
Appendix

A Latency-Driven Slimming Algorithm

We provide the details of the proposed latency-driven fast slimming in Alg. 1. Formulations of the
algorithm can be found in Sec. 4.2. The proposed latency-driven slimming is speed-oriented, which
does not require retraining for each sub-network. The importance score for each design choice is
estimated based on the trainable architecture parameter ↵.

Algorithm 1 Fast Latency-Driven Slimming based on Importance Estimations
Require: Latency lookup table T = {MB4D{dim = 16×},MB3D{dim = 16×}}
Ensure: Final latency satisfy budget ∑T ≈ T

Super-net Pretraining:
for epoch do

for each iter do
for MPi,j do
Xi+1 = ∑n

e
(↵n

i
+✏n

i
)�⌧

∑n
e
(↵n

i
+✏n

i
)�⌧ ⋅ MPi,j(Xi),

end forL← criterion(Y , label)
backpropagate (L), update parameters

end for
end for ▷ get super-net
Latency-driven slimming:
Initialize action space A ∈ {Depth Reduction (DR), Width Reduction (WR), MB3D Reduction
(MR)}
Compute importance of MPi,j by Ii,j = ↵

4D
i

↵I

i

, or
↵

3D
i
+↵4D

i

↵I

i

while ∑T > T do

DR← argmin
Ii,j

(MPi,j), WR← argmin∑j
Ii,j
(MPi,j), MR← First − MB3D,

Execute Action = argmin
accuracy drop

Ti,j

(A)
end while ▷ get sub-net with target latency
Train the searched architecture from scratch:
Similar to super-net training. ▷ get final model

B Ablation Analysis

Our major conclusions and speed analysis can be found in Sec. 3 and Fig. 2. Here we include more
ablation studies for different design choices, provided in Tab. 3, taking the EfficientFormer-L3 as an
example. The latency is measured on iPhone 12 with CoreML, and the top-1 accuracy is obtained
from the ImageNet-1K dataset.

Patch Embedding. Compared to non-overlap large-kernel patch embedding (V5 in Tab. 3), the
proposed convolution stem in EfficientFormer (V1 in Tab. 3) greatly reduces inference latency
by 48%, while provides 0.7% higher accuracy. We demonstrate that convolution stem [23] is not
only beneficial to model convergence and accuracy but also boosts inference speed on the mobile
device by a large margin, thus can serve as a good alternative to non-overlapping patch embedding
implementations.

MHSA and Latency-Driven Search. Without the proposed 3D MHSA and latency-driven search,
EfficientFormer downgrades to a pure 4D design with pool mixer, which is similar to PoolFormer [6]
(the patch embeddings and normalizations are different). By comparing EfficientFormer with V1
in Tab. 3, we can observe that the integration of 3D MHSA and latency-driven search greatly boost

17



top-1 accuracy by 2.1% with minimal impact on the inference speed (0.5 ms). The results prove that
MHSA with the global receptive field is an essential contribution to model performance. As a result,
though enjoying faster inference speed, simply removing MHSA [6] greatly limits the performance
upper bound. In EfficientFormer, we smoothly integrate MHSA in a dimension consistent manner,
obtaining better performance while simultaneously achieving ultra fast inference speed.

Normalization. Apart from the CONV-BN structure in the 4D partition of EfficientFormer, we
explore Group Normalization (GN) and channel-wise Layer Normalization (LN) in the 4D partition
as employed in the prior work [6]. By comparing V1 and V2 in Tab. 3, we can observe that the GN
(V2-GN) can only slightly improve accuracy (0.3% top-1) but incurs latency overhead as it can not
be folded at the inference stage. Similarly, applying LN (V2-LN) gets higher latency than BN while
the performance improvement is negligible. As a result, we apply the CONV-BN structure in the
entire 4D partition in EfficientFormer.

Activation Functions. We explore ReLU and HardSwish (V3 and V4 in Tab. 3) in addition to GeLU
employed in this work (V1 in Tab. 3). It is widely agreed that ReLU is the simplest and fastest
activation function, while GeLU and HardSwish wield better performance. We observe that ReLU
can hardly provide any speedup over GeLU on iPhone 12 with CoreMLTools, while HardSwish
is significantly slower than ReLU and GeLU. We draw a conclusion that the activation function
can be selected on a case-by-case basis depending on the specific hardware and compiler. In this
work, we use GeLU to provide better performance than ReLU while executing faster. For a fair
comparison, we modify inefficient operators in other works according to the supports from iPhone 12
and CoreMLTools, e.g., report LeViT latency by changing HardSwish to GeLU.

Dimension Consistent Design. We perform the latency analysis on the Nvidia A100 GPU to show
that the proposed dimension-consistent (D-C) design is beneficial besides the iPhone. We deploy the
PyTorch models with batch size 64 as ONNX format and use TensorRT to compile and benchmark
the latency. We report the latency results averaged over 1,000 runs in Tab. 4. For the non-D-C design,
we revert the proposed Meta3D block into 4D implementation, where linear projections and MLPs are
all implemented with CONV1×1-BN instead of 3D-Linear layers, and reshaping operations become
necessary in order to perform multi-head self-attention. With this configuration, attention blocks
can be arbitrarily placed along with Meta4D blocks without following dimension-consistent design,
while frequent reshaping is introduced. We conduct the comparison on the following two models,
both with a D-C version and a non-D-C one with the exact same computation complexity:

• EfficientFormer-L7, which has 8 attention blocks.

• DummyNet, a handcrafted dummy model with a total of 16 attention blocks.

As can be seen from Tab. 4, the proposed dimension-consistent design achieves faster inference speed
than the non-dimension-consistent design for both EfficientFormer-L7 and the DummyNet.

Latency Driven Slimming. Besides the hardware-efficient architecture design, it is still crucial to
find appropriate depth and width configurations for the model to achieve satisfactory performance. To
understand the benefits of our latency driven slimming, we randomly sample networks from our search
space that have the same computation, i.e., 1.3 GMACs, as our searched model EfficientFormer-L1.
The sampled networks are denoted as Random 1 to Random 5, which are either deeper and narrower,
or shallower and wider than EfficientFormer-L1. We train the sampled models on ImageNet-1K with
the same training recipe as EfficientFormer-L1. The comparison between these models is shown in
Tab. 5. As can be seen, our searched EfficientFormer-L1 has better latency or higher top-1 accuracy
on ImageNet-1K than the randomly sampled networks, proving the advantages of our proposed
latency driven slimming.

C Analysis of Hardware Utilization

EfficientFormer improves the latency vs. accuracy trade-off through better architecture design so that
higher hardware utilization is achieved. To understand hardware utilization, we employ throughput in
TFLOPS (Tera FLOPs per Second) as the evaluation metric, which is calculated by model computation
cost (FLOPs) divided by execution time. Models with higher throughput (TFLOPS) better exploit the
computation power of the hardware.

18



Table 3: Ablation analysis for the design choice on EfficientFormer-L3. V1-5 refers to variants with
different operator selections.

Model CONV stem Norm. Activation MHSA Search Top-1 Latency (ms)
EfficientFormer ✓ BN GeLU ✓ 82.4 3.0

V1 ✓ BN GeLU 80.3 2.5
V2-GN ✓ GN GeLU 80.6 3.0
V2-LN ✓ LN GeLU 80.3 3.7

V3 ✓ BN ReLU 79.3 2.5
V4 ✓ BN HardSwish 80.3 32.4
V5 BN GeLU 79.6 5.8

Table 4: Analysis of dimension-consistent (D-C) design vs. non-D-C placement of attention blocks.
The latency (ms) is measured on the Nvidia A100 GPU with TensorRT.

Model D-C TensorRT-A100 (ms)
EfficientFormer-L7 Y 30.67
EfficientFormer-L7 N 34.73

DummyNet Y 7.07
DummyNet N 11.93

Table 5: Analysis of latency driven slimming. All random networks are trained with the same training
strategy as the EfficientFormer-L1 on ImageNet-1K. The latency is obtained on iPhone 12 NPU with
CoreMLTools.

Model GMACs Latency (ms) Top-1 (%)
EfficientFormer-L1 1.3 1.6 79.2

Random 1 1.3 1.6 77.8
Random 2 1.3 1.7 78.3
Random 3 1.3 1.5 74.7
Random 4 1.3 1.6 73.3
Random 5 1.3 1.5 76.7

DeiT-S

ResNet50
EF-LS-14

EF-LS-13

EF-LS-12

EF-LS-11

EF-LS-10
EF-LS-9

EF-LS-8

EF-L1
EF-LS-7

EF-LS-6

EF-LS-5

EF-LS-4
EF-LS-3

PoolFormer-S24

MobileViT-XS
Mobile-Former-508M

EfficientNet-B0
MobileNetV2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
hr
ou
gh
pu
t

GMACs

Figure 4: Analysis of hardware utilization on iPhone 12 NPU.

19



Table 6: Architecture details of EfficientFormer. Exp refers to the expansion ratio of the MLP block.
DQK is the dimension of Queries and Keys.

Stage Resolution Type Config EfficientFormer
L1 L3 L7

stem
H

2
× W

2

Patch
Embed.

Patch Size k = 3 × 3, s = 2
Embed. Dim. 24 32 48

H

4
× W

4

Patch
Embed.

Patch Size, k = 3 × 3, s = 2
Embed. Dim. 48 64 96

1 H

4
× W

4 MB4D
Token Mixer Pool

�Embed. Kernel

Stride Exp
� �48 3

1 4� × 3 �64 3
1 4� × 4 �96 3

1 4� × 6

2 H

8
× W

8

Patch
Embed.

Patch Size k = 3 × 3, s = 2
Embed. Dim. 96 128 192

MB4D
Token Mixer Pool

�Embed. Kernel

Stride Exp
� �96 3

1 4� × 2 �128 3
1 4� × 4 �192 3

1 4� × 6

3 H

16
× W

16

Patch
Embed.

Patch Size k = 3 × 3, s = 2
Embed. Dim. 224 320 384

MB4D
Token Mixer Pool

�Embed. Kernel

Stride Exp
� �224 3

1 4� × 6 �320 3
1 4� × 12 �384 3

1 4� × 8

4

H

32
× W

32

Patch
Embed.

Patch Size k = 3 × 3, s = 2
Embed. Dim. 448 512 768

MB4D
Token Mixer Pool

�Embed. Kernel

Stride Exp
� �448 3

1 4� × 3 �512 3
1 4� × 3 �768 3

1 4� × 0
HW

322 MB3D
Token Mixer MHSA

�Embed. DQK

Heads Exp
� �448 32

8 4 � × 1 �512 32
8 4 � × 3 �768 32

8 4 � × 8

To fairly compare with baseline models under different computation complexity, we Linearly Scale
the depth and width of EfficientFormer-L1 to obtain a series of models (EfficientFormer-LS-1 to
EfficientFormer-LS-14), with the number of parameters ranging from 1.1M to 31.3M and MACs
from 0.09G to 3.9G, and benchmark the latency and utilization on iPhone 12 NPU.

As in Fig. 4, super-tiny models still run at about 1ms, such as EfficientFormer-LS-{1, 2, 3}, where the
throughput is low and the hardware is not fully exploited. Data processing and transferring become
the bottleneck. As a result, making the model super small with sacrificed accuracy is less valuable.
In contrast, our 1.3GMACs model, EfficientFormer-L1 lies at a sweet point, enjoying fast inference
speed (1.6ms) while maintaining high accuracy.

Furthermore, we can observe that EfficientFormer variants outperform both CNNs and ViTs in
hardware utilization across different computation complexity levels. For instance, at 4-GMACs level,
EfficientFormer-LS-14 outperforms DeiT-S by 3.3× higher TFLOPS and outperforms PoolFormer by
2.2×, achieving comparable throughput to ResNet50. In the lightweight domain, EfficientFormer-
LS-4 has 2.2× higher TFLOPS than EfficientNet-B0. We demonstrate that with the proposed
hardware-friendly design, EfficientFormer naturally has better hardware utilization.

D Architecture of EfficientFormers

The detailed network archiecture for EfficientFormer-L1, EfficientFormer-L3, and EfficientFormer-L7
is provided in Tab. 6. We report the resolution and number of blocks for each stage. In addition,
the width of EfficientFormer is specified as the embedding dimension (Embed. Dim.). As for the
MHSA block, the dimension of Query and Key is provided, and we employ eight heads for all
EfficientFormer variants. MLP expansion ratio is set as default (4), as in most ViT arts [3].

20


	Introduction
	Related Work
	On-Device Latency Analysis of Vision Transformers
	Design of EfficientFormer
	Dimension-Consistent Design
	Latency Driven Slimming

	Experiments and Discussion
	Image Classification
	EfficientFormer as Backbone
	Discussion

	Conclusion
	Latency-Driven Slimming Algorithm
	Ablation Analysis
	Analysis of Hardware Utilization
	Architecture of EfficientFormers

