
A Theoretical proofs565

In this appendix we detail the proofs of the theoretical results in the body text.566

A.1 Complex analysis background567

We recall here the minimal complex analysis background required to appreciate the theoretical results568

of this work. In the following, we recall the definitions of holomorphic and Wirtinger derivatives, the569

Cauchy-Riemann equations and the Cauchy formulas. We refer the reader to Chapter 4 of [S1] for570

proofs as well as an excellent introduction to complex analysis.571

Definition 1 (Holomorphic function). Let U be an open set of C and f : z ∈ U 7→ f(z) ∈ C a572

function. f is holomorphic at a ∈ U if the limit573

lim
z→a

f(z)− f(a)

z − a

exists. This limit is then noted f ′(a). f is holomorphic on U if it is holomorphic ∀a ∈ U .574

Though this definition looks like the definition of differentiability in R, it brings constraints on the575

underlying function f̃ : (x, y) ∈ R2 7→ (Re(f(x + iy), Im(f(x + iy)). The added constraints are576

the Cauchy-Riemann equations, which can be compactly written after defining Wirtinger derivatives:577

Definition 2 (Wirtinger derivatives). Noting ∂/∂x and ∂/∂y the usual partial derivatives in R2,578

the Wirtinger derivatives are defined by:579

∂

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

In this way, z and its complex conjugate z̄ can be thought of as independent variables. We can then580

state the Cauchy-Riemann equations as:581

Theorem 2 (Cauchy-Riemann equations). if f is holomorphic at a ∈ U , then:582

∂f

∂z
(a) = f ′(a),

∂f

∂z̄
(a) = 0. (11)

These constraints ensure that f is locally expandable everywhere in U into a converging power series.583

In particular, it is differentiable at any order and the derivatives can be computed with the:584

Theorem 3 (Cauchy formulas). Let f be holomorphic on U , let γ be any piece-wise continuously585

differentiable closed curve in U going around a ∈ U once and counterclockwise, then:586

f (n)(a) =
n!

2iπ

∮
γ

f(z)

(z − a)n+1
dz. (12)

A.2 Proof of Lemma 1587

Here, we give a more detailed proof of holomorphic EP. We recall the:588

Lemma 1 (Holomorphic Equilibrium Propagation). Let F be a scalar function governing the589

dynamics, so that the holomorphic implicit function theorem can be applied to the fixed point590

equation ∂sF (θ, s∗0, 0) = 0, then the gradient formula of equilibrium propagation (Eq. (2)) holds in591

the sense of complex differentiation.592

Proof. We first detail precisely the set of equations on which the holomorphic implicit function593

theorem is applied. At the free fixed point (θ = θ0, β = 0) that which exists by assumption, we have594

the following set of equations:595

∂F

∂sj
(θ0, s

∗
0, 0) = 0, 1 ≤ j ≤ n,

16

where n is the number of units in the system. The functions ∂sjF are holomorphic by assumption. If596

we further assume that the Hessian of F with respect to s is invertible in (θ0, s
∗
0, 0), i.e.:597

det

(
∂2F

∂si∂sj
(θ0, s

∗
0, 0)

)
i,j

̸= 0,

then the holomorphic version of the implicit function theorem [S2] can be applied and there exists598

an open neighbourhood of (θ = θ0, β = 0) in the complex domain where the implicit map599

(θ, β) 7→ s∗θ,β is holomorphic, and where the fixed point equations hold:600

∂F

∂s
(θ, s∗θ,β , β) = 0.

At such fixed points, we have that the total derivatives of F with respect to either β or θ are equal to601

the partial derivatives, which can be seen by applying the chain rule of complex differentiation using602

Wirtinger derivatives. There are now in principle three contributions to the total derivative of F with603

respect to β:604

dF

dβ
(θ, sθ,β , β) =

∂F

∂β
(θ, sθ,β , β) +

∂F

∂s︸︷︷︸
=0 at a fixed point

· ∂s
∂β

(θ, β) +
∂F

∂s︸︷︷︸
=0 by Cauchy-Riemann (Eq. (11))

· ∂s
∂β

(θ, β), (13)

where s denotes the complex conjugate of s. At the fixed point however, the second term on the right605

hand side cancels by definition. The third term is zero because F is holomorphic, i.e., its derivative606

with respect to the conjugate variable s is zero according to the Cauchy-Riemann condition [S1]. The607

same argument holds for the total derivative with respect to θ.608

Finally, the cross-derivatives of F with respect to complex β and θ can be exchanged, which is a609

consequence of the Schwarz theorem applied to the function (θ, β) 7→ G(θ, β) := F (θ, s∗θ,β , β).610

Therefore we have that:611

∂2G

∂β∂θ
(θ, β) =

∂2G

∂θ∂β
(θ, β),

d

dβ

d

dθ
F (θ, s∗θ,β , β) =

d

dθ

d

dβ
F (θ, s∗θ,β , β),

d

dβ

∂

∂θ
F (θ, s∗θ,β , β) =

d

dθ

∂

∂β
F (θ, s∗θ,β , β), by Eq. (13).

By then applying this equality in β = 0 and θ = θ0, we obtain the EP gradient formula (Eq. (2)) for612

complex differentiation:613

d

dβ

∣∣∣∣
β=0

(
∂F

∂θ
(θ, s∗θ,β , β)

)
=

d

dθ

∂F

∂β
(θ, s∗θ,β , β) =

dL
dθ

,

which concludes the proof.614

A.3 Proof of Theorem 1615

Theorem 1 (Exact gradient from finite teaching signals). Assuming that the conditions of Lemma 1616

are met and let |β| > 0 be the radius of a circular path around 0 in C contained in the open617

set U on which the fixed point s∗θ,β is defined. Further assume that this path is parameterized by618

t ∈ [0, T] 7→ β(t) = |β|e2iπt/T , where i is the imaginary unit. Then the loss gradient is given by:619

dL
dθ

=
1

T |β|

∫ T

0

∂F

∂θ

(
θ, s∗θ,β(t), β(t)

)
e−2iπt/Tdt . (14)

Proof. By assumption the fixed point β 7→ s∗θ,β is defined on an open set U (by the holomorphic620

implicit function theorem) containing the disk of radius |β| centered around 0. In particular, the621

function β ∈ U 7→ ∂θF (θ, s∗θ,β , β), is also holomorphic by composition. The left hand side of622

17

Eq. (4) can thus be computed with the Cauchy formulas (Eq. (12) with f = ∂θF , n = 1, a = 0), and623

γ an arbitrary closed path leading around zero once and counterclockwise in U :624

d

dβ

∣∣∣∣
β=0

(
∂F

∂θ
(θ, s∗θ,β , β)

)
=

1

2iπ

∮
γ

1

β2

∂F

∂θ
(θ, s∗θ,β , β)dβ . (15)

To obtain Eq. (14), we choose γ as a circular path in the complex plane with radius |β| > 0625

parameterized by time t ∈ [0, T] 7→ β(t) = |β|e2iπt/T , where T is a full period. After the change of626

variable dβ = (2iπβ(t)/T)dt in Eq. (15), and using Lemma 1, the loss gradient is given by:627

dL
dθ

=
1

2iπ

∮
γ

1

β2

∂F

∂θ
(θ, s∗θ,β , β)dβ

=
1

2iπ

∫ T

0

1

β(t)2
∂F

∂θ
(θ, s∗θ,β(t), β(t))

(
2iπβ(t)

T

)
dt

=
1

T

∫ T

0

1

β(t)

∂F

∂θ

(
θ, s∗θ,β(t), β(t)

)
dt

=
1

T |β|

∫ T

0

∂F

∂θ

(
θ, s∗θ,β(t), β(t)

)
e−2iπt/Tdt.

628

A.4 Roles of real and imaginary parts in the learning rule629

Recall that for the continuous Hopfield network case the partial derivative of F with respect to a630

parameter wij is the product of pre and post activation (Eq. (6)), so that applying Eq. (4) yields:631

dL
dwij

=
d

dβ

∣∣∣∣
β=0

(
∂F

∂wij
(θ, s∗β , β)

)
︸ ︷︷ ︸

=−σ(s∗i,β)σ(s
∗
j,β)

= −
d
(
σ(s∗i,β)σ(s

∗
j,β)
)

dβ

∣∣∣∣∣∣
β=0

,

which can further be expressed as:632

d
(
σ(s∗i,β)σ(s

∗
j,β)
)

dβ

∣∣∣∣∣∣
β=0

=

(
σ(s∗i,β)

dσ(s∗j,β)

dβ

)∣∣∣∣
β=0

+

(
σ(s∗j,β)

dσ(s∗i,β)

dβ

)∣∣∣∣
β=0

. (16)

Using the same assumptions as Section 3, the map β ∈ U 7→ s∗i,β is holomorphic, and so is the map633

β ∈ U 7→ σ(s∗i,β) by composition. We can thus expand it in a power series around zero:634

σ(s∗i,β) =
∞∑
k=0

βk

k!

dkσ(s∗i,β)

dβk

∣∣∣∣∣
β=0

.

We can then separate the sum into the real and imaginary parts because the series converge absolutely.635

Assuming that β = |β|e2iπt/T , and applying the Euler formula, we obtain:636

Re
(
σ(s∗i,β)

)
=

∞∑
k=0

cos

(
2kπt

T

)
|β|k

k!

dkσ(s∗i,β)

dβk

∣∣∣∣∣
β=0

,

Im
(
σ(s∗i,β)

)
=

∞∑
k=1

sin

(
2kπt

T

)
|β|k

k!

dkσ(s∗i,β)

dβk

∣∣∣∣∣
β=0

. (17)

Therefore, the first derivative (k = 1) with respect to β in Eq. (16) can be obtained by either projecting637

the real part against the cosine function, or imaginary part against the sine function:638

dσ(s∗i,β)

dβ

∣∣∣∣
β=0

=
2

|β|T

∫ T

0

Re
(
σ(s∗i,β)

)
cos

(
2πt

T

)
dt,

=
2

|β|T

∫ T

0

Im
(
σ(s∗i,β)

)
sin

(
2πt

T

)
dt,

18

by orthogonality of the family
(
(t 7→ cos

(
2kπt
T

)
)k≥0, (t 7→ sin

(
2kπt
T

)
)k≥0

)
in L2[0, T]. Note that639

the higher order derivatives with respect to β can be obtained as well by projecting against the640

corresponding cosine or sine function. The same holds for index j by symmetry. As an interesting641

final note, if we define Re1(σ(s∗i,β)) and Im1(σ(s
∗
i,β)), the first order contributions in β to the real and642

imaginary parts of the neural activity, we find that they are the only ones to contribute to the gradient643

computation. We can appreciate that they are related through Im1(σ(s
∗
i,β)) = − T

2π
d
dt Re1(σ(s

∗
i,β)),644

where the time derivative is at the scale of the teaching signal.645

A.5 Derivation of the bias term646

Recall the definition of βk := |β|e2iπk/N , for k ∈ [0, ..., N − 1], N ≥ 2, and the gradient estimate647

(Eq. (8)):648

∇̂(N) :=
1

N |β|

N−1∑
k=0

∂F

∂θ

(
θ, s∗βk

, βk

)
e−2iπk/N .

For simplicity of notation, we rewrite ∂θF (β) := ∂F
∂θ (θ, s

∗
β , β). The function β 7→ ∂θF (β) is649

holomorphic on an open set U including zero, and so is β 7→ s∗β by the holomorphic implicit function650

theorem. We assume the βk are included in U , so that we can expand ∂θF (βk) in a power series651

around zero:652

∂θF (βk) =

∞∑
p=0

βp
k

p!

[
dp

dβp
∂θF

]
(0),

we define Cp :=
[

dp

dβp ∂θF
]
(0). The quantity of interest is C1, since it is the gradient of the loss653

(Eq. (4))654

∂θF (βk) = C0 + βkC1 +

∞∑
p=2

βp
k

p!
Cp

∂θF (βk)

βk
= C0β

−1
k + C1 +

∞∑
p=2

βp−1
k

p!
Cp

1

N

N−1∑
k=0

∂θF (βk)

βk
= C1 + C0

1

N

N−1∑
k=0

β−1
k +

1

N

N−1∑
k=0

∞∑
p=2

βp−1
k

p!
Cp.

The sum symbols on the right can be interchanged thanks to the absolute convergence of the power655

series.656

1

N

N−1∑
k=0

∂θF (βk)

βk
= C1 + C0

1

N

N−1∑
k=0

β−1
k +

∞∑
p=2

Cp

p!

1

N

N−1∑
k=0

βp−1
k

1

N

N−1∑
k=0

∂θF (βk)

βk
= C1 + C0

1

N |β|

N−1∑
k=0

e−2iπk/N +

∞∑
p=1

Cp+1

(p+ 1)!

|β|p

N

N−1∑
k=0

e2iπpk/N .

It remains to evaluate the geometric sums of the form
∑N−1

k=0 e2iπpk/N for p = −1 and p ≥ 1. If N657

divides p, i.e p ≡ 0 (N), then we can write p = Nq and we have:658

N−1∑
k=0

e2iπpk/N =

N−1∑
k=0

e2iπqNk/N =

N−1∑
k=0

e2iπqk =

N−1∑
k=0

1 = N.

If N does not divide p, then the geometric sum of ratio e2iπp/N can be computed:659

N−1∑
k=0

e2iπpk/N =
1− (e2iπp/N)N

1− e2iπp/N
=

1− e2iπp

1− e2iπp/N
=

1− 1

1− e2iπp/N
= 0.

19

Figure 5: a) The shifted sigmoid we used in multi-layered perceptrons experiments. b) The dSiLU
we used in CNNs experiments.

We thus have that:660

1

N

N−1∑
k=0

∂θF (βk)

βk
= C1 + C0

1

N |β|

N−1∑
k=0

e−2iπk/N

︸ ︷︷ ︸
=0

+

∞∑
p=1

Cp+1

(p+ 1)!

|β|p

N

N−1∑
k=0

e2iπpk/N︸ ︷︷ ︸
=0 when p ̸≡0 (N)

1

N

N−1∑
k=0

∂θF (βk)

βk
= C1 +

∞∑
p≡0 (N)

Cp+1|β|p

(p+ 1)!
,

which is the result of Eq. (9).661

A.6 Derivation of the online estimate662

Recall the formula of the online estimate (Eq. (10)):663

∇̃(Tplas) := −
1

Tplas|β|

∫ Tplas

0

σi(t)σj(t)e
−2iπt/Toscdt.

If Tdyn ≪ Tosc, the product of activities can be replaced by its value at the fixed point, and an exact664

gradient is computed after each period (Eq. (7)). Then if Tosc ≪ Tplas, the integral can be divided665

into an integer amount of completed periods plus a remainder: Tplas = kTosc + Trem, where k ∈ N666

and Trem < Tosc. We then have by periodicity that:667

∇̃(Tplas) =
kTosc

kTosc + Trem︸ ︷︷ ︸
→1 when Tplas→∞

dL
dwij

− 1

kTosc + Trem︸ ︷︷ ︸
→0 when Tplas→∞

1

|β|

∫ Trem

0

σ∗
i (t)σ

∗
j (t)e

−2iπt/Toscdt.

In this way, when averaging over large Tplas, the number of completed cycles outweighs the current668

period. Thus, by simply averaging over many oscillation cycles allows estimating gradients without669

explicit separate phases.670

B Detailed architecture671

B.1 Dynamics for multi-layer perceptrons672

Assuming a number of L layers, we note sl the subset of units in layer l, with s0 = x and y the one673

hot class label. We note Wl, and bl the weight and biases of layer l ≥ 1. The energy function F for674

a MLP optimizing the cross entropy loss reads:675

F (θ, s, β,y) =

L−1∑
l=1

[
1

2
∥sl∥2 − σ(sl−1)

⊤ ·Wl · σ(sl)− b⊤
l · σ(sl)

]
− βy⊤ · log(sL).

20

The activation function used for multi-layer perceptrons is the shifted sigmoid z 7→ 1/(1 + e−4z+2)676

(Fig. 5a). We use the layer-wise discrete dynamics introduced by [S3, S4], which read:677 
sl ← σ

(
Wlsl−1 +Wl+1

⊤sl+1 + bl + ηl

)
, for 1 ≤ l ≤ L− 2

sL−1 ← σ
(
WL−1sL−2 + βWL

⊤(y − sL) + bL−1 + ηL−1

)
,

sL ← Softmax (WLsL−1 + bL) ,

where ηl is an optional Gaussian noise added for Fig. 3c and Table 1. The noise was sampled at each678

time step.679

B.2 Dynamics for convolutional neural networks680

The activation function used for CNNs is a sigmoid-weighted linear unit [S5] (Fig. 5b):681

dSiLU(z) :=
(z
2

) 1

1 + e−z
+
(
1− z

2

) 1

1 + e−z+2
.

We denote by P the pooling operation, and P̃ the corresponding unpooling operation. ‘∗’ denotes the682

convolution when preceded by W and transpose convolution when preceded by W⊤. The energy683

function F for a CNN optimizing the cross entropy loss reads:684

F (θ, s, β,y) =
∑

l∈{Conv}

[
1

2
∥sl∥2 − σ(sl−1)

⊤ · P(Wl ∗ σ(sl))− b⊤
l · σ(sl)

]
∑

l∈{FC}

[
1

2
∥sl∥2 − σ(sl−1)

⊤ ·Wl · σ(sl)− b⊤
l · σ(sl)

]
− βy⊤ · log(sL).

We use the layer-wise discrete dynamics introduced by [S3, S4], which read:685 

sl ← σ
(
P(Wl ∗ sl−1) +W⊤

l+1 ∗ P̃(sl+1) + bl

)
, for l ∈ {Conv layers}

sl ← σ
(
Wlsl−1 +Wl+1

⊤sl+1 + bl

)
, for l ∈ {FC layers}

sL−1 ← σ
(
WL−1sL−2 + βWL

⊤(y − sL) + bL−1

)
,

sL ← Softmax(WLsL−1 + bL).

We used Softmax pooling [S6] with a tunable temperature τ , instead of the non-holomorphic Max686

pooling. The output y of Softmax pooling of an input x is defined for a kernel neighbourhood R by:687

y =
∑
i∈R

(
exi/τ∑

j∈R exj/τ

)
xi.

Note that Softmax pooling interpolates between Average pooling (τ →∞) and Max pooling (τ → 0).688

C Layer-wise comparison of the gradient in a deep network689

Here we show in Fig. 6 the complete layer-wise cosine similarities between the estimates of holomor-690

phic EP for various N and the true gradient computed by automatic differentiation.691

D Dynamical stability in the complex plane692

We show in Fig. 7 how the area in C where the fixed point empirically exists varies with different693

architecture choices. The data used for each panel is a digit from the MNIST dataset. As in Fig.2b),694

dark blue means that the fixed point exists, whereas light areas denote divergence. These diverging695

areas could be due to the poles of the activation functions used. For example, the sigmoid function696

21

Machine precision

Figure 6: The complete layer-wise cosine similarity of Fig. 4a).

22

Figure 7: Map of convergence to a fixed point for complex β in various settings. a) MLP with linear
activation function and low weight initialization. b) MLP with shifted sigmoid activation and default
weight initialization. c) Same as b) but with reduced weight initialization. d) Same as b) but with
dSiLU activation function. e) Zoom at a frontier between stable and unstable regions. f) Small CNN
with dSiLU activation and Softmax pooling.

23

z 7→ 1/(1 + e−z) has {(2k + 1)iπ; k ∈ Z} as a set of poles where it diverges. Although we did not697

systematically study this phenomenon in this work, we strongly suspect that these unstable areas are698

partly the result of the teaching signal being too strong or the weights being poorly distributed, thereby699

driving the complex neural activities near to the poles. To some extent, the poles can be brought700

farther by introducing a coefficient in the exponential, but it results in flatter activation functions701

on the real axis, so a trade-off should be found. In practice, we found that choosing reasonably the702

activation function, weight initialization, and teaching radius |β| lead to enough stable areas around 0703

to compute the gradient.704

E Hyperparameters705

E.1 MNIST experiments706

The digits were rescaled by 255 and flattened. The hyperparameters used for training are reported in707

Table 3, and the training errors are reported in Table 4.708

Table 3: Hyperparameters used for the MNIST training experiment of Table 1.

Hyperparameter Classic EP hEP Online hEP

Batch size 20 20 20
Learning rate 5e-2 5e-2 5e-2
Epochs 50 50 50
|β| 0.1 and 0.4 0.4 0.4
Tfree 350 200 200*
Tnudge 350 50 N/A
Tosc N/A N/A 300
Tplas N/A N/A 900
N N/A 10 10
Noise** 4e-2 4e-2 4e-2
* Only used for evaluation
** Standard deviation of the Gaussian noise for experiments with noise.

Table 4: MNIST training and validation errors for classic EP [10], hEP, and online hEP, with and
without noise. All results are averages (n = 3) ± one standard deviation.

Class. EP, |β| = 0.1 Class. EP, |β| = 0.4 hEP, |β| = 0.4] Online hEP

Noise Train (%) Val (%) Train (%) Val (%) Train (%) Val (%) Train (%) Val. (%)

No 0.05 ±0.02 1.87 ±0.01 0.19 ±0.05 2.24 ±0.05 0.02 ±0.01 1.97 ±0.08 0.11 ±0.01 2.05 ±0.02

Yes 88.8 ±0.0 88.7 ±0.0 1.96 ±0.2 3.01 ±0.1 0.14 ±0.03 1.96 ±0.07 0.13 ±0.03 1.91 ±0.16

E.2 Large-scale experiments709

In the training experiments for CIFAR-10, CIFAR-100, and ImageNet 32× 32, the training data was710

normalized, then augmented with 50% chance random horizontal flips, resized to 36× 36 resolution711

with padding, and cropped randomly back to 32× 32. The optimizer used was stochastic gradient712

descent with momentum. Pooling was applied at all layers for the five-layer CNN, and every other713

layer starting with the first layer in the seven-layer CNN.714

F Simulations details715

All simulations were performed on an in-house GPU cluster or workstations. Each simulation in716

Table 2 was run in parallel on four NVIDIA V100 GPUs. The training runs on ImageNet 32× 32717

took 5.5 days each for EP, and a few hours for BP. The runs on CIFAR-10 and CIFAR-100 took one718

day on average depending on the architecture (5 or 7 layers) and the number of time steps used for719

24

Table 5: Hyperparameters used for the VGG training experiments of Table 2 and Fig.4c.

Hyperparameter CIFAR-10 CIFAR-100 ImageNet 32× 32 CIFAR-10 (Fig.4c)

Batch size 128 128 256 128

Channel sizes [128, 256, 512, 512] [128, 128, 256, 256, 512, 512]
Kernel sizes [3, 3, 3, 3] [3, 3, 3, 3, 3, 3]
Strides [1, 1, 1, 1] [1, 1, 1, 1, 1, 1]
Paddings [1, 1, 1, 0] [1, 1, 1, 0, 1, 0]
SoftPool window 2× 2 2× 2
SoftPool stride 2 2
SoftPool temp. 1 10

Initial LRs* [25, 15, 10, 8, 5] × 1e-2 [5, 4, 4, 3, 3, 2, 2] × 1e-2
Final LRs [25, 15, 10, 8, 5] × 1e-9 [5, 4, 4, 3, 3, 2, 2] × 1e-9

Weight decay 2e-3 1e-2 5e-4 [5, 5, 5, 5, 5, 5, 10] × 1e-4
Momentum 0.9 0.9 0.9 0.9
Epochs 90 90 90 90
|β| 1.0 1.0 1.0 1.0
Tfree 250 250 250 260
Tnudge 60 60 60 60
N 2 2 2 2 and 4
* Learning rates were decayed with cosine annealing without restart [S7].

the dynamics. The use of complex numbers, although seamlessly implementable with Jax, results720

in longer simulation times due to the 64 bit-precision requirement (32 bit-precision for real and721

imaginary parts respectively).722

25

Supplementary References723

[S1] Walter Appel. Mathematics for physics and physicists. 2007.724

[S2] Henri Cartan. Théorie élémentaire des fonctions analytiques d’une ou plusieurs varibales725

complexes: Avec le concours de Reiji Takahashi. Hermann, 1961.726

[S3] Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, and Benjamin Scellier.727

Updates of equilibrium prop match gradients of backprop through time in an rnn with static input.728

Advances in neural information processing systems, 32, 2019.729

[S4] Axel Laborieux, Maxence Ernoult, Benjamin Scellier, Yoshua Bengio, Julie Grollier, and Damien730

Querlioz. Scaling equilibrium propagation to deep convnets by drastically reducing its gradient731

estimator bias. Frontiers in neuroscience, 15:129, 2021.732

[S5] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network733

function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.734

[S6] A Stergiou, R Poppe, and G Kalliatakis. Refining activation downsampling with softpool. arxiv735

2021. arXiv preprint arXiv:2101.00440.736

[S7] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint737

arXiv:1711.05101, 2017.738

26

	Introduction
	Background and previous work
	Theoretical results
	Experiments
	Discussion
	Theoretical proofs
	Complex analysis background
	Proof of Lemma 1
	Proof of Theorem 1
	Roles of real and imaginary parts in the learning rule
	Derivation of the bias term
	Derivation of the online estimate

	Detailed architecture
	Dynamics for multi-layer perceptrons
	Dynamics for convolutional neural networks

	Layer-wise comparison of the gradient in a deep network
	Dynamical stability in the complex plane
	Hyperparameters
	MNIST experiments
	Large-scale experiments

	Simulations details

