We use the66

label-consistent attack (dubbed as ‘Label-Consistent’) [14] and Sleeper Agent [4] as the representative67

of attacks with clean labels. Besides, we also include the models trained on the benign dataset (dubbed68

as ‘No Attack’) as another baseline for reference.69

Attack Setup. We implement BadNets, blended attack, and label-consistent attack based on the70

open-sourced Python toolbox—BackdoorBox [15]. The experiments of Sleeper Agent are conducted71

based on its official open-sourced codes1. We set the poisoning rate γ = 0.1 for all attacks on both72

datasets. In particular, since the label-consistent attack can only modify samples from the target73

class, its poisoning rate is set to its maximum (i.e., 0.02) on the ImageNet dataset. The target label74

1https://github.com/hsouri/Sleeper-Agent
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Figure 2: The trigger patterns used for evaluation.

yt is set to 1 for all targeted attacks. Besides, following the classical settings in existing papers,75

we adopt a white-black square as the trigger pattern for BadNets, blended attack, label-consistent76

attack, and UBW-P on both datasets. The trigger patterns adopted for training Sleeper Agent and77

UBW-C are sample-specific, while those used in the inference process are the same as those used by78

BadNets, blended attack, label-consistent attack, and UBW-P. Specifically, for the blended attack, the79

blended ratio α is set to 0.1; For the label-consistent attack, we used the projected gradient descent80

(PGD) [16] to generate adversarial perturbations within the ℓ∞-ball for pre-processing selected81

images before the poisoning, where the maximum perturbation size ϵ = 16, step size 1.5, and 3082

steps. For the WaNet, we adopted its default settings provided by BackdoorBox with noise mode.83

For both Sleeper Agent and our UBW-C, we alternatively optimize the upper-level and lower-level84

sub-problems 5 times, where we train the model 50 epochs and generate the trigger patterns with85

PGA-40 on the CIFAR-10 dataset. On the ImageNet dataset, we alternatively optimize the upper-level86

and lower-level sub-problems 3 times, where we train the model 40 epochs and generate the trigger87

patterns via PGA-30. The initial model parameters are obtained by training on the benign dataset. We88

set λ = 2 and the source class is set as 0 on both datasets. The example of poisoned training samples89

generated by different attacks is shown in Figure 1.90

Training Setup. On both CIFAR-10 and ImageNet datasets, we train the model 200 epochs with91

batch size 128. Specifically, we use the SGD optimizer with a momentum of 0.9, weight decay of92

5× 10−4, and an initial learning rate of 0.1. The learning rate is decreased by a factor of 10 at the93

epoch of 150 and 180, respectively. In particular, we add trigger patterns before performing the data94

augmentation with horizontal flipping.95

C.2 Detailed Settings for Dataset Ownership Verification96

We evaluate our verification method in three representative scenarios, including 1) independent97

trigger (dubbed as ‘Independent-T’), 2) independent model (dubbed as ‘Independent-M’), and 3)98

unauthorized dataset usage (dubbed as ‘Malicious’). In the first scenario, we query the attacked99

suspicious model using the trigger that is different from the one used for model training; In the second100

scenario, we examine the benign suspicious model using the trigger pattern; We adopt the trigger101

used in the training process of the watermarked suspicious model in the last scenario. Moreover,102

we sample m = 100 samples on CIFAR10 and m = 30 samples on ImageNet and set τ = 0.25 for103

the hypothesis-test in each case for both UBW-P and UBW-C. We use m = 30 on ImageNet since104

there is only 50 testing images from the source class and we only select samples that can be correctly105

classified by the suspicious model to reduce the side-effects of model accuracy.106

C.3 Detailed Settings for Resistance to Backdoor Defenses107

Settings for Fine-tuning. We conduct the experiments on the CIFAR-10 dataset as an example for108

discussion. Following its default settings, we freeze the convolutional layers and tune the remaining109

fully-connected layers of the watermarked DNNs. Specifically, we adopt 10% benign training samples110

for fine-tuning and set the learning rate as 0.1. We fine-tune the model 100 epochs in total.111

Settings for Model Pruning. We conduct the experiments on the CIFAR-10 dataset as an example for112

discussion. Following its default settings, we conduct channel pruning [17] on the output of the last113

convolutional layer with 10% benign training samples. The pruning rate β ∈ {0%, 2%, · · · , 98%}.114
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Table 1: The effectiveness of our UBW with different trigger patterns on the CIFAR-10 dataset.

Method↓ Pattern↓, Metric→ BA (%) ASR-A (%) ASR-C (%) Dp

UBW-P
Pattern (a) 90.59 92.30 92.51 2.2548
Pattern (b) 90.31 84.53 82.39 2.2331
Pattern (c) 90.21 87.78 86.94 2.2611

UBW-C
Pattern (a) 86.99 89.80 87.56 1.2641
Pattern (b) 86.25 90.90 88.91 1.1131
Pattern (c) 87.78 81.23 78.55 1.0089

Table 2: The effectiveness of our UBW with different trigger sizes on the CIFAR-10 dataset.

Method↓ Trigger Size↓, Metric→ BA (%) ASR-A (%) ASR-C (%) Dp

UBW-P

2 90.55 82.60 82.21 2.2370
4 90.37 83.50 83.30 2.2321
6 90.43 86.30 86.70 2.2546
8 90.46 86.40 86.26 2.2688

10 90.72 86.10 85.82 2.2761
12 90.22 88.30 87.94 2.2545

UBW-C

2 87.34 4.38 15.00 0.7065
4 87.71 70.80 64.86 1.2924
6 87.69 75.60 70.85 1.7892
8 88.89 75.40 69.86 1.2904

10 88.30 77.60 73.92 1.7534
12 89.29 98.00 97.72 1.1049

D The Effects of Trigger Patterns and Sizes115

D.1 The Effects of Trigger Patterns116

Settings. In this section, we conduct experiments on the CIFAR-10 dataset to discuss the effects of117

trigger patterns. Except for the trigger pattern, all other settings are the same as those used in Section118

C.1. The adopted trigger patterns are shown in Figure 2.119

Results. As shown in Table 1, both UBW-P and UBW-C are effective with each trigger pattern,120

although the performance may have some fluctuations. Specifically, the ASR-As are larger than 80%121

in all cases. These results verify that both UBW-P and UBW-C can reach promising performance122

with arbitrary user-specified trigger patterns used in the inference process.123

D.2 The Effects of Trigger Sizes124

Settings. In this section, we conduct experiments on the CIFAR-10 dataset to discuss the effects of125

trigger sizes. Except for the trigger size, all other settings are the same as those used in Section C.1.126

The specific trigger patterns are generated based on resizing the one used in our main experiments.127

Results. As shown in Table 2, the attack success rate increases with the increase of trigger size.128

In particular, different from existing (targeted) patch-based backdoor attacks (e.g., BadNets and129

blended attack), increasing the trigger size has minor adverse effects in reducing the benign accuracy,130

which is most probably due to our untargeted attack paradigm. The benign accuracy even slightly131

increases with the increase of trigger sizes on UBW-C, which is mostly because the trigger pattern is132

not directly added to the poisoned samples during the training process (as described in Section B).133

E The Effects of Verification Certainty and Number of Sampled Images134

E.1 The Effects of Verification Certainty135

Settings. In this section, we conduct experiments on the CIFAR-10 dataset to discuss the effects136

of verification certainty τ in UBW-based dataset ownership verification. Except for the τ , all other137

settings are the same as those used in Section C.2.138
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Table 3: The p-value of UBW-based dataset ownership verification w.r.t. the verification certainty τ
on the CIFAR-10 dataset.

Method↓ Scenario↓, τ→ 0 0.05 0.1 0.15 0.2 0.25

UBW-P
Independent-T 0.1705 1.0 1.0 1.0 1.0 1.0
Independent-M 0.2178 1.0 1.0 1.0 1.0 1.0

Malicious 10−51 10−48 10−45 10−42 10−39 10−36

UBW-C
Independent-T 10−8 10−5 0.0049 0.1313 0.6473 0.9688
Independent-M 0.1821 0.9835 1.0 1.0 1.0 1.0

Malicious 10−27 10−24 10−22 10−19 10−16 10−14

Table 4: The p-value of UBW-based dataset ownership verification w.r.t. the number of sampled
images m on the CIFAR-10 dataset.

Method↓ Scenario↓, m→ 20 40 60 80 100 120

UBW-P
Independent-T 1.0 1.0 1.0 1.0 1.0 1.0
Independent-M 1.0 1.0 1.0 1.0 1.0 1.0

Malicious 10−7 10−14 10−23 10−32 10−36 10−42

UBW-C
Independent-T 0.9348 0.9219 0.9075 0.9093 0.9688 0.9770
Independent-M 1.0 1.0 1.0 1.0 1.0 1.0

Malicious 10−3 10−6 10−7 10−10 10−14 10−16

Table 5: The effectiveness of UBW-C when attacking all samples or samples from the source class.

Dataset↓ Scenario↓, Metric→ BA (%) ASR-A (%) ASR-C (%) Dp

CIFAR-10 All 87.42 58.83 50.31 0.9843
Source (Ours) 86.99 89.80 87.56 1.2641

ImageNet All 58.64 42.03 21.27 2.1407
Source (Ours) 59.64 74.00 60.00 2.4010

Results. As shown in Table 3, the p-value increases with the increase of verification certainty τ139

in all scenarios. In particular, when τ is smaller than 0.15, UBW-C will misjudge the cases of140

Independent-T. This failure is due to the untargeted nature of our UBW and why we introduced τ141

in our verification process. Besides, the larger the τ , the unlikely the misjudgments happen and the142

more likely that the dataset stealing is ignored. People should assign τ based on their specific needs.143

E.2 The Effects of the Number of Sampled Images144

Settings. In this section, we conduct experiments on the CIFAR-10 dataset to study the number of145

sampled images m in UBW-based dataset ownership verification. Except for the m, all other settings146

are the same as those used in Section C.2.147

Results. As shown in Table 4, the p-value decreases with the increase of m in the malicious scenario148

while it decreases with the increase of m in the independent scenarios. In other words, the probability149

that our UBW-based dataset ownership verification makes correct judgments increases with the150

increase of m. This benefit is mostly because increasing m will reduce the adverse effects of the151

randomness involved in the sample selection.152

F The Effectiveness of UBW-C When Attacking All Classes153

As described in Section B, our UBW-C randomly selects samples from a random source class instead154

of all classes for gradient matching. This special design is to reduce the optimization difficulty, since155

the gradient ensemble of samples from different classes may be too ‘noisy’ to learn for the poisoned156

training image generator Gt. In this section, we verify its effectiveness by comparing our UBW-C157

with its variant, which uses all samples for gradient matching.158

As shown in Table 5, only using source class samples is significantly better than using all samples159

during the optimization of UBW-C. Specifically, the ASR-A increases of UBW-C compared with its160

variant are larger than 30% on both CIFAR-10 and ImageNet. Besides, we notice that the averaged161
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Figure 3: The ground-truth trigger pattern and those synthesized by neural cleanse. (a): ground-truth
trigger pattern; (b): synthesized trigger pattern of BadNets; (c): synthesized trigger pattern of UBW-P;
(d): synthesized trigger pattern of UBW-C. The synthesized pattern of BadNets is similar to the
ground-truth one whereas those of our UBW-P and UBW-C are meaningless.

prediction dispersibility Dp of the UBW-C variant is similar to that of our UBW-C to some extent. It162

is mostly because our UBW-C is untargeted and the variant has relatively low benign accuracy.163

G Resistance to Other Backdoor Defenses164

In this section, we discuss the resistance of our UBW-P and UBW-C to more potential backdoor165

defenses. We conduct experiments on the CIFAR-10 dataset as an example for the discussion.166

G.1 Resistance to Trigger Synthesis based Defenses167

Currently, there are many trigger synthesis based backdoor defenses [18, 19, 20], which synthesized168

the trigger pattern for backdoor unlearning or detection. Specifically, they first generate the potential169

trigger pattern for each class and then filter the final synthetic one based on anomaly detection. In170

this section, we verify that our UBW can bypass these defenses for it breaks their latent assumption171

that the backdoor attacks are targeted.172

Settings. Since neural cleanse [18] is the first and the most representative trigger synthesis based173

defense, we adopt it as an example to synthesize the trigger pattern of DNNs watermarked by BadNets174

and our UBW-P and UBW-C. We implement it based on its open-sourced codes2 and default settings.175

Results. As shown in Figure 3, the synthesized pattern of BadNets is similar to the ground-truth176

trigger pattern. However, those of our UBW-P and UBW-C are significantly different from the177

ground-truth one. These results show that our UBW is resistant to trigger synthesis based defenses.178

G.2 Resistance to Saliency-based Defenses179

Since the attack effectiveness is mostly caused by the trigger pattern, there were also some backdoor180

defenses [21, 22, 23] based on detecting trigger areas with saliency maps. Specifically, these methods181

first generated the saliency map of each sample and then obtained trigger regions based on the182

intersection of all generated saliency maps. Since our UBW is untargeted, the relation between the183

trigger pattern and the predicted label is less significant compared with existing targeted backdoor184

attacks. As such, it can bypass those saliency-based defenses, which is verified in this section.185

Settings. We generate the saliency maps of models watermarked by BadNets and our UBW-P and186

UBW-C, based on the Grad-CAM [24] with its default settings. We randomly select samples from187

the source class to generate their poisoned version for the discussion.188

Results. As shown in Figure 4, the Grad-CAM mainly focuses on the trigger areas of poisoned189

images in BadNets. In contrast, it mainly focuses on other regions (e.g., object outline) of poisoned190

images in our UBW-C. We notice that the Grad-CAM also focuses on the trigger areas in our UBW-P191

in a few cases. It is most probably because the trigger pattern used in the inference process is the192

2https://github.com/bolunwang/backdoor
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Figure 4: The poisoned images and their saliency maps based on Grad-CAM with DNNs watermarked
by different methods. The Grad-CAM mainly focuses on the trigger areas of poisoned images in
BadNets, while it mainly focuses on other regions (e.g., object outline) in our UBW.

Table 6: The averaged entropy generated by STRIP of models watermarked by different methods.
The larger the entropy, the harder for STRIP to detect the watermark.

Metric↓, Method→ BadNets UBW-P UBW-C

Averaged Entropy 0.0093 1.5417 1.2018

same as the one used for training in our UBW-P while we use invisible additive noises in our training193

process of UBW-C. These results validate that our UBW is resistant to saliency-based defenses.194

G.3 Resistance to STRIP195

Recently, Gao et al. [25] proposed STRIP to filter poisoned samples based on the prediction variation196

of samples generated by imposing various image patterns on the suspicious image. The variation is197

measured by the entropy of the average prediction of those samples. Specifically, the STRIP assumed198

that the trigger pattern is sample-agnostic and the attack is targeted. Accordingly, the more likely the199

suspicious image contains trigger pattern, the smaller the entropy since those modified images will200

still be predicted as the target label so that the average prediction is still nearly an one-hot vector.201

Settings. We randomly select 100 testing images from the source class to generate their poisoned202

version, based on BadNets and our UBW-P and UBW-C. We calculate the entropy of each poisoned203

image based on the open-sourced codes3 and default settings of STRIP. We then calculate the averaged204

entropy among all poisoned samples for each watermarking method as their indicator. The larger the205

entropy, the harder for STRIP to detect the watermark.206

Results. As shown in Table 6, the averaged entropies of both UBW-P and UBW-C are significantly207

higher than that of BadNets. Specifically, the entropies of both UBW-P and UBW-C are more than208

100 times larger than that of BadNets. It is mostly due to the untargeted nature of our UBW whose209

predictions are dispersed. These results verify that our UBW is resistant to STRIP.210

G.4 Resistance to Dataset-level Backdoor Defenses211

In this section, we discuss whether our methods are resistant to dataset-level backdoor defenses.212

Settings. In this part, we adopt the spectral signatures [26] and the activation clustering [27] as213

representative dataset-level backdoor defenses for our discussion. Both spectral signatures and214

activation clustering tend to filter poisoned samples from the training dataset, based on sample215

behaviors in hidden feature space. We implement these methods based on their official open-sourced216

3https://github.com/yjkim721/STRIP-ViTA
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Table 7: The successful filtering rate (%) on the CIFAR-10 dataset.

Method↓, Defense→ Spectral Signatures Activation Clustering
UBW-P 10.96 52.61
UBW-C 9.40 20.51

Table 8: The resistance to MCR and NAD on the CIFAR-10 dataset.
Defense→ No Defense MCR NAD

Method↓, Metric→ BA (%) ASR-A (%) BA (%) ASR-A (%) BA (%) ASR-A (%)
UBW-P 90.59 92.30 88.17 96.20 67.98 99.40
UBW-C 86.99 89.80 86.15 79.10 77.13 36.00

Table 9: The effectiveness of our UBW-P with different types of triggers on the CIFAR-10 dataset.

Method↓, Metric→ BA (%) ASR-A (%) ASR-C (%) Dp

UBW-P (BadNets) 90.59 92.30 92.51 2.2548
UBW-P (WaNet) 89.90 73.00 70.45 2.0368

codes with default settings on the CIFAR-10 dataset. Besides, we adopt the successful filtering rate217

defined as the number of filtered poisoned samples over that of all filtered samples as our evaluation218

metric. In general, the smaller the successful filtering rate, the more resistance of our UBW.219

Results. As shown in Table 7, these defenses fail to filter our watermarked samples under both220

poisoned-label and clean-label to some extent. We speculate that it is mostly because poisoned221

samples generated by our UBW-P and UBW-C tend to scatter in the whole space instead of forming222

a single cluster in the feature space. We will further explore it in the future.223

G.5 Resistance to MCR and NAD224

Here we discuss whether our methods are resistant to mode connectivity repairing (MCR) [28] and225

neural attention distillation (NAD) [29], which are two advanced repairing-based backdoor defenses.226

Settings. We implement MCR and NAD based on the codes provided in BackdoorBox.227

Results. As shown in Table 8, both our UBW-P and UBW-C are resistant to MCR and NAD to228

some extent. Their failures are probably because both of them contain a fine-tuning stage, which is229

ineffective for our UBWs (as demonstrated in Section 5.4.2).230

H UBW-P with Imperceptible Trigger Patterns231

In our main manuscript, we design our UBW-P based on BadNets-type triggers since it is the most232

straightforward method. We intend to show how simple it is to design UBW under the poisoned-label233

setting. Here we demonstrate that our UBW-P is still effective with imperceptible trigger patterns.234

Settings. We adopt the advanced invisible targeted backdoor attack – WaNet [13] to design our235

UBW-P with imperceptible trigger patterns. We also implement it based on the open-sourced codes236

of vanilla WaNet provided in BackdoorBox [15]. Specifically, we set the warping kernel size as 16237

and conduct experiments on the CIFAR-10 dataset. Except for the trigger patterns, all other settings238

are the same as those used in our standard UBW-P.239

Results. As shown in Table 9, our UBW-P can still reach promising performance with imperceptible240

trigger patterns, although it may have relatively low ASR compared to UBW-P with the BadNets-type241

visible trigger. It seems that there is a trade-off between ASR and trigger visibility. We will discuss242

how to better balance the watermark effectiveness and its stealthiness in our future work.243

I The Transferability of our UBW-C244

Recall that in the optimization process of our UBW-C, we need to know the model structure f in245

advance. Following the classical settings of bi-level-optimization-type backdoor attacks (e.g., LIRA246
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Table 10: The performance of our UBW-C with different model structures trained on the watermarked
CIFAR-10 dataset generated with ResNet-18.

Metric↓, Model→ ResNet-18 ResNet-34 VGG-16-BN VGG-19-BN
BA (%) 86.99 87.34 86.83 88.55

ASR-A (%) 87.56 78.89 75.80 74.30

[6] and Sleeper Agent [4]), we report the results of attacking DNN with the same model structure as247

the one used for generating poisoned samples. In practice, dataset users may adopt different model248

structures since dataset owners have no information about the model training. In this section, we249

evaluate whether the watermarked dataset is still effective in watermarking DNNs having different250

structures compared to the one used for dataset generation (i.e., transferability).251

Settings. We adopt ResNet-18 to generate a UBW-C training dataset, based on which to train different252

models (i.e., ResNet-18, ResNet-34, VGG-16-BN, and VGG-19-BN). Except for the model structure,253

all other settings are the same as those used in Section 5.254

Results. As shown in Table 10, our UBW-C has high transferability. Accordingly, our methods are255

practical in protecting open-sourced datasets.256

J Connections and Differences with Related Works257

In this section, we discuss the connections and differences between our UBW and adversarial attacks,258

data poisoning, and classical untargeted attacks. We also discuss the connections and differences259

between our UBW-based dataset ownership verification and model ownership verification.260

J.1 Connections and Differences with Adversarial Attacks261

Both our UBW and adversarial attacks intend to make the DNNs misclassify samples during the infer-262

ence process by adding malicious perturbations. However, they still have some intrinsic differences.263

Firstly, the success of adversarial attacks is mostly due to the behavior differences between DNNs264

and humans, while that of our UBW results from the data-driven training paradigm and excessive265

learning ability of DNNs. Secondly, the malicious perturbations are known (i.e., non-optimized) by266

UBW whereas adversarial attacks need to obtain them based on the optimization process. As such,267

adversarial attacks cannot to be real-time in many cases, since the optimization requires querying268

the DNNs multiple times under either white-box [30, 31, 32] or black-box [33, 34, 35] settings.269

Lastly, our UBW requires modifying the training samples without any additional requirements in the270

inference process, while adversarial attacks need to control the inference process to some extent.271

J.2 Connections and Differences with Data Poisoning272

Currently, there are two types of data poisoning, including classical data poisoning [36, 37, 38] and273

advanced data poisoning [39, 40, 41]. Specifically, the former type of data poisoning intends to274

reduce model generalization, so that the attacked DNNs behave well on training samples whereas275

having limited effectiveness in predicting testing samples. The latter one requires that the model has276

good benign accuracy while misclassifying some adversary-specified unmodified samples.277

Our UBW shares some similarities to data poisoning in the training process. Specifically, they all278

intend to embed distinctive prediction behaviors in the DNNs by poisoning some training samples.279

However, they also have many essential differences. The detailed differences are as follows:280

The Differences Compared with Classical Data Poisoning. Firstly, UBW has a different goal281

compared with classical data poisoning. Specifically, UBW preserves the accuracy in predicting282

benign testing samples whereas classical data poisoning is not. Secondly, UBW is also more stealthy283

compared with classical data poisoning, since dataset users can easily detect classical data poisoning284

by evaluating model performance on a local verification set. In contrast, this method has limited285

benefits in detecting UBW. Lastly, the effectiveness of classical data poisoning is mostly due to the286

sensitiveness of the training process, so that even a small domain shift of training samples may lead287

to significantly different decision surfaces of attacked models. It is different from that of our UBW.288
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The Differences Compared with Advanced Data Poisoning. Firstly, advanced data poisoning can289

only misclassify a few selected images whereas UBW can lead to the misjudgments of all images290

containing the trigger pattern. It is mostly due to their second difference that data poisoning does291

not require modifying the (benign) images before the inference process. Thirdly, the effectiveness292

of advanced data poisoning is mainly because DNNs are over-parameterized, so that the decision293

surface can have sophisticated structures near the adversary-specified samples for misclassification.294

It is also different from that of our UBW.295

J.3 Connections and Differences with Classical Untargeted Attacks296

Both our UBW and classical untargeted attacks (e.g., untargeted adversarial attacks) intend to make297

the model misclassify specific sample(s). However, different from existing classical untargeted attacks298

which simply maximize the loss between the predictions of those samples and their ground-truth299

labels, our UBW also requires optimizing the prediction dispersibility so that the adversaries cannot300

deterministically manipulate model predictions. Maximizing only the untargeted loss may not be able301

to disperse model predictions, since targeted attacks can also maximize that loss when the target label302

is different from the ground-truth one of the sample. Besides, introducing prediction dispersibility303

may also increase the difficulty of the untargeted attack since it may contradict the untargeted loss to304

some extent (as described in Section B).305

J.4 Connections and Differences with Model Ownership Verification306

Our UBW-based dataset ownership verification enjoys some similarities to model ownership verifi-307

cation [42, 43, 44] since they all conduct verification based on the distinctive behaviors of DNNs.308

However, they still have many fundamental differences, as follows:309

Firstly, dataset ownership verification has different threat models and requires different capacities.310

Specifically, model ownership verification is adopted to protect the copyrights of open-sourced or311

deployed models, while our method is for protecting dataset copyrights. Accordingly, our UBW-based312

method only needs to modify the dataset, whereas model ownership verification usually also requires313

controlling other training components (e.g., loss). In other words, our UBW-based method can also314

be exploited to protect model copyrights, whereas most of the existing methods for model ownership315

verification are not capable to protect (open-sourced) datasets.316

Secondly, to the best of our knowledge, almost all existing black-box model ownership verification317

was designed based on the targeted attacks (e.g., targeted poison-only backdoor attacks) and therefore318

introducing new security risks in DNNs. In contrast, our verification method is mostly harmless,319

since our UBW used for dataset watermarking is untargeted and with high prediction dispersibility.320

J.5 Connections and Differences with Radioactive Data321

We notice that radioactive data (RD) [45] (under the black-box setting) can also be exploited as322

dataset watermarking for ownership verification by analyzing the loss of watermarked and benign323

images. If the loss of watermarked images is significantly lower than that of their benign version,324

RD treats the suspicious model as trained on the protected dataset. Both RD and UBW-C require325

knowing the model structure in advance, although they all have transferability. However, they still326

have many fundamental differences, as follows:327

Firstly, our UBWs have a different verification mechanism compared to RD. Specifically, UBWs328

adopt the change of predicted probability on the ground-truth label, while RD exploits the loss change329

for verification. In practice, it is relatively difficult to select the confidence budget for RD since the330

loss values may change significantly across different datasets. In contrast, users can easily select the331

confidence budget (i.e., τ ) from [0, 1] since the predicted probability on the ground-truth label are332

relatively stable (e.g., nearly 1 for benign samples).333

Secondly, our UBWs require fewer defender capacities compared to RD. RD needs to have the334

prediction vectors or even the model source files for ownership verification, whereas UBWs only335

require the probability in the predicted label. Accordingly, our method can even be generalized to the336

scenario that users can only obtain the predicted labels (as suggested in [46]), based on examining337

whether poisoned images have different predictions compared to their benign version, whereas RD338

cannot. We will further discuss the label-only UBW verification in our future work.339
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Lastly, it seems that RD is far less effective on datasets with relatively low image resolution and fewer340

samples (e.g., CIFAR-10)4. In contrast, our methods have promising performance on them.341

K Discussions about Adopted Data342

In this paper, all adopted samples are from the open-sourced datasets (i.e., CIFAR-10 and ImageNet).343

The ImageNet dataset may contain a few personal contents, such as human faces. However, our344

research treats all objects the same and does not intentionally exploit or manipulate these contents.345

Accordingly, our work fulfills the requirements of those datasets and should not be regarded as a346

violation of personal privacy. Besides, our samples contain no offensive content, since we only add347

some invisible noises or non-semantic patches to a few benign images.348
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