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Abstract

Cryo-electron microscopy (cryo-EM) is an imaging modality that provides unique
insights into the dynamics of proteins and other building blocks of life. The algo-
rithmic challenge of jointly estimating the poses, 3D structure, and conformational
heterogeneity of a biomolecule from millions of noisy and randomly oriented 2D
projections in a computationally efficient manner, however, remains unsolved. Our
method, cryoFIRE, performs ab initio heterogeneous reconstruction with unknown
poses in an amortized framework, thereby avoiding the computationally expensive
step of pose search while enabling the analysis of conformational heterogeneity.
Poses and conformation are jointly estimated by an encoder while a physics-based
decoder aggregates the images into an implicit neural representation of the con-
formational space. We show that our method can provide one order of magnitude
speedup on datasets containing millions of images without any loss of accuracy.
We validate that the joint estimation of poses and conformations can be amortized
over the size of the dataset. For the first time, we prove that an amortized method
can extract interpretable dynamic information from experimental datasets.

1 Introduction

Proteins and other biological macromolecules in the cell function through a finely-tuned choreography
of transitions between metastable conformational states. Analyzing the structural heterogeneity of
a biomolecule is therefore critical for applications such as drug design and, more generally, for
understanding these essential building blocks of life.

In a single particle cryo-electron microscopy (cryo-EM) experiment, an aqueous solution of pu-
rified biomolecules is flash-frozen in a thin layer of vitreous ice and imaged with a transmission
electron microscope (Fig. 1 (a)). A cryo-EM experiment outputs a large set of unlabeled images,
each containing a 2D projection of a unique molecule, whose 3D structure is sampled from some
thermodynamic distribution (i.e. a conformation) and viewed from an unknown orientation (i.e. a
pose) ϕi = (Ri, ti) ∈ SO(3)× R2 (Fig. 1 (b)). While homogeneous reconstruction methods focus
on estimating the average 3D electron scattering potential of the studied molecule (the consensus
volume), heterogeneous methods take into account structural variability and introduce a variable zi
for the conformational state that characterizes the electron scattering potential V(., zi) : R3 → R
associated with observation i [5]. Given the image formation model (detailed in Section 3.1), hetero-
geneous reconstruction can be seen as an inverse problem where V , zi and ϕi must be inferred from
the observed images Yi. A graphical formulation of the problem is given in Fig. 1 (c).
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Figure 1: (a) Illustration of a cryo-EM experiment. Molecules are frozen in a random orientation
ϕi and in a random conformation zi. Their electron scattering potential V(., zi) interacts with an
electron beam resulting in noisy projected images Yi on the detector. (b) (Top) Example scattering
potentials visualized as an isosurface. (Bottom) Poses are characterized by a rotation in SO(3) and a
translation in R2 (not shown). (c) Graphical model for our method. The encoder, parameterized by ψ,
is a discriminative model that predicts ϕi and zi from Yi while the decoder is a generative model that
outputs a noise-free estimation of the image.

Driven by recent advances in data collection capabilities, the number of images collected per cryo-
EM experiment has been steadily increasing, now reaching millions to tens of millions [1, 19].
Established methods for heterogeneity analysis break down 3D reconstruction into two alternating
iterative refinement steps: 1) the latent pose ϕi and conformational states zi are first estimated
from the images and the current estimate of V , and 2) the estimation of V is then updated using the
current estimates of the latent variables. The primary computational bottleneck of this approach
is pose estimation, which is done by rendering images from view points distributed on the the
5-dimensional space SO(3)×R2. Although previous methods came up with accelerated branch-and-
bound strategies [14, 24, 38], state-of-the-art methods for pose search raise two problems: (1) solving
this problem for a single image is time consuming, especially when the images are rendered using a
neural model [39] and (2) the pose needs to be solved independently for each image in the dataset and
does not use the fact that similar images are likely associated with the similar variables. Furthermore,
most heterogeneous reconstruction algorithms limit their applicability by relying on an upstream
homogeneous reconstruction, treating poses as known to simplify the optimization problem for zi or
due to the sheer computational cost of pose search.

In this work, we focus on ab initio heterogeneous reconstruction, meaning that reconstruction occurs
de novo without any upstream estimation of the latent pose or conformation variables. We present
a method that amortizes (over the size of the dataset) the cost of inference by learning a function
that directly maps observed images to estimates of the latent variables. Our method, cryoFIRE (Fast
heterogeneous ab Initio Reconstruction for cryo-EM), leverages an amortized approach to address the
increasing size of datasets, while tackling the opportunity to learn complex conformational spaces of
dynamic proteins. Our contributions include:

• An autoencoder-based architecture with a tailored loss function that processes images 10
times faster than existing methods and enables amortization of the runtime over the size of
the dataset,

• A demonstration that our model accurately learns the structure of a low-dimensional mani-
fold in the conformational space on benchmark synthetic datasets with both discrete and
continuous heterogeneity, and

• To our knowledge, the first instance of amortized inference for ab initio heterogeneous
reconstruction of experimental cryo-EM datasets.

2 Related Work

Heterogeneous reconstruction methods in cryo-EM can be differentiated according to the way the
latent pose ϕi and conformation state zi are estimated [5]. The vast majority of approaches assume
that ϕi are previously estimated. We describe related work in terms of how ϕi is estimated, how zi is
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estimated (without pose inference), and progress towards joint amortization of all latent, unknown
variables in cryo-EM.

Expectation-Maximization over Conformations With an Expectation-Maximization (EM) algo-
rithm, posterior distributions over the conformational states are computed (or approximated) for each
image at expectation step. In cryo-EM, this method was first popularized by RELION with 3D Classi-
fication [29] which implemented a discrete class indicator zi ∈ {1, . . . ,K}, where K is the number
of classes defined by the user. More recently, a continuous reconstruction method called multi-body
refinement was made available in RELION [18]. In this approach, a homogeneous reconstruction is
segmented by the user into a set of rigid bodies, where each rigid body is free to move relative to
the others. The relative pose (orientation and translation) of each body is subsequently estimated
through EM for each particle, and further reduced through Principal Component Analysis (PCA).
Various methods have been developed to estimate the conformational space as a linear deformation
around a known reference. HEMNMA [9] uses the normal modes, or eigenvolumes, of the reference
to model its deformation and proceeds through a projection-matching-based elastic alignment of each
single-particle image with the reference structure to yield a reduced representation of the variability
in the dataset. 3DVA [23] relaxes the dependence on known normal modes and instead implements a
variant of the EM algorithm for Probabilistic PCA which iteratively updates the eigenvolumes and
the projection of the particles on them, until convergence, following [32]. Other approaches explicitly
estimate the deformation field mapping the reference structure to the best-fit structure for each image.
In Herreros et al. [8], the deformation field is defined as a linear expansion over Zernike polynomials,
with zi as their coefficients. In 3DFlex [22], the deformation field is generated from zi through a
neural flow generator, alleviating the linear constraint. Formally, each zi can be seen as a point
estimate that maximizes the posterior distribution over conformational states. An in-depth review of
EM-based reconstruction method can be found in [31]. Other computational approaches like Markov
Chain Monte Carlo have been explored for ab initio heterogeneous reconstruction in [15], introducing
a mathematical framework for representing deformable molecules (“hyper-molecules”), but remain a
prototype implementation.

Amortization over Conformations Instead of optimizing each variable independently, amortized
inference learns a function qψ, parameterized by ψ, that maps images Yi to probability (posterior)
distributions over the space of latent variables [11]. If N represents the size of the dataset, amortized
inference therefore replaces the estimation of N latent variables with the learning of ψ, which
complexity (number of dimensions) does not scale with N . Previous methods explored the possibility
of using amortized inference to estimate the conformational state zi, in a setting where the poses
were known. CryoDRGN [37] introduced amortized variational inference to estimate the confor-
mational state zi in the setting where poses are known. In cryoDRGN [37], distributions over the
conformational states are predicted by the encoder of a Variational Autoencoder (VAE) [11, 12]
and the conformational space is parameterized with an implicit neural representation. E2GMM [4]
and cryoFold [40] both reconstruct a deformable atomic representation of the molecule and train an
encoder to associate each image with a low-dimensional zi that characterizes the deformation. These
two methods require the initialization of the backbone structure of the molecule. Although these
methods can be used to analyze the structural heterogeneity in a dataset, they assume the poses to be
given by another reconstruction method. In cryoDRGN-BNB [38] and cryoDRGN2 [39] the poses
are not given anymore but instead are estimated using an exhaustive search strategy. The estimation of
the poses therefore does not amortize over the size of the dataset and, in spite of a branch-and-bound
approach [14], the 5D pose search remains the most computationally expensive step in the pipeline.

Amortization over Poses In the context of homogeneous reconstruction, previous methods used
amortized inference to predict the latent variables. In cryoVAEGAN [17], Miolane et al. showed that
the in-plane rotation and the contrast transfer function (CTF) parameters could be jointly estimated
in the latent space of an encoder. CryoGAN [6] showed that homogeneous reconstruction could
be achieved with a generative framework using a discriminative loss to avoid explicitly recovering
the poses, considered as “nuisance” variables. SpatialVAE [2] showed that the translations and the
in-plane rotations in 2D images could be estimated with a VAE-based architecture, and was later
generalized to other transformations in [34]. CryoPoseNet [20] first demonstrated the possibility of
using an autoencoder architecture with synthetic datasets. CryoAI [16] later introduced the symmetric
loss to help the model avoid local minima and showed that homogeneous reconstruction could be
done on experimental datasets. All of these methods, however, reconstruct a 3D consensus volume
and do not address the question of conformational heterogeneity.
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Joint Amortization Rosenbaum et al. [26] demonstrated heterogeneous reconstruction from unknown
poses in a jointly amortized framework on simulated data and with strong priors on the structure
given by an initial atomic model. To the best of our knowledge, no amortized inference technique has
been shown in a more general setting on experimental datasets with unknown poses. Here, cryoFIRE
uses a implicit neural representation for the conformational space that can reconstruct experimental
datasets with accuracy comparable to the state of the art at a fraction of the compute time.

3 Methods

3.1 Image Formation Model

In single particle cryo-EM, probing electrons interact with the electrostatic potential created by the
molecules embedded in a thin layer of vitreous ice (Figure 1 (a)). During reconstruction, we assume
that this potential can be broken down into spatially bounded independent potentials (volumes) created
by individual molecules. Each volume Vi can be seen as a mapping from R3 to R and is indexed
by i ∈ {1, . . . , N}. We assume that the volumes {Vi}i=1,...,N are drawn independently from a
probability distribution PV supported on a low-dimensional manifold (the conformational space)
in the space F(R3,R) of all possible 3D potentials (F(A,B) is the set of functions from A to B).
More specifically, we assume there exist d ∈ N and V : R3 × Rd → R such that PV is supported on
the conformational space {V(., z), z ∈ Rd}.

In the sample, each molecule is in an unknown orientation Ri ∈ SO(3) ⊂ R3×3 in the frame of the
observer. The probing electron beam interacts with the electrostatic potential and its projections,

Qi : (x, y) 7→
∫
t

V
(
Ri · [x, y, t]T , zi

)
dt (1)

are considered mappings from R2 to R. The interaction between the beam and the lens is modeled by
the Point Spread Function (PSF) Pi. Imperfect centering of the molecule in the image is characterized
by small translations ti ∈ R2. Finally, taking into account signal arising from the vitreous ice into
which the molecules are embedded as well as the non-idealities of the lens and the detector, each
image Yi is generally modeled as

Yi = Tti ∗ Pi ∗Qi + ηi (2)

where ∗ is the convolution operator, Tt the t-translation kernel and ηi white Gaussian noise on
R2 [35, 28].

The Fourier-Slice Theorem [3] (FST) avoids the computation of integrals and convolutions in Eq. (2)
and is also satisfied with the Hartley transform:

H2D [Qi] = Si [H3D [V(., zi)]] , (3)

where H2D and H3D are the 2D and 3D Hartley transform operators [7] (real minus imaginary parts
of the Fourier transform). The “slice” operator Si is defined such that for any V̂ : R3 → R,

Si[V̂ ] : (kx, ky) 7→ V̂
(
Ri · [kx, ky, 0]T

)
. (4)

Finally, if Ŷi = H2D[Yi] and V̂(., zi) = H3D [V(., zi)], the image formation model in Hartley space
can be expressed as

Ŷi = T̂ti ⊙ Ci ⊙ Si[V̂(., zi)] + η̂i, (5)
where ⊙ indicates element-wise multiplication, Ci = H2D [Pi] is the Contrast Transfer Function
(CTF), T̂t the t-translation operator or phase-shift in Fourier space and η̂i represents complex white
Gaussian noise on R2. See Supplement E for a discussion on the discretization step.

3.2 Overview of cryoFIRE

Fig. 2 summarizes the architecture of cryoFIRE. Images Yi are fed into an encoder, parameterized by
ψ, that predicts a pose ϕ = (Ri, ti) and a conformational state zi. Ri is used to rotate a grid of D2

3D-coordinates in Hartley space. These coordinates are concatenated with the conformational state
before being fed into a neural representation of the function V̂θ (in Hartley space), parameterized by θ.
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Figure 2: Architecture of cryoFIRE. An encoder predicts the latent variable zi (conformational state),
Ri (rotation) and ti (translation) for each image. These variables are used by a physics-based decoder
that reproduces the image formation model (in Hartley space) and contains a neural representation V̂θ
of the conformational space. Reconstructed and measured images are compared with the symmetric
loss.

V̂θ is a mapping from R3+d to R and can be seen as a parametric representation of the conformational
space in Hartley domain (a manifold of dimension d). Queried for all k in the grid, the neural
representation outputs a set of real values corresponding to a discrete sampling of the slice defined
in Eq. (4). Based on the estimated translation ti and given CTF parameters Ci, the rest of the
image formation model described in Eq. (5) is simulated to obtain X̂i, a noise-free estimation of
Ŷi. The whole forward model is refered to as Γψ,θ, such that X̂i = Γψ,θ(Yi). Pairs of measured
and reconstructed images are compared using the symmetric loss (see Section 3.5) and gradients are
backpropagated throughout the differentiable model in order to optimize both the encoder and the
neural representation.

3.3 Discriminative Model

In cryoFIRE, an encoder acts as a discriminative model by mapping images to estimates of ϕi and zi.
The encoder is structured sequentially with the following components:

1. A Convolutional Neural Network (CNN) containing 7 convolutional layers extracts high-
level visual features from images and divides the width and height of images by 32. The
architecture of the CNN is inspired from the first layers of VGG16 [30], known to perform
well on visual tasks.

2. A shared Multi-Layer Perceptron (MLP) with 2 hidden layers that outputs a feature yi of
dimension 256.

3. A conformation MLP that maps yi to zi.
4. Rotation and translation MLPs that map the concatenation of yi and zi respectively to Ri

and ti. The pose prediction is conditioned on zi since rotations and translations are only
defined for a given conformation of the molecule and zi contains, with a small number of
dimensions, all the required information to determine the conformational state. The rotation
is represented in the 6-dimensional space S2 × S2 [41] as it was shown to lead to the best
results for the rotation prediction in [20].

We experimented with both variational (predicting an approximate posterior distribution over latent
variables) and non-variational (predicting a point estimate) approaches and did not observe any signif-
icant performance difference (although the variational approach is more computationally expensive).
Full details about the architecture of the encoder are given in Supplement A.

3.4 Generative Model

The generative model is a simulation of the image formation model in Hartley space, in order to
make use of the FST (Section 3.1). The forward pass is differentiable with respect to zi, Ri and ti.
For each i, a grid of D2 coordinates on the x-y plane in Hartley space are rotated by Ri (mapped
from S2 × S2 to R3×3 using Gram–Schmidt orthogonalization) via a matrix multiplication. Rotated
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points k are positionally encoded with a bank of D/2 random frequencies [33] and independently
concatenated with the conformational state zi before being fed into an MLP mapping R3+d to R.
This neural network is an implicit representation of the function V̂ , where V̂(., z) = H3D [V(., z)].
Additional implementation details about the neural network are given in Supplement B.

The CTF is defined by the defocus parameters and the astigmatism angle (provided by the simulator
or by an external software like CTFFIND [25] for experimental datasets). It is then applied to the
slice of size D2 outputted by the neural representation. Finally, the slice is element-wise multiplied
by T̂ti , the Hartley transform of the ti-translation kernel.

3.5 Training Procedure

In the setting where poses are unknown, one cannot distinguish, given a set of 2D projections, two
molecules with different handedness. This is called the “handedness ambiguity” [27]. Ref. [16]
showed that this leads amortized inference techniques to get stuck in local minima where the predicted
molecule contains spurious planar symmetries. A solution suggested to alleviate this problem is to
use the symmetric loss

Lsym =
∑
i∈B

min
{
∥Ŷi − Γψ,θ(Yi)∥22, ∥Rπ[Ŷi]− Γψ,θ (Rπ [Yi])∥22

}
, (6)

where B is a batch of indices and Rπ applies an in-plane rotation of π on images (we refer the
reader to [16] for an ablation study on the symmetric loss and its instrumental role in the amortized
inference of poses). In order to enable the model to converge to a consensus volume, we disable the
optimization of the conformation MLP at the start of the training. During this “pose-only phase”, zi
are randomly sampled from a normalized Gaussian distribution.

4 Results

We evaluate cryoFIRE for ab initio heterogeneous reconstruction and compare it with the state-of-
the-art method cryoDRGN2 [39]. We first validate that using an encoder to predict poses, instead
of performing an exhaustive pose search, enables us to reduce the runtime of heterogeneous recon-
struction on a synthetic dataset. We show that the encoder is able to accurately predict ϕi and zi
for images it has never processed during training, thereby validating the ability of an encoder-like
architecture to amortize the runtime over the size of the dataset. Secondly, we show that cryoFIRE
enables the detection of discrete heterogeneity in a dataset, by clustering images in the zi-space.
Finally, we show that our method can perform heterogeneous reconstruction of real data, a first for a
method that jointly amortizes the estimation of poses and conformations.

4.1 Runtime Improvement and Amortization

Experimental Setup We prepare three synthetic datasets of varying sizes – small (50k images),
medium (500k images) and large (5M images) (Supplement C). Images are generated using a
simulation of the image formation model on ground truth volumes of the 80S ribosome. Each dataset
contains a mix of projections with 90% sampled from the one of the volumes (major) and the rest
from the other volume (minor). CTFs are drawn randomly with a log-normal distribution over
the defocus range. We add Gaussian noise with variance σ2 = 10 to the normalized projections
(SNR=−10dB). With cryoFIRE, we fix d = 8 and activate the conformation MLP after the model has
seen 1.5M images. We compare our method with cryoDRGN2 [39] with default parameters. Pixels’
intensities are set to 0 outside of a circle of radius 32 pixels for pose search. With cryoDRGN2,
pose search is done every 5 epochs for the small datasets and every epoch for the medium and large
datasets. We train the models on a single NVIDIA A100 SXM4 40GB GPU. Images of size D = 128
are fed by batches of maximum sizes (128 for cryoFIRE, 32 for cryoDRGN2) and loaded on the fly
using multi-threading on 16 CPUs. The model is optimized with the ADAM optimizer [10] and a
learning rate of 10−4. Convergence is assessed via visual inspection of the pose prediction accuracy.
Once convergence is reached on the train set, latent variables can be estimated on a test set of 10k
images in order to validate that the encoder is not just memorizing the training set. With cryoDRGN2,
poses from the test set are estimated with a randomly-initialized pose search on the model obtained at
train time.
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Table 1: Heterogeneous reconstruction on datasets of varying sizes. Each dataset contains a mix of
images, 90% from the major volume and 10% from the minor volume. After convergence on a train
set, each method estimates the latent variables (Ri, ti, zi) on a test set. We report the resolution (Res.
in pixels, ↓), the confusion error (↓), the rotation accuracy (Rot. in degrees, ↓) and the translation
accuracy (Trans. in pixels, ↓). Convergence is detected on the pose accuracy (ep. = epochs).

Dataset / Method Time Confusion Res. (major/minor) Rot. (Med/MSE) Trans. (Med/MSE)

Small (Train: 50k / Test: 10k)
cryoDRGN2 (train) 1:21h (20 ep.) 0.00005 2.4 / 2.8 0.8 / 0.8 0.007 / 0.01
cryoFIRE (train) 1:33h (70 ep.) 0.0004 2.6 / 3.2 2.3 / 2.6 0.09 / 0.1
cryoDRGN2 (test) 3 min. (1 ep.) 0 — 0.8 / 0.8 0.006 / 0.01
cryoFIRE (test) 11 sec. (1 ep.) 0.001 — 2.6 / 2.7 0.2 / 0.3

Medium (Train: 500k / Test: 10k)
cryoDRGN2 (train) 5:10h (2 ep.) 0.002 2.5 / 3.0 0.8 / 0.9 0.007 / 0.01
cryoFIRE (train) 1:28h (7 ep.) 0.0008 2.7 / 3.2 2.7 / 2.9 0.1 / 0.2
cryoDRGN2 (test) 3 min. (1 ep.) 0.0001 — 0.8 / 0.9 0.007 / 0.01
cryoFIRE (test) 11 sec. (1 ep.) 0.0001 — 2.3 / 2.5 0.1 / 0.2

Large (Train: 5M / Test: 10k)
cryoDRGN2 (train) 21:37h (1 ep.) 0.002 2.3 / 2.6 0.8 / 1.6 0.01 / 1.2
cryoFIRE (train) 1:55h (1 ep.) 0.0002 2.3 / 2.7 1.5 / 1.7 0.1 / 1.0
cryoDRGN2 (test) 3 min. (1 ep.) 0 — 1.0 / 1.0 0.007 / 0.1
cryoFIRE (test) 11 sec. (1 ep.) 0 — 1.2 / 1.4 0.1 / 0.2

Metrics We compute the median and the mean of the angular error on the view direction, in degrees,
and the median and mean square error of the predicted ti, in pixels. Before computing pose errors, a
rigid 6D-body alignment is applied on the set of predicted poses to align the model into the same
global reference frame as the ground truth volume. We perform a Principal Component Analysis
(PCA) on the set of predicted zi’s and, looking at the first principal component, we group images
in two classes, according to the cluster they fall into. The confusion error is defined as the ratio of
misclassified images over the total number of images. After convergence, we generate two volumes
by taking the centroids of the clusters in zi space and using them as inputs for the neural network V̂θ
on them. We report the resolution (in pixels) obtained on the major (90%) and on the minor (10%)
volumes. The reported resolution is the inverse of the maximum frequency for which the Fourier
Shell Correlation is above 0.5.

Results We report the runtime and quantitative metrics in Table 1. At train time, the average
time for processing one image is 19 ms (5:10h / (2 × 500 000)) with cryoDRGN2 vs. 1.5 ms
(1:28h / (7× 500 000)) for cryoFIRE. (The runtime of cryoDRGN2 is lower with the small dataset
because pose search is only done every 5 epochs). At test time, only the encoder of cryoFIRE is
used, which further decreases the runtime per image (1.1 ms). The accuracy obtained at test time on
ϕi and zi validates that our method effectively amortizes the estimation of latent variables, and the
errors on the test sets decrease with the size of the dataset provided for training. The accuracy of
predicted poses is slightly worse with cryoFIRE than with an exhaustive pose search strategy (see
Supplement E for a comparison with a fully non-amortized method [24]). The quantitative resolution
of the reconstructed volumes remains however very similar with both methods (see Supplement E for
a qualitative comparison).

4.2 Heterogeneous Reconstruction of Synthetic Datasets

Experimental Setup We prepare three heterogeneous datasets of 100k images of the Plasmodium
falciparum 80S ribosome (Supplement C). The three datasets contain an equal mix of projections
from K ∈ {2, 3, 10} different ground truth volumes, generated sequentially along a reaction path
that corresponds to a rotation of the small ribosomal subunit relative to the large ribosomal subunit
identified in [37]. The image formation model is simulated with the same parameters as in Section 4.1.
We run cryoFIRE with d = 8 and perform a PCA on the set of predicted zi’s after 95 epochs.

Results In Fig. 3, we plot the first principal component (PC1) of the set of zi’s vs. the ground truth
index of the volume each image was generated from. With the dataset containing K conformations,
images can be clustered in K groups, based on the value of PC1 (K ∈ {2, 3}). Looking for the
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(a) (b) (c) (d)

Figure 3: Conformational heterogeneity analysis on synthetic datasets. On (a-b-c), the y-axis shows
first principal component (PC1) among the zi’s. We indicate means ± standard deviations of the
PC1s, conditioned on the ground truth conformation. On (a-b) dashed lines are the threshold used to
compute the confusion error. Spearman correlation [13] is indicated in (c). (d) is a superposition of
two volumes obtained by sampling two points along the PC1 axis for the experiment 2 classes.

optimal thresholds on PC1, we compute a confusion error of 1×10−3 (resp. 2×10−2) on the 2 classes
(resp. 3 classes) dataset. On the 10 classes dataset, the 10 conformations cannot be separated but the
value of PC1 embeds information about the movement of the ribosome, as indicated by the Spearman
correlation [13] between the index of the ground truth conformation and PC1. Sampling different
values for PC1 (and setting the other components to zero), we can use the neural representation V̂θ
to generate a set of volumes from a set of conformational states zi. Qualitative results are given in
Fig. 3 (d), showing an accurate reconstruction of the movement of a subunit of the ribosome.

4.3 Heterogeneous Reconstruction of an Experimental Dataset

Experimental Setup We use the publicly available dataset EMPIAR-10180 [21] of a pre-catalytic
spliceosome (Supplement C). We run cryoFIRE with d = 8, activate the conformation MLP after 30
epochs and train for a total of 100 epochs. Results from cryoDRGN2 [39] and cryoDRGN-BNB [38]
on the same dataset are obtained from [39].

Results The first two components of a PCA on the set of predicted zi’s is shown in Fig.4. By
traversing the conformational space along the direction of PC1 and generating volumes on set of 5
points, cryoFIRE generates a trajectory, showing a large flexing motion of the spliceosome. CryoFIRE
qualitatively recovers the non-uniform distribution of viewing directions, avoids the local minima
cryoDRGN-BNB falls into, and reconstructs volumes which qualitatively match the state of the
art. See Supplement D for more results and a reconstruction on an experimental dataset of the 80S
ribosome (EMPIAR-10028 [36]).

5 Discussion

As the resolving power of a sampling method scales with the size of the dataset, an increasing number
of images needs to be collected in cryo-EM in order to extract meaningful structural information.
CryoFIRE answers the need for reconstruction methods that scale appropriately with the dataset
size: heterogeneous ab initio reconstruction on a dataset of 5M images can be performed within 2
hours. CryoFIRE is also the first reconstruction method to perform joint amortization of poses and
conformations on an experimental cryo-EM dataset, opening the door to fast analysis of structural
heterogeneity on real datasets.

The interpretability of the conformational space remains an open question. Since distances in
this space are not meaningful (zi conditions the volume via a nonlinear decoder), the probability
distribution cannot be straightforwardly interpreted in that space. In the case of discrete heterogeneity,
general quantities like the number of states or the relative populations of the states can be reliably
inferred from the conformational space by clustering the predicted conformational states. In the case
of continuous heterogeneity, dimensionality reduction methods like PCA can highlight directions
of maximal variance and, by visual inspection of the reconstructed volumes, cryoFIRE can help
understanding the main degrees of freedom of a continuously deformable molecule. However, “small”
and “large” deformations can stem from similar changes in the conformational space and no physically
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Figure 4: Ab initio heterogeneous reconstruction of an experimental dataset of the pre-catalytic
spliceosome (EMPIAR-10180 [21]). (Top left) Distribution of the two first principal components
of zi and sampling points along the first component. (Top right) Structures generated by traversing
along PC1. The outline indicates the edges of volume (5). (Bottom) Distribution of the viewing
directions. The “reference” shows the viewing directions published in [21].

interpretable notion of distance is currently associated with the conformational space: providing this
space with a physically interpretable metric is an interesting avenue for future work.

It is worth highlighting that the parameterization proposed here is not uniquely defined: a rotation
of the molecule can equivalently be represented by Ri or by a change of conformation state zi.
Empirically, cryoFIRE decorrelates poses and conformation by relying on a “pose-only phase” at
the beginning of training, but nothing explicitly prevents zi from containing information about Ri.
Future work could explore improvements in the optimization procedure to further enforce minimal
mutual information between poses and conformation.

Finally, we note that the accuracy of pose estimation (especially on translations) is lower with
cryoFIRE than with exhaustive pose search methods. Inaccurate translation prediction can lead to
“blurry” reconstructions and therefore limits the resolution of reconstructed volumes. This is a direct
reflection of the fact that amortization maximizes a non-tight lower-bound of the likelihood, allowing
for faster inference at the cost of accuracy [5]. Future work could investigate a hybrid approach that
would estimate poses with an encoder at the beginning of training and switch, at the end, to a local
pose search initialized from encoder-estimated poses.

Broader Impacts Statement The cryo-EM field is generating data at a rapidly increasing pace,
potentially leading to wasteful storage and inefficient computing. The design of more efficient
methods such as CryoFIRE provides a path to mitigate sustainability risks. In order to better compare
modern reconstruction methods, careful attention must be paid toward designing common datasets
and evaluation metrics. By providing an open-source implementation of CryoFIRE upon publication,
together with benchmark metrics, we hope to make cryo-EM research accessible to a broader class
of researchers. We also acknowledge that, by pushing further the boundaries of biological research,
our method may facilitate the development of harmful biologics, however this is outweighed by its
significant societal benefits. We encourage the cryo-EM community to play wisely with cryoFIRE.
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