
A Example and Analysis for Algorithm 1
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Figure 11: An interaction network of 5 individuals.

Example 2. Input: t = 3, interaction network in Figure 11.

Iteration 1: Units = [1, 5, 4, 2, 3]. B = {5, 2}.
Iteration 2: Units = [5, 1, 4, 3, 2]. B = {5, 3}.
Iteration 3: Units = [5, 2, 3, 1, 4]. B = {5, 2}.
The three choices of B all have the same size 2. So the output is any of the three choices of B.

Note that the subnetwork formed by 5 and 3 contains a bidirected path between Y3 and Y5 (due to the
path Y3 ← C4 → X4 → Y4 → Y5), and this does not constitute a bias structure.

Complexity Analysis The time complexity is O(tn2dp). d is the maximum degree of each node
(how many other nodes a node is directly connected to), and p is the length (number of edges) of the
longest simple path. This is polynomial if the degree is bounded.
Lemma 2. The following two statements are equivalent. The first statement is used in this algorithm
for simpler computation, and the second statement is used in the main text for easier understanding.

1. For each individual i in B, i has no deflecting bias structure in G∗ with another individual
j in B.

2. For each individual i in B, i has no deflecting bias structure in the latent projection of G∗

on B.

The definition of latent projection is by Pearl [2009], as follows.

Definition 9 (Projection[Pearl, 2009]). A latent structure L[O] =< D[O], O > is a projection of
another latent structure L if and only if:

1. every unobservable variable of D[O] is a parentless common cause of exactly two nonadja-
cent observable variables; and

2. for every stable distribution P generated by L, there exists a stable distribution P ′ generated
by L[O] such that I(P[O]) = I(P ′

[O]).

Proof of Lemma 2.

Proof. If statement 1 is false, then there exists an open path between Xi and Yj in G∗, where i, j ∈ B.
The latent projection contains both i and j so the open path still exists, which imply a deflecting bias
structure in the latent projection.

If statement 2 is false, then there exists an open path between Xi and Yj in the latent projection. This
implies a deflecting bias structure in G∗.

B An Additional Simulation

Experiment: Subset Size of THM-2 We use same parameter settings as the previous experiment,
except that we let dRate and rRate vary in 0.01, 0.1, 0.3, 0.5. The subset sizes selected by THM-2
are in Table 1. Observe that as the graph gets denser (larger dRate and rRate), THM-2 is unable to
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use most of the input samples. However, for the tests with samples ≥ 3, THM-2 yields very accurate
estimates. Given that the ground truth is 100, the estimates of THM-2 range between 99.96 and
100.06.

dRate
0.01 0.1 0.3 0.5

rRate

0.01 155 147 131 115
0.1 26 24 23 23
0.3 9 8 8 8
0.5 5 4 3 0

Table 1: Each cell denotes the subset size selected using THM-2.

C Proof of the Theorems

All lemmas and proofs are attached in Section D of the appendix.

Theorem 1. Let M∗(G∗, S∗) be a balanced interaction model in which treatment variable Xi and
outcome variable Yi are not confounded by any variable in Vi, ∀i. Let D be the available data
generated by M∗ and let G† be the approximate graph constructed using D. Let TACEXY be
identifiable in G† and be given by βY X , the regression coefficient of Y on X . Let α denote the true
value of TACEX,Y in M∗. If X satisfies ASDC then the interaction bias is given by,∣∣∣E[ ˆβY X ]− α

∣∣∣ = ∣∣∣ 1n ∑
1≤i≤n

∑
p∈P [iji]

V al(p)
σ2
Rp

σ2
X
− 1

n(n−1)

∑
1≤i≤n

∑
p∈P [ji]

V al(p)
σ2
Rp

σ2
X

∣∣∣,
where P [iji] is the set of reflecting bias structures between Xi and Yi through any explicit variable
Wj of unit j with i ̸= j, P [ji] is the set of deflecting bias structures between Xj and Yi with i ̸= j,
and Rp is the root of path p.

Proof. By Lemma 9,

E[ ˆβY X ]

=α

+
1

n
(
∑
p∈P

V al(p) +
∑

1≤i≤n

∑
R∈(R[iji]\{Xi})

cRβRX)

− 1

n(n− 1)

∑
1≤i≤n

∑
R∈R[ji]

cRβRX ,

where P is the set of directed paths from Xi to Yi for any i passing through an intermediate node
Wj ∈ V(j), i ̸= j,R[iji] is the set of roots of the open paths between Xi and Yi through some Wj

with j ̸= i,R[ji] is the set of roots of the open paths between Xj and Yi for j ̸= i, and cR is the sum
of values of the directed paths from a variable R (∈ (R[iji] \ {Xi}) or ∈ R[ji]) to Yi not passing
through any variable inR[iji] ∪R[ji] for any j ̸= i.

We prove this is equivalent to

E[ ˆβY X ]

=α

+
1

n

∑
1≤i≤n

∑
p∈P [iji]

V al(p)
σ2
Rp

σ2
X

− 1

n(n− 1)

∑
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∑
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V al(p)
σ2
Rp

σ2
X

,
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where P [iji] is the set of open paths between Xi and Yi through any Wj ∈ V(j) with i ̸= j, P [ji] is
the set of open paths between Xj and Yi through any Wj ∈ V(j) with i ̸= j, and Rp is the root of
path p.

We first check the term
∑

R∈R[ji] cRβRX . For an R that is the root of a path between Xj and Yi,
since X satisfies ASDC, we must have R ∈ V(j). Rename it as Rj . We also have βRX = σRX/σ2

X .
By Wright’s Rules, σRX is equal to the sum of open path values between R and X times the variance
of the root of that path. Recall that R ∈ Anc(X), X satisfies ASDC, so R satisfies ASDC. So σRX is
equal to the sum of open path values between Rj and Xj times the variance of the root of that path. We

prove that each term that appears in A =
∑

p∈P [ji]

V al(p)
σ2
Rp

σ2
X

also appears in B =
∑

R∈R[ji] cRβRX ,

and there is no extra term.

Each Rp in A is a root between Xj and Yi for some j ̸= i, and must be included if it is a root. So
we just have to check all the roots between Xj and Yi for some j ̸= i. For each root Rp, we check
where in B will σ2

Rp
/σ2

X exist. When R in B is Rp, the term containing σ2
Rp

/σ2
X in βRX is the sum

of paths from Rp to Xj where Rp is the root, so is the sum of directed paths from Rp to Xj . So the
term containing σ2

Rp
/σ2

X in cRβRX is the sum of paths between Yi and Xj through Rp with 1) Rp

being the root and 2) the sub-path from Rp to Yi does not go through any variable inR[iki] ∪R[ki]
for any k ̸= i.

The terms that are left in V al(p)
σ2
Rp

σ2
X

to cover in B are the Xj −Rp − Yi paths whose sub-path from
Rp to Yi go through some variable inR[iki] ∪R[ki] for any k ̸= i. We just have to go over all types
of R in B, and see which ones contain σ2

Rp
/σ2

X .

Case 1: R ∈ Anc(Rp). There is no such a path in cR or βRX . cR does not go through R since
R ∈ R[ji]cRβRX . βRX also does not contain σ2

Rp
since R ∈ Anc(Rp), so Rp is never a root on any

paths between R and Xj . Hence cRβRX does not contain such a path.

Case 2: R ∈ Desc(Rp). Again, cR does not contain Rp. However βRX contains σ2
Rp

. Rp can be a
root on some paths between R and Xj . Those paths are from Rp to R and Rp to Xj . Recall that cR
denotes directed paths from R to Yi. The term that contains σ2

Rp
in cRβRX are the paths between Xj

and Yi, that pass through some variable inR[iki] ∪R[ki] (R), with Rp being the root. As a result,
this case completely cover the missing term.

Case 3: R⊥⊥Rp. It is easy to derive that in this case, cRβRX does not contain a path that goes
through Rp. Otherwise R and Rp would be dependent.

Case 4: R and Rp are only connected through common ancestors. In this case, in any path that
contains both R and Rp, Rp will not be the root. Their common ancestors will be the roots. So this
case also does not provide any term containing σ2

Rp
/σ2

X .

We have proved that for every Rp in A, the coefficient of σ2
Rp

/σ2
X (equal to a sum of those paths in

P [ji] with Rp being the root) is equal to the the coefficient of σ2
Rp

/σ2
X in B. As stated before, A and

B have the same set of roots, so they have the same σ2
Rp

/σ2
X terms. So the sum of those terms are

equal.

Next, we prove the reflecting bias terms are also equal. Observe that
⋃

1≤i≤n P [iji] = P ,
so we just have to prove that

∑
p∈P [iji] V al(p) +

∑
R∈(R[iji]\{Xi}) cRβRX is equivalent to∑

p∈P [iji] V al(p)
σ2
Rp

σ2
X

. This can be proven using the exact same reasoning above, so we omit
the proof.

Thus, the two expressions for E[ ˆβY X ] are equivalent.

Corollary 1. Let M∗∗(G∗∗, S) be a balanced interaction model in which X satisfies ASDC and
TACE is identified as βY X = α in the approximate graph, then interaction bias exists iff G∗∗ contains
a reflecting or deflecting bias structure.
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Proof. (if part) Follows from theorem 1.There are two terms that cause bias in theorem 1 and they
can be attributed to the two bias structures.
(only if part) Had there been additional structures that caused bias, then theorem 1 would have had
additional terms to account for it. Since theorem 1 has only two bias terms fully accounted for by the
two structures, there exist no other structure that creates bias.

Theorem 2. Let G∗ be an interaction network. Given the conditions in Theorem 1 and ‘B’ a
bias-free subset for G∗, TACEXY = E[ ˆβY X ] where the regression coefficient is calculated using
only samples in set B.

Proof. We check the interaction network G∗
S formed by B, by treating any variable from V(j) where

j /∈ S as unobserved. Next, we calculate E[ ˆβY X ] for G∗
S .

By Theorem 1,

E[ ˆβY X ] = α+
1

n
Term2 −

1

n(n− 1)
Term3.

The second term is obtained by summing over paths of the form: Xi − · · · −Wj − · · · − Yi, and the
third term is obtained by summing over paths of the form: Xi − · · · − Yj . These paths do not exist in
G∗

S . Hence, the two bias terms are 0, and E[ ˆβY X ] = α.

D Lemmas

Lemma 1. If W satisfies ASDC, then any two explicit variables Wi and Wj are IID (Independent
and Identically Distributed.)

Proof. If W satisfies ASDC, and Wi is the root for some i, then from the third property of ASDC,
Wi must be the root for all i. The roots are only caused by their error terms, the error terms are IID
(identically distributed and independent), so W is IID.

If Wi is not the root for any i, W satisfies ASDC, and all its parents are IID, then we have for any i

Wi =
∑

Vi∈Pa(W )

cViVi + UWi ,

where cVi
is the coefficient of the variable Vi on the edge Vi →Wi. Each term is IID for any i ̸= j.

So Wi and Wj are IID.

If Wi is not the root for any i, W satisfies ASDC, and there exists a parent of W , V such that Vi and
Vj are not IID. Then from our previous derivation, there exists a parent of V , V ′, such that V ′

i and V ′
j

are not IID. Keep tracing up until a root variable R, such that Ri and Rj are not IID. However, this
violates our derivation in the beginning, that if a variable is the root and satisfies ASDC, it must be
IID. We reach a contradiction. Hence, if Wi is not the root for any i, W satisfies ASDC, then all its
parents are IID, and W is thus IID.

Lemma 3. Let X = {X1, . . . , Xn} be n IID random variables where the σ2
X > 0, and a random

variable Wi. Among X , Wi is dependent of Xi only, and Wi = aXi + b where a and b are constants.
Then the following expectation exists.

E

 (Xi − X̄)Wi∑
1≤i≤n

(Xi − X̄)2

 .

Proof. We have to prove that the function f(X1, . . . , Xn,Wi) inside of the expectation is bounded.
For convenience, rewrite it by plugging in Wi = aXi + b.

E

 (Xi − X̄)(aXi + b)∑
1≤i≤n

(Xi − X̄)2

 .
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For any Xj with j ̸= i, the denominator is a quadratic function on Xj , and the numerator is a linear
function of Xj from the term X̄ . For Xi, the denominator is a quadratic function on Xi, and the
numerator is a quadratic function on Xi. Since σ2

X ̸= 0, X1, . . . , Xn cannot take on the same value,
so the denominator is always positive. When considering Xi as the variable, f might only go to
infinity when Xi goes to infinity or negative infinity, and same with Xj .

When considering Xi as the variable, and Xj for all other j as constants, the denominator can be
written in the form of AX2

i + BXi + C, with A,B,C being constants. Hence, the order (of the
polynomial) of the denominator is 2, and the order of the numerator is 2. So the limit of f when Xi

goes to∞ or −∞ is a finite value equal to the ratio of the coefficient of X2
i in the numerator divided

by the coefficient of X2
i in the denominator.

When considering Xj as the variable, the order of the denominator is 2, and the order of the numerator
is 1. So the limit of f when Xi goes to∞ or −∞ is 0. Hence, f is bounded.

Lemma 4. Given a balanced interaction model M∗∗(G∗∗, S∗∗), if generic variables V and X both
satisfy ASDC, and dSep(Vi, Xi|∅) for all i in G∗∗, then

E


∑

1≤i≤n

(Xi − X̄)Vi∑
1≤i≤n

(Xi − X̄)2

 = 0.

Proof. The d-separation condition implies Xi⊥⊥Vi. V and X are IID implies that we can treat all
Xi’s as the same variable X , and treat all Vi’s as the same variable V . Hence, X⊥⊥V and σXV = 0,
which gives βV X = σXV σ

2
X = 0. Also note that

ˆβV X =

∑
1≤i≤n

(Xi − X̄)Vi∑
1≤i≤n

(Xi − X̄)2
.

Since the ordinary least squares estimator is unbiased, we have E[ ˆβV X ] = βV X = 0.

Lemma 5. Given a balanced interaction model, with the following conditions: 1) Xi and Yi are not
confounded by a path containing only variables in Vi, ∀i, and 2) Xi satisfies ASDC. Then there exists
a set S consisting of the following three subsets of explicit variables:

1. S1: Xi,

2. S2: the root variables (excluding Xi) of each open path between Xj and Yi (j can be the
same as i),

3. S3: the root variables of this interaction network that are in Anc(Yi) and d-separated (by
an empty set) from Xj for all j,

such that Yi can be expressed as a linear function of the variables in S i.e.,

Yi =
∑

Wt∈S
cWtWt,

where cWt is equal to the sum of the values of the directed paths from Wt to Yi that do not go through
any variable in S.

Proof. Consider the following protocol.

• Start from the initial structural equation of Yi, Yi = f(Pa(Yi)), denoted SE(Yi).

• For each variable Aq in the r.h.s. of SE(Yi),

– if Aq ∈ S, keep it.
– if Aq /∈ S and not a root of the network, replace it with its structural equation,

Aq = g(Pa(Aq)) and plug it into SE(Yi).
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– if Aq /∈ S and is a root of the network, keep it.

• Keep replacing until no more replacement can be done in the r.h.s. of SE(Yi).

• Denote the final SE(Yi) as SEf (Yi).

We prove SEf (Yi) is

Yi =
∑

Wt∈S
cWt

Wt,

where cWt
is equal to the sum of the product of path coefficients of the directed paths from Wt to Yi

that do not go through any variable in S.

First, we prove that the r.h.s. of SEf (Yi) contains only variables in S. If it contains a variable,
Ar /∈ S, then Ar must be a root variable of the network. Otherwise it would have been replaced by
its parents according to the protocol. Ar /∈ S , so Ar /∈ S3, hence Ar must be d-connected (given an
empty set) to at least one Xj for some j. Since Ar is a root of the network, Ar must be the ancestor
of Xj . We next discuss if it is Xj for j = i or j ̸= i.

• j = i, i.e., Ar is an ancestor of Xi. Since X is ASDC, Xi cannot be caused by a variable
belonging to another unit. Hence, we have r = i. If all directed paths from Ar to Yi pass
through variables in S , then Ar cannot be replaced into the r.h.s. of SEf (Yi). Hence, there
exists at least one directed path from Ar to Yi that does not pass through any variable in S ,
which we denote as pd. Since Ar is an ancestor of Xi and Ar to Yi is a directed path not
through S(including Xi), there exists a confounding path between Xi and Yi through Ar.
Since Xi and Yi are not confounded by only variables of i, pd must go through a variable
of a different unit, and is the root of that confounding path. However, then Ar ∈ S2 by
definition, which contradicts the assumption that Ar /∈ S.

• j ̸= i, i.e., Ar is an ancestor of Xj for some j ̸= i. Again, there exists at least one directed
path from Ar to Yi that does not pass through any variable in S, which we denote as
pd. Since Ar is ancestor to both Xj and Yi, there is a confounding path between Xj and
Yi through Ar. Ar is the root on this path, which implies Ar ∈ S3, and contradicts the
assumption that Ar /∈ S.

Thus, our counterproof assumption is wrong, which means the r.h.s. of SEf (Yi) generated by the
above protocol contains only variables in S . Next we prove that the coefficients CWt for each WtS in
the linear combination is equal to the sum of the values of the directed paths from Wt to Yi that do not
go through any variable in S. In the protocol above, every time a variable is replaced by its parents,
there is a multiplier equal to the directed edge between each parent and the variable. For example,
in SEYi

, a term is γCi. If Ci is replaced by its parents, Dj and Ek, where Ci = δDj + θEk, then
the term in SEYi

becomes γ(δDj + θEk). So the coefficient of Dj is Ci’s coefficient γ multiplied
by δ, the edge Dj → Ci. Since replacements of a variable stops if it is in S, we have that the final
coefficient of a variable is equal to the sum of all directed paths from that variable to Yi, which do not
pass through any other variable in S.

Lemma 6. Given n IID random variables X1, . . . , Xn, and n IID random variables R1, . . . , Rn.
For each i, Ri is not independent of Xi only. Then we have

E

 (Xi − X̄)Ri∑
1≤k≤n

(Xk − X̄)2

 =
βRX

n
,

and βRX is the OLS regression coefficient of R on X , treating X1, . . . , Xn as a single variable X ,
and R1, . . . , Rn as a single variable R.
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Proof. The above expression only depends on i, and from the property of IID, it is the same for any i.
We sum over i for that expression, and get

nE

 (Xi − X̄)Ri∑
1≤k≤n

(Xk − X̄)2


=

∑
1≤i≤n

E

 (Xi − X̄)Ri∑
1≤k≤n

(Xk − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)Ri∑
1≤k≤n

(Xk − X̄)2


=E

[
ˆβRX

]
=βRX .

Divided by n on both sides, we have the equation in the lemma.

Lemma 7. Given n IID random variables X1, . . . , Xn, and n IID random variables R1, . . . , Rn.
For each i, Ri is not independent of Xi only. Then we have

E

 (Xi − X̄)Rj∑
1≤k≤n

(Xk − X̄)2

 = − βRX

n(n− 1)
,

for i ̸= j, and βRX is the OLS regression coefficient of R on X , treating X1, . . . , Xn as a single
variable X , and R1, . . . , Rn as a single variable R.

Proof. Denote the expectation of interest as Eij . X and R are both IID regarding different units, and
Xi and Rj are independent for i ̸= j. Thus, Eij = Ei′j , for any i′ ̸= j. Below when the sum is over
i ̸= j, it means summing over i ∈ {1, . . . , n} \ {j}. We have

(n− 1)Eij =
∑
i ̸=j

Eij

=E


∑
i ̸=j

(Xi − X̄)Rj∑
1≤k≤n

(Xk − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)Rj − (Xj − X̄)Rj∑
1≤k≤n

(Xk − X̄)2


=E

 (
∑

1≤i≤n

(Xi − X̄)− (Xj − X̄))Rj∑
1≤k≤n

(Xk − X̄)2


=E

 (0− (Xj − X̄))Rj∑
1≤k≤n

(Xk − X̄)2


=− E

 (Xj − X̄)Rj∑
1≤k≤n

(Xk − X̄)2

 .
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By Lemma 6, we have

(n− 1)Eij = −
βRX

n
.

Divided by (n− 1) on both sides, we get the equation we wanted to prove.

Lemma 8. Given n IID random variables X1, . . . , Xn, and a variable Lt independent of X1, . . . , Xn.
Then we have

E

 (Xi − X̄)Lt∑
1≤k≤n

(Xk − X̄)2

 = 0.

Proof. Denote the expectation of interest as Ei, then Ei = Ej for any i, j, since Xi and Xj are IID.
So we have

nEi =
∑

1≤i≤n

Ei

=E


∑

1≤i≤n

(Xi − X̄)Lt∑
1≤k≤n

(Xk − X̄)2


=0.

To prove Theorem 1, we first prove a slightly different version of it, Lemma 9.

Lemma 9. Given the interaction network G∗ of a balanced linear interaction model, with Xi and Yi

not confounded by any variable in Vi, ∀i. Given that X satisfies ASDC, then the expected value of
the OLS estimator ˆβY X is given by

E[ ˆβY X ]

=α

+
1

n
(
∑
p∈P

V al(p) +
∑

1≤i≤n

∑
R∈(R[iji]\{Xi})

cRβRX)

− 1

n(n− 1)

∑
1≤i≤n

∑
R∈R[ji]

cRβRX ,

where P is the set of directed paths from Xi to Yi for all i through any Wj ∈ V(j) with i ̸= j,R[iji]
is the set of roots of the open paths between Xi and Yi through some Wj with j ̸= i,R[ji] is the set
of roots of the open paths between Xj and Yi for j ̸= i, and cR is the sum of values of the directed
paths from a variable R (∈ (R[iji] \ {Xi}) or ∈ R[ji]) to Yi not passing through any variable in
R[iji] ∪R[ji] for any j ̸= i.
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Proof.

E[ ˆβY X ] =E


∑

1≤i≤n

(Xi − X̄)(Yi − Ȳ )∑
1≤i≤n

(Xi − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)Yi∑
1≤i≤n

(Xi − X̄)2

− E


∑

1≤i≤n

(Xi − X̄)Ȳ∑
1≤i≤n

(Xi − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)Yi∑
1≤i≤n

(Xi − X̄)2

− E

 (
∑

1≤i≤n

Xi − nX̄)Ȳ∑
1≤i≤n

(Xi − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)Yi∑
1≤i≤n

(Xi − X̄)2

− E

 (nX̄ − nX̄)Ȳ∑
1≤i≤n

(Xi − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)Yi∑
1≤i≤n

(Xi − X̄)2


Yi is can be written as a linear combination of the set in Lemma 5, S . By Lemma 5, S is composed of

1. Xi,

2. the root variables (excluding Xi) of each open path between Xj and Yi, and

3. the root variables of this interaction network that are in Anc(Yi) and d-separated (by an
empty set) from Xj for all j, denoted by Li.

The second component can be further divided into two sub-components as follows.

1. R[iji] \ {Xi}, the set of roots of the open paths between Xi and Yi through some Wj with
j ̸= i, with Xi excluded, and

2. R[ji], the set of roots of the open paths between Xj and Yi for i ̸= j.

We have

Yi = ciXi +
∑

R∈(R[iji]\{Xi})

cRR+
∑

R∈R[ji]

cRR+
∑
L∈Li

cLL,

where ci, cR, and cL denote coefficients for the linear combination. The variables in the above
expression are S, i.e., S = R[iji] ∪R[ji] ∪ Li. Next, we compute the coefficients ci, cR, cL.

ci is the sum of the directed path values from Xi to Yi not passing through any variable in S. There
are three types of directed paths from Xi to Yi:

1. the directed edge Xi → Yi,

2. directed paths Xi → · · · → Vi → · · · → Yi, and

3. directed paths Xi → · · · → Vj → · · · → Yi for j ̸= i.

The first two types belong to TACE by definition. So ci = α + ci3, where ci3 is the coefficient
contributed by the third type of directed paths. Note that Vj cannot be a root of another path between
Xk and Yl for some k ̸= l. This is because Vj is caused by Xi, so V cannot be ASDC, so X cannot
be ASDC since Xk is caused by Vj , which violates the assumption that X is ASDC. Hence, ci3 is
equal to the sum of all directed paths from Xi to Yi through some variable Vj for any j, which is
equal to

∑
p∈P in the lemma statement.
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For the second and third components in Yi, each cR is the sum of the directed paths (multiplications
of edge coefficients) from R to Yi not through variables in S. This follows from Lemma 5.

We have

E[ ˆβY X ]

=E


∑

1≤i≤n

(Xi − X̄)Yi∑
1≤i≤n

(Xi − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)(ciXi +
∑

R∈(R[iji]\{Xi}) cRR+
∑

R∈R[ji] cRR+
∑

L∈Li
cLL)∑

1≤i≤n

(Xi − X̄)2


=αE


∑

1≤i≤n

(Xi − X̄)Xi∑
1≤i≤n

(Xi − X̄)2

+ E


∑

1≤i≤n

(Xi − X̄)ci3Xi∑
1≤i≤n

(Xi − X̄)2


+

∑
1≤i≤n

∑
R∈(R[iji]\{Xi})

cRE

 (Xi − X̄)R∑
1≤i≤n

(Xi − X̄)2


+

∑
1≤i≤n

∑
R∈R[ji]

cRE

 (Xi − X̄)R∑
1≤i≤n

(Xi − X̄)2

+
∑

1≤i≤n

∑
L∈Li

cLE

 (Xi − X̄)L∑
1≤i≤n

(Xi − X̄)2

 .

For the first term: similar to the way Ȳ is removed before, in the first term, we can change Xi to
Xi − X̄ . The numerator and the denominator are the same in the expectation. So the first term is α.

The second term is equal to

∑
1≤i≤n

ci3E

 (Xi − X̄)Xi∑
1≤i≤n

(Xi − X̄)2

 .

By Lemma 6, it becomes ∑
1≤i≤n

ci3
βXX

n
,

where ci3 is the sum of directed paths from Xi to Yi through Vj for any j ̸= i and any V .

For the third term: we look at one single R first. R is the root variable of an open path between Xi

and Yi through some Wj with j ̸= i, so R causes Xi. Then R must belong to unit i since X satisfies
ASDC. Since R is the root, R ∈ Anc(X), so R satisfies ASDC, and is IID for different units. So we
relabel this R as Ri, and we have IID R1, . . . , Rn. Applying Lemma 6, we have the expectation term
is equal to βRX/n. cR is the sum of the directed paths from Ri to Yi, not through variables in S . So
the third term is equal to

1

n

∑
1≤i≤n

∑
R∈(R[iji]\{Xi})

cRβRX .

For the fourth term: we look at one single R first. R is the root variable of an open path between Xj

and Yi, for some j ̸= i, so either R causes Xj or R = Xj . If R causes Xj , then R must belong to unit
j, because X satisfies ASDC. So either case R belongs to unit j. Since R is the root, R ∈ Anc(X),
so R satisfies ASDC, and is IID for different units. So we relabel this R as Rj , and we have IID
R1, . . . , Rn. Applying Lemma 7, we have the expectation term is equal to −βRX/(n(n− 1)). cR is
the sum of the directed paths from Rj to Yi, not through variables in S . So the fourth term is equal to

− 1

n(n− 1)

∑
1≤i≤n

∑
R∈R[ji]

cRβRX .
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The fifth term is 0 by Lemma 4.

Finally, recall that V al(p) denotes the value of an open path p. Plugging the above values back into
the expression for E[ ˆβY X ], we have the results as in Lemma 9.
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