
Appendix: CGLB: Benchmark Tasks for
Continual Graph Learning

Xikun Zhang
The University of Sydney

xzha0505@uni.sydney.edu.au

Dongjin Song
University of Connecticut

dongjin.song@uconn.edu

Dacheng Tao
The University of Sydney
dacheng.tao@gmail.com

1 Additional Details on the Experimental Settings and Benchmark
Construction

In this section, we give further details on the experimental settings and details on the construction of
CGLB.

1.1 Additional Details on the Experimental Settings

Additional experimental setting details include the indices of the deleted classes for each dataset, the
used devices, the train-validation-test splitting for each task, and details on training and validation.
For the N-CGL datasets, we remove the 41-th class of Reddit-CL, and the 47-th class of Products-CL.
This aims to ensure an even number of classes for each dataset to be divided into a sequence of 2-class
tasks. Moreover, the 47-th class of Products-CL contains only one node, and cannot be split for
training, validation, and test. For the G-CGL datasets, classes removed from Aromaticity-CL are {2,
3, 4, 8, 35, 36, 37, 38, 39, 40, 41} since they contain less than 20 examples and are causing difficulties
for model training. The other 30 classes of Aromaticity-CL are kept and constructed as 15 tasks. No
classes are removed from SIDER-tIL and Tox21-tIL. The statistics in Tables 1 and 2 of the paper
are obtained after the class removal. For the N-CGL datasets, the train-validation-test splitting ratios
are 60%, 20%, and 20%, and transductive setting is adopted for each task. The train-validation-test
splitting is obtained by random sampling, therefore the performance may be slightly different with
splittings from different rounds of random sampling. We provide the set of splitting used in our
experiments on our GitHub page as a reference. For the G-CGL datasets, the ratios are 80%, 10%,
and 10%. In our code, we provide a framework for conveniently conduct grid-search over candidate
hyper-parameters and find the best performing combination on the validation set. Then the selected
model is also automatically evaluated on the testing set. Details on the usage can be found in our
GitHub page. In our experiments, the hyper-parameter candidates we used are summarized in Table
1. The name of the hyper-parameters are consistent with the names in our code. Details of the
parameters could be found in the original papers. Among the hyper-parameters of all the methods,
the memory budget of the memory based methods (GEM and ERGNN) should be cared. Generally,
larger memory budget leads to better performance. However, larger budget also consumes more space,
which may not be practical in real-world applications. Therefore, unlike the other hyper-parameters
that can be determined by validation, the memory budget is also determined by the available space in
practical scenarios. Besides, the dataset splittings and the method hyper-parameters, the batch size
and the number of training epochs are also factors influencing the continual learning performance.
Smaller batch sizes or larger number of training epochs lead to more iterations to train the model, and
the model is more adapted to a given task (more forgetting on previous tasks). Therefore, keeping a
consistent batch size is an important factor when making comparisons across different models. In

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

NCGL experiments, we use full batch for the small NCGL datasets (CoraFull-CL and Arxiv-CL) and
the GCGL datasets, and use 2,000 as the batch size for learning on large NCGL datasets (Reddit-CL
and Products-CL). For GCGL experiments, we set the batch size as 128, and the number of training
epochs as 100. For the two multi-label classification datasets (SIDER-tIL and Tox21-tIL), early
stopping is applied to ensure a stable performance. All experiments are repeated 5 times on one
Nvidia Titan Xp GPU.

Table 1: Hyper-parameter candidates used for grid search.

EWC [4] memory_strength: [1, 100, 10000, 1000000]
MAS [1] memory_strength: [1, 100, 10000, 1000000]
GEM [8] memory_strength: [0.05,0.5,5]; n_memories: [10, 100,1000]
TWP [7] lambda_l: [100,10000] ; lambda_t: [100,10000]; beta: [0.01,0.1]
LwF [6] lambda_dist: [0.1,1.,10.] ; T: [0.2,2,20]

ER-GNN [12] budget: [10,100]; d: [0.05, 0.5, 5.0]; sampler: [CM]

1.2 Additional Explanations on the Evaluation Metrics

In this subsection, we explain the evaluation metrics in details. The explanations will cover every
step in the computation of AP and AF from the original performance matrix, so that the rationale
behind the AP, AF and the performance matrix will be clarified.

The rationale behind AP and AF is to measure a model’s average performance/forgetting on all learnt
tasks after learning a sequence of tasks. In the following, we will separately explain AP and AF with
details and examples.

In a performance matrix Mp, an entry Mp
i,j denotes the model performance on a learnt task j (j ⩽ i)

after learning the i-th task (i.e., the model has been trained over the sequence of tasks from 1 to i).
Accordingly, the i-th row of the matrix Mp, i.e. Mp

i,j , j = 1, ..., i reflects the performance on each
learnt task j (j = 1, ..., i) after learning the i-th task.

Therefore, the average performance (AP) after learning the i-th task is defined as the average of the
i-th row of the matrix (Mp

i,j , j = 1, ..., i), because it reflects the model’s average performance over
all learnt tasks after learning a sequence of tasks (i.e., from the 1-st task to the i-th task). As we could
see, an AP can be computed after learning each new task, and the sequence of APs denotes how the
overall performance varies with new tasks constantly coming in (i.e., the learning dynamics curves
shown in Figure 3 of the paper).

When a single numerical value is required to denote the model’s overall performance (e.g., the
results shown in Table 3, 4, and 5), the AP computed after learning the entire sequence of tasks

(i.e.,
∑T

j=1 Mp
T,j

T computed over the last row of the performance matrix, Mp
T,j , j = 1, ..., T) is used,

which is the average model performance over all learnt tasks after the model has been trained over the
sequence from the 1-st task to the final task. A high AP denotes that the model’s overall performance
on previous tasks is good after learning all the tasks sequentially (i.e., little forgetting issue). While a
lower AP denotes that the model has more severe forgetting problem.

The average forgetting (AF) is supported by the same rationale. Specifically, a diagonal entry Mp
j,j

denotes the performance of a model when it has just learnt the task j (i.e., before the performance on
task j is degraded because of the forgetting issue). The model will then keep learning the following
tasks j+1, j+2, ..., etc.. After learning each following new task, the model is tested again on task j,
and the performance on task j becomes Mp

j+1,j , Mp
j+2,j , ..., etc.. At a specific step i, when the model

has just learnt task i (i > j), the performance on task j becomes Mp
i,j . Due to the forgetting issue

(learning new tasks may interfere with the performance on task j), Mp
i,j may be lower than Mp

j,j , and
Mp

i,j −Mp
j,j can quantitatively measure the forgetting. Accordingly, negative Mp

i,j −Mp
j,j denotes

that the performance on task j is negatively affected (forgetting on task j) by the following tasks
from j + 1 to i, and larger |Mp

j+1,j −Mp
j,j | denotes more severe forgetting. It is also possible that

Mp
j+1,j −Mp

j,j is positive, denoting that the learning on the following tasks has a positive influence
on task j, which is rare according to the experimental results. Similar to AP, after learning each new
task, we could compute an AF over all learnt tasks, and the sequence of AFs reflects the learning
dynamics from the forgetting perspective. To use a single numerical value to denote the average

2

forgetting over all learnt tasks after learning the final task T , we could use the AF computed after

learning the T -th task, i.e.
∑T−1

j=1 Mp
T,j−Mp

j,j

T−1 .

1.3 Class Imbalance Problem

The class imbalance problem is often severe in graph data, and the model may collapse and give trivial
predictions biased to the dominating classes. Moreover, due to the topological connections among
the data and the severeness of the imbalance problem, it may not be practical to balance the data
by choosing equal number of nodes from each class. For example, the largest class in Products-CL
has 668,950 nodes, and the smallest class has 1 node. In this situation, selecting a equal number of
nodes from each class will either make it necessary to delete many classes without enough number
of nodes or selecting a very small amount of nodes from each class to ensure that all classes have a
same size. Besides, deleting graph nodes also change the original topology and the relations among
the remaining nodes, and is better avoided.

Therefore, during training, we would re-scale the loss of the nodes according to the sizes of their
corresponding classes. Suppose the set of all classes of a training set is C, and the size of each class is
{nc | c ∈ C}. Then, the loss calculated on a node set V without balancing can be formulated as,

L =
∑
v∈V

l(f(v), yv), (1)

where f(v) denotes the prediction of v, and yv denotes the label of v. The balanced loss is then
formulated as,

L =
∑
v∈V

l(f(v), yv) · syv
, (2)

where syv = nc∑
i∈C ni

when yv = c.

In testing, the evaluation of the model also considers the class imbalance problem. We will first
calculate the performance within each class, and then average the results over all classes. In this way,
the classes of different sizes contribute equally to the performance.

1.4 Classifier for Class-IL Scenario

In a standard classification task, the number of the output heads (number of output logits) of a
classifier equals the number of possible classes in the dataset, and is fixed before training. However,
in class-IL scenario of CGL, since new classes come in constantly, the number of output heads cannot
be set beforehand but has to continually increase.

1.5 Task Statistics

Besides the dataset statistics provided in paper, in this subsection, we provide detailed statistics for
each task, i.e., the numbers of nodes/graphs/edges in each class for all GCGL tasks, and the numbers
of nodes/edges in each class for all NCGL tasks. The statistics are shown Table 2,3,4,5,6,7,8.

2 License

Our datasets are curated from existing public data sources, and follow their licenses. For the N-CGL
datasers, the OGB-Arxiv [3] 1 is licensed under Open Data Commons Attribution License (ODC-BY),
and the OGB-Products [3] 2 is licensed under Amazon license. The CoraFull dataset [9] and the
Reddit dataset [2] 34 are two datasets built from publicly available sources (public papers and Reddit
posts) without license attached by the authors. For the G-CGL datasets, the SIDER dataset 5 is

1https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
2https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
3https://archive.org/details/FullRedditSubmissionCorpus2006ThruAugust2015
4https://archive.org/details/2015_reddit_comments_corpus
5http://sideeffects.embl.de/

3

https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
https://archive.org/details/FullRedditSubmissionCorpus2006ThruAugust2015
https://archive.org/details/2015_reddit_comments_corpus
http://sideeffects.embl.de/

class 0 1 2 3 4 5 6 7 8 9
nodes 257 52 243 378 63 305 404 663 240 342
edges 3066 976 3540 4404 966 2350 4968 12584 4488 2884

class 10 11 12 13 14 15 16 17 18 19
nodes 141 223 102 521 341 138 115 111 80 435
edges 2226 2892 1108 9078 3548 1468 1430 1762 416 3842

class 20 21 22 23 24 25 26 27 28 29
nodes 420 254 414 196 334 315 284 783 113 466
edges 6722 2040 4492 2328 4266 4266 2510 18676 1544 5606

class 30 31 32 33 34 35 36 37 38 39
nodes 221 376 154 855 576 84 293 163 125 564
edges 3300 4014 1708 8116 8554 592 5694 3530 1034 5490

class 40 41 42 43 44 45 46 47 48 49
nodes 280 205 94 53 129 370 122 74 557 285
edges 1982 2106 1240 472 1572 3716 1272 840 7384 3054

class 50 51 52 53 54 55 56 57 58 59
nodes 72 625 501 650 99 473 324 928 212 301
edges 1138 10772 5176 6834 750 5974 3218 8566 2488 6454

class 60 61 62 63 64 65 66 67 68 69
nodes 116 220 165 291 147 91 137 84 15 29
edges 2000 3434 1798 3882 1534 1068 1314 746 82 340

Table 2: Number of nodes and edges in each class of CoraFull-CL.

class 0 1 2 3 4 5 6 7 8 9
nodes 565 687 4839 2080 5862 4958 1618 589 6232 2820
edges 4001 4697 26310 12439 46538 34558 7466 2447 41732 22296

class 10 11 12 13 14 15 16 17 18 19
nodes 7869 750 29 2358 597 403 27321 515 749 2877
edges 77876 5180 136 37716 4670 2668 733536 5005 4925 12172

class 20 21 22 23 24 25 26 27 28 29
nodes 2076 393 1903 2834 22187 1257 4605 4801 21406 416
edges 11062 1525 10036 15459 421129 12827 39656 43865 262381 2345

class 30 31 32 33 34 35 36 37 38 39
nodes 11814 2828 411 1271 7867 127 3524 2369 1507 2029
edges 250277 23863 2681 6243 75707 432 28697 15291 11345 11297

Table 3: Number of nodes and edges in each class of Arxiv-CL.

class 0 1 2 3 4 5 6 7 8 9
nodes 13101 3550 3302 15181 2322 3597 3952 2138 11187 2246
edges 9333976 2207936 2170698 4435498 1284924 8838256 2876904 1981664 17567126 1577840

class 10 11 12 13 14 15 16 17 18 19
nodes 4928 2964 1696 2731 4854 28272 1003 2639 13999 10308
edges 4377476 3370058 3875108 1871030 9203184 23998718 1035980 3237128 16823834 7086846

class 20 21 22 23 24 25 26 27 28 29
nodes 1596 4066 8222 12146 328 1659 4239 5962 4673 5101
edges 1750498 5087278 2125064 4270774 148988 2005018 3190862 5055124 1505350 3147048

class 30 31 32 33 34 35 36 37 38 39
nodes 2846 4570 1575 4960 3429 4202 4180 4233 12797 3099
edges 2293504 8151694 836924 13468276 8032124 6091244 5871398 5330018 19629974 1190018

class 40
nodes 5112
edges 2896422

Table 4: Number of nodes and edges in each class of Reddit-CL.

4

class 0 1 2 3 4 5 6 7 8 9
nodes 114294 109832 116043 151061 668950 40715 158771 172199 110796 67358
edges 12896708 14838746 11449058 15576466 48891834 5984624 26375396 14340184 7605922 8296044

class 10 11 12 13 14 15 16 17 18 19
nodes 52345 32937 131886 101541 3079 26911 83594 42337 49019 17438
edges 7608804 1533830 12407580 9797510 151210 3758376 9552274 6297586 5733784 2187382

class 20 21 22 23 24 25 26 27 28 29
nodes 22575 80795 879 3653 45406 3024 553 259 1969 1561
edges 2247434 8065332 74388 877932 3593542 240336 78188 14760 106084 81154

class 30 31 32 33 34 35 36 37 38 39
nodes 277 418 513 29 154 44 630 514 91 37
edges 11672 30766 35648 3108 8066 2336 62204 44886 5972 3288

class 40 41 42 43 44 45 46
nodes 6 61 32500 1399 566 9 1
edges 876 17578 6229472 194368 122826 818 208

Table 5: Number of nodes and edges in each class of Products-CL.

class 0 1 2 3 4 5 6 7 8 9
nodes 23472 34872 873 27456 40354 35359 44618 8211 37300 24126
graphs 743 996 22 876 1151 997 1298 251 1024 727

class 10 11 12 13 14 15 16 17 18 19
nodes 14057 44142 10667 6454 38814 27669 45146 7740 35994 36826
graphs 376 1292 323 213 1108 885 1318 253 1006 1060

class 20 21 22 23 24 25 26
nodes 34027 31894 4694 21166 35159 45489 34019
graphs 1016 911 125 659 988 1304 946

Table 6: Number of nodes and edges in each class of SIDER-tIL.

class 0 1 2 3 4 5 6 7 8 9
nodes 7820 5808 14428 7378 15835 7596 4002 18679 5340 7096
graphs 309 237 768 300 793 350 186 942 264 372

class 10 11
nodes 20099 10151
graphs 918 423

Table 7: Number of nodes and edges in each class of Tox21-tIL.

class 0 1 2 3 4 5 6 7 8 9
nodes 3139 0 0 0 1553 3007 3405 185 1670 3144
graphs 148 0 0 0 60 149 150 13 83 148

class 10 11 12 13 14 15 16 17 18 19
nodes 3364 3553 3914 3449 3686 3967 4066 4194 4629 4155
graphs 149 150 150 144 150 150 149 149 150 149

class 20 21 22 23 24 25 26 27 28 29
nodes 4355 4544 4824 4927 5202 4823 4820 4946 5189 3954
graphs 149 148 149 146 145 144 136 136 132 94

class 30 31 32 33 34 35 36 37 38 39
nodes 4817 3425 2749 1591 824 2730 1132 841 543 203
graphs 106 74 52 29 17 15 16 6 6 1

Table 8: Number of nodes and edges in each class of Aromaticity-CL.

5

Table 9: Performance comparisons with different backbone GNNs under task-IL without inter-task
edges (↑ higher means better).

C.L.T. GCN GAT GIN
AP/% ↑ AF/% ↑ AP/% ↑ AF /% ↑ AP/% ↑ AF /% ↑

Bare model 61.7±3.8 -28.2±3.3 63.7±1.6 -27.3±1.7 65.1±1.6 -23.9±1.5
EWC [4] 78.8±2.7 -5.0±3.1 75.1±0.5 0.1±0.2 63.2±3.0 -21.5±3.2
MAS [1] 88.4±0.2 -0.0±0.0 80.5±1.5 -8.6±1.2 87.9±0.4 -0.1±0.1
GEM [8] 87.3±0.6 2.8±0.3 79.2±0.4 -5.7±0.3 80.6±0.8 -3.6±1.1
TWP [7] 86.0±0.8 -2.8±0.8 86.6±0.2 -1.5±0.3 88.3±0.6 -0.6±0.8
LwF [6] 84.2±0.5 -3.7±0.6 54.5±0.7 -36.9±0.8 84.0±1.7 -3.7±1.3

ER-GNN [12] 86.7±0.1 11.4±0.9 88.4±0.4 4.2±0.8 89.3±0.1 5.0±0.4
Joint 90.3±0.2 - 88.8±0.4 - 88.9±0.1 -

licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License (CC BY-
NC-SA 4.0). The PubChemBioAssayAromaticity [11] is constructed from the PubChem’s BioAssay
Database, which is licensed under the Creative Commons Attribution Non-Commercial License (CC
BY-NC 3.0). The Tox21 dataset 6 was a public database constructed by the “Toxicology in the 21st
Century” (Tox21) initiative for measuring toxicity of compounds without attaching a specific license.
All of the above datasets are consent by the authors for academic usage and are integrated in different
deep learning libraries like the Deep Graph Library (DGL) [10] 7, DGL-Lifesci [5] 8, and Open
Graph Benchmark (OGB) [3] 9. None of these datasets contains personally identifiable information
or offensive content.

Our code (https://github.com/QueuQ/CGLB) for constructing the benchmark tasks and compar-
ing different baseline methods is licensed under an Attribution-NonCommercial 4.0 International
license (CC BY-NC 4.0). Besides, the implementations of some of the baseline continual learning
methods are adapted from existing public Github repositories, including the repository of the Gra-
dient Episodic Memory (GEM) [8] 10 and the repository of the Topology-aware Weight Preserving
(TWP) [7] 11. The implementations of the backbone GNNs are mostly based on the DGL. The con-
struction of the datasets also benefits from several existing databases and libraries. The construction
of the N-CGL datasets uses the datasets and tools from OGB and DGL. The construction of the
G-CGL datasets uses the datasets and tools from DGL and DGL-Lifesci. We sincerely thank the
authors of these works for sharing their codes and helping develop the community.

3 Additional Experimental Results

In this section, we provide additional results to analyze the performance of different baseline methods
on CGLB. The results will be mainly based on the visualization of the performance matrices, which
is the most thorough metric to evaluate a continual learning model, of different methods on different
benchmark tasks.

3.1 Investigation on the Influence of GNN backbones

In this section, we investigate the influence of the GNN backbones on the performance of continual
graph learning, which is not discussed in the paper due to the space limitation. To ensure a fair
comparison, all GNNs are configured as 2-layer. From Table 9, our first finding is although adopting
different backbones result in different continual learning performance, the relative performance
comparison (ranking) of different continual learning techniques are similar across different backbones
except for EWC and MAS with GAT backbone. The performance of EWC and MAS with GAT
backbone exhibit a contrary pattern compared to the performance obtained with the other two
backbones. Specifically, EWC exhibits more severe forgetting issues with GCN and GIN compared to
GAT. On the contrary, MAS exhibits more severe forgetting issues with GAT compared to GCN and

6https://tripod.nih.gov/tox21/challenge/data.jsp
7https://docs.dgl.ai/api/python/dgl.data.html
8https://lifesci.dgl.ai/api/data.html
9https://ogb.stanford.edu/

10https://github.com/facebookresearch/GradientEpisodicMemory
11https://github.com/hhliu79/TWP

6

https://github.com/QueuQ/CGLB
https://tripod.nih.gov/tox21/challenge/data.jsp
https://docs.dgl.ai/api/python/dgl.data.html
https://lifesci.dgl.ai/api/data.html
https://ogb.stanford.edu/
https://github.com/facebookresearch/GradientEpisodicMemory
https://github.com/hhliu79/TWP

Figure 1: Visualization of the performance matrices of different methods on CoraFull-CL under
class-IL setting.

GIN. This phenomenon is reasonable considering that the structure of GCN and GIN are very similar,
while GAT follows a different framework. Both EWC and MAS are regularization based methods
with different strategies for evaluating the importance of the model weights. This implies that for
different backbones, the strategies for regularizing the model weights matter a lot and should be
carefully designed. As for the bare model, bare GCN and GIN models also have similar performance,
while bare GAT models perform worse. This phenomenon is closely related to the complexity of
different models. The trainable part of GCN and GIN models are mainly fully connected layers, while
GAT has a much more complex structure with the trainable attention mechanism. More complex
models tend to overfit the new tasks with more severe forgetting issues on previous tasks. Finally, the
jointly trained GCN, GAT, and GIN exhibit similar performance with tiny variations.

3.2 Additional Results on the Performance Matrix Visualization

In the paper, we visualized the performance matrices of several representative methods to show the
details of the forgetting behavior under the class-IL scenario. In this subsection, we visualize the
performance matrices of all different methods.

In Figure 1, the performance of the bare model is typical well for new tasks which are just learned, and
bad for the old tasks since they are totally forgotten. The results of EWC exhibit certain improvement
over the bare model, although not significant. MAS, which follows a similar regularization strategy,
exhibits more significant improvement compared to EWC. From Figure 1(c), we could see the
performance on multiple tasks (each column shows the performance change of one task along the
learning process) is well maintained when a small number of tasks are learned and then decrease
drastically when more tasks are learned. A similar phenomenon has been observed in the performance
matrix of GEM. Among all the baselines except the joint training, TWP, which is specially designed
for continual graph learning via preserving topology information, seems to be the best in maintaining
the performance of existing tasks. From Figure 1(e), we observe that the performance of many tasks
is maintained until the end of the learning on the task sequence (last row). Similarly, ER-GNN, which
is also specially designed for CGL, exhibits significant improvement. However, ER-GNN is sensitive
to the length of the task sequence. On a short task sequence (the upper part of Figure 1(g)), the
performance can be well maintained, but when more tasks are learned (the lower part of Figure 1(g)),
the performance decreases drastically. This trend can also be observed in the learning curve shown
in Figure 3(a) of the paper. This phenomenon results from the memory mechanism of ER-GNN.
ER-GNN selectively stores several nodes from each task and replays them when learning new tasks.

7

Figure 2: Visualization of the performance matrices of different methods on Reddit-CL under class-IL
setting.

Figure 3: Visualization of the performance matrices of different methods on Arxiv-CL under class-IL
setting.

The replay of the data from each previous task pushes the model parameters toward the direction that
is favorable for its task. When too many tasks are stored, it would be hard for the model to find a
direction to update, especially when the model has been already trained to an optimum of a certain
task. This kind of forgetting pattern is not detectable solely from the final AP and AF, which only
show the average results of the final row of the performance matrix.

Similar patterns can also be found in the results obtained on Reddit-CL as shown in Figure 2. The
difference is that Reddit-CL is less challenging and most methods are performing better than on
CoraFull-CL. Besides, since the task sequence of Reddit-CL is shorter than CoraFull-CL, ER-GNN
is performing relatively well through the entire sequence.

8

Figure 4: Visualization of the performance matrices of different methods on Aromaticity-CL under
task-IL setting.

Among all the datasets, almost all baselines fail on Arxiv-CL. To further investigate this issue, we
visualize the performance matrices of all baselines on Arxiv-CL, as shown in Figure 3. According
to the results, the baselines perform well on each individual task (diagonal entries), and the failure
comes from the severe forgetting issue. The results reveal that the task-wise interference in Arxiv-CL
is strong. Specifically, Bare model, EWC, GEM, and LwF exhibit almost complete forgetting on
previous tasks, and their performance on new tasks are better (diagonal entries). TWP, ERGNN, and
MAS successfully preserve the performance on previous tasks to some extent, and their performance
on the following tasks are lower. Specially, TWP preserves the performance on task 14 well, but
fails in all the following tasks. This strong task-wise interference is finally justified again in the
performance matrix of the jointly trained model (Joint), which does not suffer from the forgetting
issue. Although Joint maintains a balanced performance on all tasks, its diagonal entries have
obviously lower values than the methods with severe forgetting. In a word, due to the strong task-wise
interference, a method cannot simultaneously maintain the performance well on both old tasks and
new tasks.

3.3 Further Analysis on the Model Performances on G-CGL tasks

To further demonstrate the learning dynamics on G-CGL tasks, we visualize the performance matrices
of several methods in this subsection. The visualization is done for both task-IL and class-IL scenarios
on the Aromaticity-CL dataset.

Figure 4 and 5 show the results on Aromaticity-CL under task-IL and class-IL scenarios, respectively.
The bare model and joint training still follow similar patterns as it did in Section 2.2. In other words,
the bare model forgets severely on previous tasks while joint training performs perfectly on all tasks.
For the other methods under both task-IL and class-IL scenarios, we should focus more on the
diagonal entries of their performance matrices. The diagonal entries of the performance matrices
of the bare model still demonstrate that the bare model learns well on each new task. However, the
diagonal entries of the regularization based methods like EWC, MAS, and TWP, decrease significantly
along with the learning (from top to the bottom). This indicates that different tasks have significantly
different distributions and preserving the parameters of the previous tasks greatly hinders the learning
of new tasks. This is also consistent with the finding in the paper that GEM often meets the ‘no
solution’ error.

3.4 Additional Results with Less Training Data

Besides the train-validation-test split used in our major experiments, our implemented pipelines
also support any other splittings through specifying the corresponding arguments (details can be
found on our GitHub page). In the following, we provide the results obtained on both node-level and
graph-level tasks with the splitting of train (20%), validation (40%), test (40%).

As shown in Table 10 and 11, the performance change of NCGL tasks and GCGL tasks with less
training data are different. On NCGL tasks, most methods exhibit performance decrease, but some
methods perform better. While in GCGL, almost all methods experience significant performance
decrease. The reasons are two-fold. On the one hand, less training data may decrease the performance
on single tasks. On the other hand, with less training data, the models adapt less to the new tasks,

9

Figure 5: Visualization of the performance matrices of different methods on Aromaticity-CL under
class-IL setting.

Table 10: Performance comparisons under task-IL without inter-task edges on different datasets with the splitting
of train (20%), validation (40%), test (40%) (↑ higher means better).

C.L.T. CoraFull-CL Arxiv-CL Reddit-CL Products-CL
AP/% ↑ AF/% ↑ AP/% ↑ AF /% ↑ AP/% ↑ AF /% ↑ AP/% ↑ AF /% ↑

Bare model 53.2±1.2 -40.5±1.5 60.9±6.2 -27.8±5.9 80.0±7.4 -20.2±7.7 66.0±1.9 -26.8±2.1
EWC [4] 70.1±3.7 -20.9±4.1 68.4±4.5 -16.6±5.0 92.5±6.6 -7.1±6.9 90.3±0.7 -0.6±0.3
MAS [1] 90.1±1.1 -0.5±0.5 87.3±0.2 0.0±0.0 98.9±0.3 0.0±0.0 91.8±0.7 -0.5±0.1
GEM [8] 90.0±0.1 0.0±0.4 80.4±0.1 -4.0±0.3 99.3±0.0 0.0±0.1 87.6±0.9 -3.0±0.8
TWP [7] 86.9±0.5 -2.0±0.5 86.1±0.8 -1.7±0.7 91.2±3.6 -8.5±3.8 90.3±0.3 -0.6±0.3
LwF [6] 54.2±1.6 -39.7±1.6 68.6±4.9 -20.6±5.3 78.7±4.3 -21.7±4.6 66.6±1.8 -26.9±2.0

ER-GNN [12] 83.6±0.4 -6.7±0.5 89.2±0.1 5.6±0.5 98.8±0.1 -0.4±0.1 89.3±0.1 -2.4±0.2
Joint 91.9±0.5 - 88.9±0.4 - 99.4±0.0 - 91.2±0.8 -

therefore the forgetting on previous tasks is less severe, which benefits the overall performance (AP
and AF). The NCGL task sequences are longer than GCGL, and longer sequences bring more severe
forgetting. Accordingly, the mitigation of the forgetting problem (by less training data) benefits the
performance more in NCGL than GCGL. Therefore, the performance decreases more in GCGL than
NCGL.

3.5 Studies on the Number of Classes in each Task

In the experiments reported in the paper, we set the number of classes in each task (K) as 2 so as to
maximize the length of the task sequences and increase the learning difficulty. In this subsection. we
further show the results obtained with multiple different Ks. As shown in Table 12, a clear pattern
is that the continual learning performance of the models increase with the K. This phenomenon
concerns two key factors. On the one hand, smaller K decreases the difficulty of each single task,
which positively affects the performance. On the other hand, smaller K also increases the length of
the task sequence and exacerbates the forgetting problem, which negatively affects the performance.
Considering these two factors and the final results, we can conclude that the length of task sequence
is the dominant factor determining the continual learning difficulty.

3.6 Benchmark Usages & Implementing New Methods with CGLB

Table 11: Performance comparisons on different graph-level prediction datasets with the splitting of train (20%),
validation (40%), test (40%) (↑ higher means better).

C.L.T.
SIDER-tIL Tox21-tIL Aromaticity-CL Aromaticity-CL

task-IL task-IL task-IL class-IL
AP ↑ AF ↑ AP ↑ AF ↑ AP/% ↑ AF /% ↑ AP/% ↑ AF /% ↑

Bare model 0.532±0.007 0.028±0.016 0.645±0.022 0.119±0.015 52.0±1.4 0.1±1.2 4.3±1.4 -5.2±2.9
EWC [4] 0.503±0.012 0.003±0.006 0.602±0.021 0.028±0.027 52.0±1.4 0.1±1.2 3.9±0.8 -10.0±2.3
MAS [1] 0.518±0.010 0.014±0.006 0.630±0.022 0.092±0.029 58.8±2.0 5.0±2.2 3.8±1.0 -8.8±2.8
GEM [8] 0.578±0.006 0.072±0.014 0.685±0.007 0.183±0.025 70.6±2.2 18.8±3.4 10.9±1.7 2.1±3.5
TWP [7] 0.505±0.009 0.009±0.004 0.593±0.010 0.046±0.025 54.2±2.7 0.9±2.9 3.5±1.1 -8.7±2.6
LwF [6] 0.531±0.009 0.027±0.008 0.641±0.017 0.105±0.049 58.7±1.1 8.2±2.4 5.4±0.4 -8.4±0.9

Joint 0.575±0.009 - 0.678±0.017 - 69.4±1.0 - 35.4±3.9 -

10

Table 12: Performance comparisons under class-IL on Arxiv-CL with different task splittings (↑ higher means
better).

C.L.T. K = 2 K = 5 K = 10 K = 20
AP/% ↑ AF/%↑ AP/% ↑ AF /% ↑ AP/% ↑ AF /% ↑ AP/% ↑ AF /% ↑

Bare model 4.9±0.0 -87.0±1.5 10.5±0.1 -77.5±0.5 16.4±0.2 -63.9±0.6 26.4±0.3 -47.3±0.9
EWC [4] 4.9±0.0 -88.9±0.3 9.4±0.1 -73.7±1.1 15.7±0.3 -62.8±0.7 24.8±0.3 -47.5±0.6
MAS [1] 4.9±0.0 -86.8±0.6 10.3±0.2 -77.5±0.6 16.5±0.3 -64.0±0.5 26.3±0.6 -47.5±0.7
GEM [8] 4.8±0.5 -87.8±0.2 10.7±0.1 -81.5±0.3 18.2±0.2 -70.6±0.5 31.3±0.1 -58.5±0.2
TWP [7] 4.9±0.0 -89.0±0.4 8.3±0.4 -66.1±1.3 14.0±0.4 -57.6±1.5 22.0±0.4 -47.6±0.5
LwF [6] 4.9±0.0 -87.9±1.0 10.5±0.1 -78.9±0.3 17.4±0.3 -66.2±0.5 28.6±0.1 -52.6±0.6

ER-GNN [12] 30.3±1.5 -54.0±1.3 10.9±0.2 -77.5±0.5 19.8±1.2 -59.9±1.3 31.6±0.6 -34.8±1.3
Joint 46.4±1.4 - 47.7±0.3 - 45.2±0.7 - 43.6±0.3 -

The tutorial on using CGLB and repeating the results reported in our paper are provided on our
Github page https://github.com/QueuQ/CGLB with examples.

Our pipelines for both node-level and graph-level tasks are highly modularized to facilitate the
implementation and evaluation of new continual graph learning methods on CGLB.

We exemplify the implementation of node-level methods, and the generalization to graph-level
methods is straightforward. The newly implemented method should be contained in a python script
file under the directory CGLB/NCGL/Baselines. Suppose we are implementing a method named A,
then an CGLB/NCGL/Baselines/A_model.py containing the implementation of the method should
be created. The implementation is flexible as long as it satisfies the input format. Specifically, the
python class of the new method should contain an observe() function for model training on a single
task, whose input include the task configurations and the data. Details on the input format could be
found in any xxx_model.py file under the directory CGLB/NCGL/Baselines.

4 Broader Impact

Our proposed benchmark can greatly facilitate the development of continual graph learning since it
provides a comprehensive, fair, and standard protocol to evaluate and compare different CGL models.
However, CGLB still has space for improvements, which will be targeted in our future research. For
example, currently, we haven’t included any task concerned with the privacy issue. Since a majority
of graph related applications are concerned with privacy-related scenarios such as the social networks
and the co-purchasing networks, the privacy preserving continual graph learning will inevitably
become an important problem. In the future, we will keep track of the newly emerged problems on
CGL and enhance CGLB by incorporating new benchmark tasks as well as new baseline results and
keep improving the toolkit for result analysis.

References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-

laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 139–154, 2018.

[2] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[3] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[4] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy
of Sciences, 114(13):3521–3526, 2017.

[5] Mufei Li, Jinjing Zhou, Jiajing Hu, Wenxuan Fan, Yangkang Zhang, Yaxin Gu, and George
Karypis. Dgl-lifesci: An open-source toolkit for deep learning on graphs in life science. ACS
Omega, 2021.

11

https://github.com/QueuQ/CGLB
https://github.com/QueuQ/CGLB/tree/master/NCGL/Baselines
https://github.com/QueuQ/CGLB/tree/master/NCGL/Baselines

[6] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(12):2935–2947, 2017.

[7] Huihui Liu, Yiding Yang, and Xinchao Wang. Overcoming catastrophic forgetting in graph
neural networks. arXiv preprint arXiv:2012.06002, 2020.

[8] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
In Advances in Neural Information Processing Systems, pages 6467–6476, 2017.

[9] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3(2):127–163,
2000.

[10] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019.

[11] Yanli Wang, Jewen Xiao, Tugba O Suzek, Jian Zhang, Jiyao Wang, Zhigang Zhou, Lianyi Han,
Karen Karapetyan, Svetlana Dracheva, Benjamin A Shoemaker, et al. Pubchem’s bioassay
database. Nucleic acids research, 40(D1):D400–D412, 2012.

[12] Fan Zhou and Chengtai Cao. Overcoming catastrophic forgetting in graph neural networks with
experience replay. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 4714–4722, 2021.

12

	Additional Details on the Experimental Settings and Benchmark Construction
	Additional Details on the Experimental Settings
	Additional Explanations on the Evaluation Metrics
	Class Imbalance Problem
	Classifier for Class-IL Scenario
	Task Statistics

	License
	Additional Experimental Results
	Investigation on the Influence of GNN backbones
	Additional Results on the Performance Matrix Visualization
	Further Analysis on the Model Performances on G-CGL tasks
	Additional Results with Less Training Data
	Studies on the Number of Classes in each Task
	Benchmark Usages & Implementing New Methods with CGLB

	Broader Impact

