
Avalon: A Benchmark for RL Generalization Using
Procedurally Generated Worlds

Joshua Albrecht Abraham J. Fetterman Bryden Fogelman Ellie Kitanidis

Bartosz Wróblewski Nicole Seo Michael Rosenthal Maksis Knutins

Zachary Polizzi James B. Simon Kanjun Qiu

Generally Intelligent∗

Abstract

Despite impressive successes, deep reinforcement learning (RL) systems still fall
short of human performance on generalization to new tasks and environments that
differ from their training. As a benchmark tailored for studying RL generalization,
we introduce Avalon, a set of tasks in which embodied agents in highly diverse
procedural 3D worlds must survive by navigating terrain, hunting or gathering food,
and avoiding hazards. Avalon is unique among existing RL benchmarks in that
the reward function, world dynamics, and action space are the same for every task,
with tasks differentiated solely by altering the environment; its 20 tasks, ranging
in complexity from eat and throw to hunt and navigate, each create worlds in
which the agent must perform specific skills in order to survive. This setup enables
investigations of generalization within tasks, between tasks, and to compositional
tasks that require combining skills learned from previous tasks. Avalon includes
a highly efficient simulator, a library of baselines, and a benchmark with scoring
metrics evaluated against hundreds of hours of human performance, all of which
are open-source and publicly available. We find that standard RL baselines make
progress on most tasks but are still far from human performance, suggesting Avalon
is challenging enough to advance the quest for generalizable RL.

1 Introduction

A central goal of reinforcement learning (RL) is to build systems that can master a spectrum of skills in
environments as noisy and diverse as the real world. While RL algorithms have matched or exceeded
human performance on a number of narrowly-defined tasks such as Go and Atari [4, 7, 28, 34, 40],
existing models typically fail to generalize to unseen tasks and environments, even when testing on
environments drawn from the same distribution as training [11, 45, 46]. The real-world setting is far
more diverse and difficult than most existing RL benchmarks; agents must seamlessly interact in a
highly variable 3D environment, with no access to state information or ability to rely on hard-coded
discrete actions, requiring sensory inputs and a high-dimensional action space.

∗Correspondence to avalon@generallyintelligent.com.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Figure 1: Avalon is an open-world survival game requiring an agent to navigate hazards and
find food. Top: aerial view of a procedurally-generated world. Bottom row, left to right: examples of
fruit to consume, predators to avoid, terrain to navigate, and buildings to explore.

To aid the study of generalization in a more realistic setting that is still tractable for current RL
algorithms, we present Avalon2: a benchmark and high-performance simulator. Avalon is a 3D
open-world survival game in which agents must navigate terrain, find food, use tools, hunt prey, and
avoid predators and other dangers. Highly diverse 3D worlds are procedurally generated with many
biomes, plants, items with distinct properties, and animals with unique behaviors. In any particular
world, the agent’s sole objective is to survive for as long as possible by finding and eating all food
while avoiding hazards. Avalon agents are embodied and receive visual and proprioceptive input,
forcing them to learn representations rather than relying on latent state information that would be
inaccessible in the real world.

We formulate Avalon as a multi-task RL benchmark in which each task is shaped by environmental
pressures rather than a task-dependent reward function. This enables all tasks to have shared dynamics
and reward, making generalization more feasible compared to disjoint task spaces such as Atari’s
[3] where reduced or even negative transfer learning has been noted [31] [36]. Twenty tasks ranging
in complexity from eat and throw to hunt and survive are included in the benchmark. A world
generator for each task carefully alters a world so that certain skills are required to complete
the task. For example, the climb generator only spawns food in places that cannot be accessed
without climbing. Thus, Avalon’s tasks are effectively a set of functions for procedurally generating
environments that force the agent to learn the requisite skill to survive.

Avalon facilitates the exploration of a variety of forms of generalization:

To unseen tasks that are structurally similar to previous tasks. All tasks in Avalon share the same
transition dynamics, action space, observation space, and simple reward based on the agent’s energy
level. Environment variation between tasks and within tasks is executed through the same mechanism
i.e. sampling from a subset of the full distribution of possible worlds. Indeed, one could imagine
widening the scope of any task-specific world generator until it encompasses some or all other tasks.
This notion of task “adjacency” enables the agent to exploit shared structure between tasks.

To unseen combinations of tasks. In addition to 16 basic generators that map to basic skills, four
compositional generators create worlds that require the agent to exercise random combinations,
permutations, and variations of those skills. These compositional generators can be used to evaluate

2Named after a mythical land of Arthurian legend whose etymology is “the isle of fruit trees,” since Avalon’s
worlds are mostly islands with fruit trees wherein the ultimate goal is to find and eat the fruit.

2



the agent’s performance on unseen tasks that require many skills at once and provide a new setting
to study the generalizability and compositionality of learned skills. In other multi-task setups,
compositional tasks are often difficult to express. For example, multi-term reward functions quickly
become cumbersome, and designing goal states that require complex sequential tasks is challenging.

To unseen environments within tasks. Unlike many popular RL benchmarks (e.g. Atari and
DeepMind Control [2]) where the test environment is identical to the train environment, Avalon has
significantly more variation between worlds sampled from the same distribution. Even compared
to other procedurally generated benchmarks like ProcGen [8] and MineRL [15], Avalon contains
dramatically more factors of variation, each of which can be individually and finely controlled.
Agents in Avalon must generalize to IID sampled test environments in a setting with significantly
more realism and complexity than comparable benchmarks.

Avalon’s continuous action space maps to a virtual reality (VR) headset and controllers. Our choice of
observation and action space allows us to measure human performance by recording demonstrations
using a VR headset. We include this dataset of human VR actions, with 215 hours of human
playthroughs on 1000 worlds, which may be of independent research interest.

Our benchmark includes a number of state-of-the-art RL algorithms as baselines. In Section 6,
we show their performance on our tasks and highlight training mechanisms enabled by our world
generation setup that help them achieve non-trivial (though still far short of human) performance.

As a final contribution, we are fully open-sourcing our environment, which represents a significant
engineering effort and includes the following key contributions:

• Efficiency. At 7000 SPS (steps per second), Avalon is on-par with the fastest comparable
simulator [38].

• Usability. Avalon is fully open-source, built on Godot (a free game engine with an intuitive
visual editor), and includes training scripts and debugging tools.

• Configurability. Control over the many factors of variation in the world generators enables
users to fully control the training procedure and learning curriculum.

Our hope is that the Avalon benchmark and simulator will serve as useful tools for the RL community
in the quest to build more general, capable learning systems.

2 Related work

Avalon is the only benchmark where 1) agents learn from high-dimensional inputs in 3D procedurally
generated worlds with a continuous action space, 2) the observation space, action space, transition
dynamics, and reward are held constant across all tasks, 3) a very large number of factors of variation
can be finely controlled in order to isolate and explore specific types of generalization, and 4) the
underlying simulator is very fast and easy to use. To achieve these goals, Avalon builds on many
ideas from previous works, discussed below.

Games have historically been the gold standard for benchmarking reinforcement learning methods
[4, 7, 40]. The Arcade Learning Environment [3] and DeepMind Lab [2] are early examples of
multi-task benchmarks that encourage mastery across several tasks. On these benchmarks, overfitting
due to trajectory memorization [23] and poor or negative transfer across tasks [31, 36] remain issues.

Procedurally generated benchmarks such as ProcGen [8], MineRL [15], Malmo [19], and MetaDrive
[27] aim to address per-task overfitting by varying environmental factors such as the background
and placement of objects and obstacles. However, most rely on a single random seed for procedural
content generation or allow users to vary only a few (usually discrete) parameters. MineRL and
Malmo also run at less than 50 steps per second on a single GPU (over 100 times slower than Avalon),
which makes their use for large experiments slow and expensive.

Other works such as Meta-World [44] attempt to address poor task transfer by unifying the observation
space, action space, and transition dynamics across all tasks and adding controllable parametric
variation of object and goal positions in order to increase shared structure across tasks. However,
these environments rely on direct access to state information and include per-task handcrafted dense
rewards, both of which limit applicability to the broad set of tasks that general agents are expected to
solve.

3



Figure 2: Example tasks bridge, fight, and stack (left). World generators for each task shape
the environment to require completion of the task to reach food. Tasks can be outdoor or inside
buildings in the environment. Buildings also enable open (right), where doors with complex locking
mechanisms must be solved to get to food.

Other benchmarks such as Crafter [16], Obstacle Tower [22], and the Animal-AI Environment [5]
avoid per-task rewards by defining a single reward function. These environments all have discrete
action spaces and are limited in terms of diversity. Crafter is a 2D world; Obstacle Tower has few
game mechanics: opening doors, picking up keys, pushing blocks; and Animal-AI tasks exist in a flat
arena with a dozen object options.

Several other environments have substantially more diversity. MiniHack [37] is a sandbox for
designing environments in the text-based game NetHack [26], which has a randomized system of
dungeons with many creatures and items. However, mastery of NetHack is elusive even for humans
and requires extensive game-specific knowledge, making it ill-suited to generalization research, and
NetHack’s symbolic inputs do not test an agent’s ability to learn visual representations. By contrast,
XLand [29] is a 3D multi-agent environment with visual inputs and a single reward function across
tasks. Agents in XLand operate in a low-dimensional, discrete action space and are provided with
explicit state information about the goals and game predicates, which severely limits the tasks that
can be expressed in this constrained symbolic system. Additionally, XLand is not publicly released,
so it cannot be used as a benchmark.

A separate class of related work includes photorealistic embodied AI environments such as Habitat
Lab [38], GibsonEnv [43], Megaverse [32], RFUniverse [12] and BEHAVIOR [41], 3D simulators
such as ThreeDWorld [13], and dataset generators such as Kubric [14]. These are valuable contribu-
tions for embodied AI and visual representation learning, but they are not designed as benchmarks
for exploring RL generalization. Additionally, most of these simulators run at less than 100 steps
per second (SPS) on a single GPU, which is prohibitively slow for RL research. Habitat Lab runs
significantly faster (around 8,000 SPS on a single GPU), but has a limited action space, limited
allowed physical interactions, and no procedural generation, making it ill-suited as a benchmark for
generalization.

3 RL interface

The Avalon RL environment conforms to the standard OpenAI Gym environment interface [6] and is
built on top of the open-source Godot game engine [21] and Bullet physics engine [9]. Below, we
present some details of this environment and the design decisions that led to it.

3.1 Game mechanics

Avalon is a 3D open-world survival game in which players must overcome obstacles and hazards
while acquiring food. Gameplay consists of a series of episodes, where each episode corresponds to a
unique world, which is generated by a task-specific world generator.

A key aspect of Avalon is that special subsets of the environment distribution map to distinct tasks.
Environmental pressures arising from the presence and placement of various interactable objects,
enemies, and even terrain features demand the execution of a broad array of navigation and object
interaction skills. For example, the existence of a deep chasm between the player and the food forces
the player to create a bridge, or food may be placed in a region that is inaccessible without climbing.
Figure 2 shows some examples of generated worlds for a variety of tasks.

4



Another critical part of Avalon is the diversity of gameplay mechanics and worlds that can be
generated. There are 14 biomes, 13 plants, 20 interactable items, and 17 animals. Items include food,
weapons, elements such as boxes for stacking, doors, and so on. Animals include both predators and
prey, where prey are edible and can be consumed by the agent as food. All animals and food have
completely distinct behaviors (for example, jaguars aggressively pursue the player and can climb
trees, coconuts must experience a certain force to be opened, etc). See Appendix A for a complete
description of each entity included in the game.

While the setting of Avalon is inspired by the environment in which humans evolved, it includes
a number of simplifications designed to accommodate current RL systems. For example, most
objects are significantly larger than their real-life counterparts because current RL algorithms are
prohibitively expensive to train with very high-resolution images. As another mechanism to allow for
low-resolution agents, we guarantee that food is always found near buildings or certain large trees,
both of which are visible from far away.

3.2 Rewards

Regardless of the task, the goal of players in Avalon is to survive for as long as possible. Both human
players and RL agents have a single scalar “energy” value, and when this reaches zero, the episode
ends. The only way to gain energy is to eat, and thus acquiring food is the implicit goal of every level.
Energy can be lost from attacks by predators or falling too far.

In order to represent these mechanics to the agent, the reward from the environment is simply
calculated as the change in energy at each time step. While the reward is technically dense, in that the
agent observes small changes in energy at each frame, it is effectively a sparse reward, since positive
reward is attained only when the agent eats food i.e. has successfully performed the task.

To encourage efficiency and prevent erratic motion, small energy costs can be associated with
movement for agents during training. More details on the exact calculations for the reward function
and time limits in each episode can be found in Appendix B.

Though this (effectively) sparse reward setting is challenging, we note that dense rewards usually need
to be tailored to each task and often rely on hidden state information. However, it is straightforward
for a user to adapt Avalon to employ a dense reward if desired.

3.3 Observations

While the state data for our simulation is easily accessible, we refrain from providing any ground
truth information in the observations that is not accessible to human players. The agent receives
egocentric visual input in the form of a 96 × 96 × 4 RGBD tensor. Just like human players, the agent
is embodied and can see its own hands in its visual display. The agent is also provided with basic
proprioceptive awareness: its input includes the framewise change in position and orientation for its
body, the position and orientation of each of its hands (relative to its body), boolean indicators for
whether each hand is within grasping range of (or currently grasping) an object, the current value of
its energy, and the number of frames remaining until the episode times out. See Appendix C for the
exact list of observed variables.

3.4 Actions

The embodied agent can move through and interact with its environment using its head, body, and
hands. The primary action space is 21-dimensional and roughly maps to a virtual reality headset and
controllers. It is made of 3× (3+ 3) translational plus rotational degrees of freedom, as well as 2× 1
binary grasp actions and 1 discrete jump action. We also provide a reduced 9-dimensional action
space which corresponds to mouse and keyboard controls. Almost all tasks can be accomplished in
this reduced action space. See Appendix D for the exact action space definition.

3.5 Simulator

Unlike many popular RL environments, Avalon is not built on top of an existing game but rather
constructed from the ground up to optimize for speed, accessibility, and, above all, scientific value.
This has enabled several benefits that would otherwise be impossible:

5



• Avalon simulates roughly 7,000 SPS, orders of magnitude faster than most other simulators,
and similar to Habitat-Sim, the fastest comparable simulator. The simulator runs without a
display, making it even more efficient and easy to work with.

• Avalon was designed for the purposes of ML research, and thus benefits from a number of
debugging capabilities. Firstly, it is deterministic; playing back the same set of actions from
the same starting seed results in identical output. Secondly, the ground truth states of all
objects can be logged continually, making it highly inspectable.

• Avalon is made using the Godot game engine [21], which is fully open-source and cross-
platform (it runs on Windows, Linux, Mac, and several popular VR headsets). Godot is
simple and lightweight, with a modest ∼30MB install size, and has a clean asset pipeline
that supports most common formats. It boasts a full-featured visual editor, debugger and
profiler that make it very easy to work with. All of our code is written in either Python or the
Python-esque Godot scripting language, so it is straightforward for researchers to modify
and extend, especially given the vibrant community of professional and hobbyist developers
that also use Godot.

Godot is released under an MIT license, while the rest of our code is released under the GPL license.

4 Procedural environment generation

Avalon contains a sophisticated system for generating worlds that gives researchers fine-grained
control over every aspect of variation—such as ruggedness of terrain, height of cliffs, density of
predators, prey, and plants, etc.—while enabling extremely high diversity. This system empowers
researchers to isolate and explore many specific aspects of generalization, ranging from the most
straightforward IID setting to OOD settings like the creation of complex compositional tasks or even
entirely new tasks. It also enables a simple difficulty-based curriculum that accelerates learning for
our included baseline systems (described in more detail in Section 6).

Avalon supports easily scaling the diversity of the training distribution, allowing for exploration of
basic IID generalization, where the test world distribution matches the training distribution. In our
benchmark setting, we primarily vary terrain height and geography while leaving most diversity
turned off (e.g. we don’t vary colors or models of trees, landscape, food, prey, or predators, nor do
we vary objects in size, shape, or weight, etc.). As RL systems become more capable, this diversity
can be dramatically increased to provide more challenging IID generalization settings.

To enable investigation of generalization between similar tasks, Avalon’s task-specific world gen-
erators carefully alter each procedurally generated world to require the use of particular skills. For
example, the generator can raise a section of terrain to surround food with a cliff or insert an un-
climbable chasm to require jumping. Our hope is that this setup enables better transfer between
similar tasks, as many tasks allow for multiple solutions and the use of multiple skills, especially at
lower difficulties.

In order to address a more compositional form of OOD generalization, we have designed our task-
specific world generators so that they can be applied to a single world to create a sequence of tasks
that must be performed. For example, our “jump” generator creates a natural-looking chasm that can
only be jumped across at a certain point, while our “climb” generator creates a ring of sloped terrain
that can only be climbed along a certain path. By simply composing one of these obstacle “rings”
inside the other, we can create a world in which the player must accomplish both.

Our fine-grained control over diversity in world generation can also be used to directly ask about
OOD generalization under small shifts in the distribution of environments. All variation in Avalon’s
world generation is finely controllable: the sizes and colors of all objects, the number of predators,
prey, food, etc in a task, the distance of a gap that must be jumped across, etc (see Appendix E for
a full list). This allows for simple, continuous ablations as any individual factor is varied from the
training setting, all without any need to create or import any manual art assets.

6



5 Benchmark

5.1 Tasks

Avalon consists of 20 distinct tasks testing a range of navigation and object manipulation skills
in diverse environments. This list includes 16 “basic” tasks (eat, move, jump, climb, scramble,
descend, throw, hunt, fight, avoid, push, stack, bridge, open, carry, and explore) and
four “compositional” tasks (navigate, find, gather, and survive). Each task has the same agent
goal — acquiring food while avoiding hazards — but the worlds generated for each task are structured
such that attaining this goal requires the skill being tested.

Worlds for the 16 basic tasks include a single food item that must be reached by overcoming at most a
single obstacle. The eat task is the easiest: the food is created near the agent, which needs to merely
grab it and bring it to its head. The other basic tasks build upon this in various ways. For example,
avoid requires evading a predator to reach the food, hunt requires hunting moving prey, and stack
requires stacking objects to reach food on a high ledge.

Worlds for the four compositional tasks are designed to require the sequential use of several basic
skills: navigate places a series of basic obstacles between the player and the food, find is the same
but the food is not guaranteed to be visible from the agent’s starting location, gather has multiple
fruits to find, and survive includes both fruit and prey animals. survive is a sort of “final exam”
focused on breadth whose worlds can contain the elements of every other task.

See Appendix F for a complete definition of every task.

5.2 Training and evaluation protocols

We outline four settings in which agents can be trained and evaluated within Avalon:

• Multi-Task, Train Basic (MT-TB): Train on the 16 basic tasks and evaluate on all 20 tasks.
In this version of the multi-task setup, agents have seen each of the intermediary tasks but
have never seen them composed together until test time.

• Multi-Task, Train All (MT-TA): Train and evaluate on all 20 tasks.

• Multi-Task, Train Compositional (MT-TC): Train on the four compositional tasks and
evaluate on the full set of 20 tasks.

• Single Task, Basic (ST-B): Train and evaluate on each of the 16 basic tasks separately.

Agents are trained with an adaptive curriculum (Section 6.1) such that the number of worlds seen in a
given amount of training time is variable. While we present a particular curriculum-based training
procedure, users of the benchmark are encouraged to explore alternative training procedures.

Agents are evaluated on a fixed set of 50 worlds for each relevant task, as indicated above. For
example, the MT-CG and MT-S settings evaluate on all 20 tasks, and thus use the full set of 1,000
possible evaluation worlds. Tasks were randomly generated and not manually curated, except to
replace levels that were reported as practically impossible. Upon investigation only one level was
actually impossible, representing 0.1% of the originally generated levels. We also ensured that
the evaluation worlds fully represented their underlying task generators. For example, the set of
evaluation tasks for “eat” includes at least one of every possible type of food. See Appendix G for
more details about the exact distribution of evaluation worlds, including the replaced worlds.

5.3 Human performance

To understand the difficulty of each of our tasks, we collected human player data for all evaluation
levels. Approximately 215 hours of VR gameplay were recorded from 32 participants drawn from a
pool of volunteers whose familiarity ranged from zero to significant experience playing similar games.
For each of the 50× 20 = 1000 evaluation levels, scores were averaged across at least 5 different
players. Humans were provided with two practice levels for each task (not in the evaluation set), as
well as basic instructions about the game mechanics (see Appendix H for details on the information
provided and human data collection procedure).

7



Ground truth control data was recorded for each player on each level, and is available on our main
website under a CC BY-SA license. We do not recommend behavior cloning from this data and
testing on the fixed evaluation set; however, researchers can easily generate new evaluation levels
from the same distribution for testing any such networks. The human data may also be interesting to
inspect for trends, training effects, or unrelated research into VR human gameplay.

5.4 Performance metrics

Given a set of human player data, raw rewards can be converted into scores S by normalizing such that
the average human performance is 1.0 and the performance of a random agent is 0.0. We recommend
two different aggregations of these scores. The first and more traditional aggregation is to simply
take the average of these scores. The second and more robust aggregation is the optimality gap
[1]. By plotting the cumulative frequency of these scores P (S > x) across all runs, the optimality
gap expresses how consistently the agent achieves performance above some fraction of human
performance. See Appendix M for details on how scores are calculated.

6 Experiments

6.1 Difficulty curriculum

Due to the variety and scope of tasks and environments in our benchmark, we found that agents failed
to learn when training on worlds sampled uniformly at random. Because the agent is effectively only
given sparse positive rewards (i.e. if it finds and eats food), it is difficult for agents to make progress
on more difficult tasks before improving at the eat and move tasks. For most tasks, uniform random
sampling of worlds leads to a very low probability of creating worlds where random exploration
policies get any reward.

As one approach to overcoming these issues, we use a simple “difficulty”-based curriculum. We
employ a simple form of Automated Curriculum Learning [33] similar to the approaches in [24, 30].
When the agent succeeds (fails) at a task, the maximum difficulty of future generated worlds for that
task is increased (decreased) slightly. See Appendix I for more details.

6.2 Baselines

We trained IMPALA [10, 25], PPO [35, 39], and DreamerV2 [17, 18] on our benchmark using the
training protocols outlined above, including the difficulty curriculum. We chose IMPALA and PPO
as baselines because they are among the simplest SOTA algorithms on which many other SOTA
algorithms are based, and tend to be robust across problems. We chose DreamerV2 as a representative
model-based baseline. DreamerV2 is used without discrete latents and without mixed precision
training. No worlds are seen twice during training. Hyper-parameters were tuned via a combination
of Bayesian optimization [20] and Natural Evolution Strategies (NES) [42] using runs with a smaller
number of steps, and are included in Appendix J. Scores are the average of 5 runs (for 50m step
results) or 3 runs (for the 500m step results). See Appendix K for details about the machines used for
training.

6.3 Results and discussion

We show average scores for the MT-TB setting in Table 1. While all algorithms are able to achieve
non-zero performance on most tasks, they fall far short of human performance, and show particularly
low performance when testing on the four compositional tasks. It should be noted that non-zero
performance is sometimes indicative of unexpected strategies; for example, we observe agents
learning to open doors by jumping while grabbing the latch rather than moving their hand to lift the
latch, thus reliably opening doors without necessarily understanding doors.

Table 1 also includes the results of longer training and ablating the curriculum learning component.
The longer training shows results comparable to the 50m step training, indicating convergence of
IMPALA, although learning curves in Appendix L indicate some tasks might still see improvement
with longer training. Using no curriculum results in scores that are no better than random.

8



Table 1: Average agent scores on all Avalon tasks. Rows show scores on basic tasks (first section),
compositional tasks (second section), and aggregations of tasks (third section), normalized such that
mean human performance is one. The header indicates the algorithm, the total number of environment
steps and whether the training curriculum is used.

Task PPO Dreamer IMPALA
50m steps 50m steps 50m steps 500m steps 50m steps
With curr. With curr. With curr. With curr. No curr.

eat 0.708 ± 0.067 0.664 ± 0.065 0.716 ± 0.062 0.731 ± 0.097 0.001 ± 0.001
move 0.311 ± 0.062 0.364 ± 0.071 0.399 ± 0.062 0.409 ± 0.076 0.000 ± 0.000
jump 0.220 ± 0.050 0.234 ± 0.058 0.309 ± 0.056 0.287 ± 0.072 0.000 ± 0.000
climb 0.193 ± 0.043 0.227 ± 0.051 0.229 ± 0.049 0.332 ± 0.074 0.000 ± 0.000
descend 0.179 ± 0.043 0.290 ± 0.058 0.173 ± 0.044 0.222 ± 0.059 0.000 ± 0.000
scramble 0.306 ± 0.054 0.422 ± 0.058 0.467 ± 0.062 0.576 ± 0.070 0.000 ± 0.000
stack 0.091 ± 0.036 0.126 ± 0.043 0.130 ± 0.036 0.121 ± 0.055 0.000 ± 0.000
bridge 0.049 ± 0.027 0.121 ± 0.045 0.076 ± 0.029 0.095 ± 0.049 0.000 ± 0.000
push 0.113 ± 0.039 0.160 ± 0.053 0.150 ± 0.043 0.128 ± 0.054 0.000 ± 0.000
throw 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
hunt 0.043 ± 0.024 0.063 ± 0.028 0.071 ± 0.029 0.129 ± 0.051 0.000 ± 0.000
fight 0.199 ± 0.052 0.336 ± 0.076 0.235 ± 0.052 0.303 ± 0.075 0.000 ± 0.000
avoid 0.493 ± 0.170 0.515 ± 0.118 0.603 ± 0.159 0.582 ± 0.102 0.000 ± 0.000
explore 0.193 ± 0.047 0.190 ± 0.048 0.213 ± 0.048 0.252 ± 0.069 0.000 ± 0.000
open 0.055 ± 0.024 0.126 ± 0.041 0.097 ± 0.034 0.101 ± 0.046 0.000 ± 0.000
carry 0.073 ± 0.031 0.066 ± 0.028 0.089 ± 0.032 0.122 ± 0.057 0.000 ± 0.000

navigate 0.000 ± 0.000 0.000 ± 0.000 0.012 ± 0.010 0.040 ± 0.032 0.000 ± 0.000
find 0.002 ± 0.003 0.000 ± 0.000 0.015 ± 0.014 0.013 ± 0.017 0.000 ± 0.000
survive 0.043 ± 0.013 0.044 ± 0.014 0.050 ± 0.015 0.085 ± 0.028 0.000 ± 0.000
gather 0.021 ± 0.010 0.021 ± 0.012 0.030 ± 0.010 0.032 ± 0.014 0.000 ± 0.000

all basic 0.202 ± 0.017 0.244 ± 0.016 0.247 ± 0.016 0.274 ± 0.019 0.000 ± 0.000
all comp. 0.017 ± 0.004 0.016 ± 0.005 0.027 ± 0.007 0.042 ± 0.013 0.000 ± 0.000
all 0.165 ± 0.014 0.199 ± 0.012 0.203 ± 0.013 0.228 ± 0.015 0.000 ± 0.000

Due to space constraints, the per-task optimality gap scores are reported in Appendix L (see Table 8)
along with the scores from the other train-evaluate settings (MT-TA, MT-TC, ST-B) and additional
results. Comparisons of the different settings (see Table 9 and Table 10) provide multiple lenses
through which to view generalization. For example, we find that several tasks such as climb,
descend, and avoid are too challenging for the agent to learn in the single-task setting (ST-B), yet
they can be partially mastered in the multi-task settings (MT-TB, MT-TA) after pre-training on other
tasks, suggesting the shared structure of the tasks provides transfer learning benefit. Furthermore, we
find that agents trained on only the 16 basic tasks (MT-TB) perform as well as or better than agents
trained on all 20 tasks (MT-TA), even on the compositional tasks themselves which the agent has
never seen in training under MT-TB.

7 Limitations

While Avalon as it is today enables targeted exploration of many types of generalization in RL, there
are a number of limitations. First, given the scope of the diversity possible in our environments, there
are sure to be bugs and unintended results (for example, some generated worlds are impossible to
complete). Another limitation is fundamental to procedural generation; while the generated worlds
are quite complex, they are still far less complex than the real world, and as such, success on Avalon
should not be taken as evidence that generalization is “solved” in the general case. Finally, due to
limited time, we were only able to run a small number of baseline algorithms. We intend to publish
updated baselines and results as they become available.

9



8 Future work

As it exists today, Avalon enables a variety of experiments, from the generalization settings highlighted
here to better curriculum designs and unsupervised skill discovery. Avalon is also highly extensible
by design. Users can easily create entirely new game mechanics, enabling RL research beyond the
simple navigation and object manipulation tasks we have presented here.

We plan to extend Avalon in a number of ways, including by creating more tasks and more variety
within each task. We also plan to include more sophisticated environment interactions to encourage
tool making and tool use, as well as longer time-horizon mechanics such as rest, day-night cycles,
and regrowing food to encourage the creation of RL agents that can deal with longer time horizons.
Finally, we also hope to eventually include multi-agent components as well.

9 Conclusions

We created Avalon to address the need for a better benchmark for RL generalization and robustness. By
creating a diverse set of tasks solely via environmental variation, Avalon is able to create challenging
worlds that share task structure and world dynamics, hopefully encouraging the creation of more
powerful and generally capable RL agents. The tasks in the Avalon benchmark are quite challenging
for existing systems, despite being relatively trivial for people. Despite this, our training procedures
provide a starting point with reasonable performance, on which others can improve. We hope our
simulator and benchmark will serve as a foundational piece of infrastructure for future research on
generalization, exploration, and other topics that are under-served by existing benchmarks.

Acknowledgments

The authors would like to thank the following individuals for invaluable discussions and feedback on
this benchmark: Anwar Bey, Tom Brown, Michael Chang, Shreyas Kapur, Andrew Lampinen, Joel
Lehman, Rosanne Liu, Luke Melas-Kyriazi, John Schulman, Elias Wang, Yi-Fu Wu, and Wojciech
Zaremba.

The authors are also grateful for the hard work and adventurous spirit of our human Avalon players:
Meera Balakumar, Akshiv Bansal, Michael Bonanni, Andrew Cote, Rob Courtice, Dane Cross,
Todd Dabney, Samkeliso Dlamini, Alejandra Encinas, Lincoln Scott Fuller, Amanda Gabbara, Nick
Gabbara, Maddy Gaffaney, Gjon Gjeloshaj, Perry Goldstein, Cecilia Goss, Patrick Hoon, Schuyler
Howe, Asmeret Jafarzade, Keil Miller Joseph, Luke Juusola, John Lindstedt K., Yad Konrad, Cory
Li, Terrence Lucero, Kathryn Martin, Annie Melton, Brian Demeyer Michael, Kevin Multani, Jeremy
Nelson, Carol Ng, Sam O’Donnell, Sam Parks, Divyesh Patel, Matthias Pauthner, Dominick Pierre-
Jacques, Maria Polizzi, Nathan Ravenel, Roy Rinberg, Snigdha Roy, Katie Sapko, Phillip Seo, Brian
Smiley, Derek Tam, Kaspars Vandans, Helen Wei, Christina Zhu.

References
[1] R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G. Bellemare. Deep Reinforcement

Learning at the Edge of the Statistical Precipice. arXiv e-prints, page arXiv:2108.13264, Aug.
2021.

[2] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler, A. Lefrancq,
S. Green, V. Valdés, A. Sadik, J. Schrittwieser, K. Anderson, S. York, M. Cant, A. Cain,
A. Bolton, S. Gaffney, H. King, D. Hassabis, S. Legg, and S. Petersen. DeepMind Lab. arXiv
e-prints, page arXiv:1612.03801, Dec. 2016.

[3] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment:
An Evaluation Platform for General Agents. Journal of Artificial Intelligence Research, 47:
253–279, July 2012.

[4] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P. d. O.
Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski,

10



and S. Zhang. Dota 2 with Large Scale Deep Reinforcement Learning. arXiv e-prints, page
arXiv:1912.06680, Dec. 2019.

[5] B. Beyret, J. Hernández-Orallo, L. Cheke, M. Halina, M. Shanahan, and M. Crosby. The
Animal-AI Environment: Training and Testing Animal-Like Artificial Cognition. Conference
on Neural Information Processing Systems, page 164–176, Sept. 2019.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[7] N. Brown and T. Sandholm. Superhuman AI for multiplayer poker. Science, 365(6456):
885–890, Aug. 2019. doi: 10.1126/science.aay2400.

[8] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging Procedural Generation to Bench-
mark Reinforcement Learning. International Conference on Machine Learning, 119:2048–2056,
Dec. 2019.

[9] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016–2021.

[10] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. In International Conference on Machine Learning, pages 1407–1416. PMLR,
2018.

[11] J. Farebrother, M. C. Machado, and M. Bowling. Generalization and Regularization in DQN.
arXiv e-prints, art. arXiv:1810.00123, Sept. 2018.

[12] H. Fu, W. Xu, H. Xue, H. Yang, R. Ye, Y. Huang, Z. Xue, Y. Wang, and C. Lu. RFUniverse: A
Physics-based Action-centric Interactive Environment for Everyday Household Tasks. arXiv
e-prints, page arXiv:2202.00199, Jan. 2022.

[13] C. Gan, J. Schwartz, S. Alter, D. Mrowca, M. Schrimpf, J. Traer, J. De Freitas, J. Kubilius,
A. Bhandwaldar, N. Haber, M. Sano, K. Kim, E. Wang, M. Lingelbach, A. Curtis, K. Feigelis,
D. M. Bear, D. Gutfreund, D. Cox, A. Torralba, J. J. DiCarlo, J. B. Tenenbaum, J. H. McDer-
mott, and D. L. K. Yamins. ThreeDWorld: A Platform for Interactive Multi-Modal Physical
Simulation. arXiv e-prints, page arXiv:2007.04954, July 2020.

[14] K. Greff, F. Belletti, L. Beyer, C. Doersch, Y. Du, D. Duckworth, D. J. Fleet, D. Gnanapragasam,
F. Golemo, C. Herrmann, T. Kipf, A. Kundu, D. Lagun, I. Laradji, Hsueh-Ti, Liu, H. Meyer,
Y. Miao, D. Nowrouzezahrai, C. Oztireli, E. Pot, N. Radwan, D. Rebain, S. Sabour, M. S. M.
Sajjadi, M. Sela, V. Sitzmann, A. Stone, D. Sun, S. Vora, Z. Wang, T. Wu, K. Moo Yi,
F. Zhong, and A. Tagliasacchi. Kubric: A scalable dataset generator. arXiv e-prints, page
arXiv:2203.03570, Mar. 2022.

[15] W. H. Guss, B. Houghton, N. Topin, P. Wang, C. Codel, M. Veloso, and R. Salakhutdi-
nov. MineRL: A Large-Scale Dataset of Minecraft Demonstrations. arXiv e-prints, page
arXiv:1907.13440, July 2019.

[16] D. Hafner. Benchmarking the Spectrum of Agent Capabilities. arXiv e-prints, page
arXiv:2109.06780, Sept. 2021.

[17] D. Hafner, T. P. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. CoRR, abs/1912.01603, 2019. URL http://arxiv.org/abs/1912.01603.

[18] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
CoRR, abs/2010.02193, 2020. URL https://arxiv.org/abs/2010.02193.

[19] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The malmo platform for artificial
intelligence experimentation. In International Joint Conferences on Artificial Intelligence, 2016.

[20] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box
functions. Journal of Global optimization, 13(4):455–492, 1998.

11

http://pybullet.org
http://arxiv.org/abs/1912.01603
https://arxiv.org/abs/2010.02193


[21] R. V. Juan Linietsky, Ariel Manzur. Godot engine. https://godotengine.org/.

[22] A. Juliani, A. Khalifa, V.-P. Berges, J. Harper, E. Teng, H. Henry, A. Crespi, J. Togelius, and
D. Lange. Obstacle Tower: A Generalization Challenge in Vision, Control, and Planning. arXiv
e-prints, page arXiv:1902.01378, Feb. 2019.

[23] N. Justesen, R. Rodriguez Torrado, P. Bontrager, A. Khalifa, J. Togelius, and S. Risi. Illumi-
nating Generalization in Deep Reinforcement Learning through Procedural Level Generation.
arXiv e-prints, page arXiv:1806.10729, June 2018.

[24] I. Kanitscheider, J. Huizinga, D. Farhi, W. Hebgen Guss, B. Houghton, R. Sampedro, P. Zhokhov,
B. Baker, A. Ecoffet, J. Tang, O. Klimov, and J. Clune. Multi-task curriculum learning in a
complex, visual, hard-exploration domain: Minecraft. arXiv e-prints, page arXiv:2106.14876,
June 2021.

[25] H. Küttler, N. Nardelli, T. Lavril, M. Selvatici, V. Sivakumar, T. Rocktäschel, and E. Grefenstette.
TorchBeast: A PyTorch Platform for Distributed RL. arXiv preprint arXiv:1910.03552, 2019.
URL https://github.com/facebookresearch/torchbeast.

[26] H. Küttler, N. Nardelli, A. H. Miller, R. Raileanu, M. Selvatici, E. Grefenstette, and T. Rock-
täschel. The NetHack Learning Environment. arXiv e-prints, page arXiv:2006.13760, June
2020.

[27] Q. Li, Z. Peng, L. Feng, Q. Zhang, Z. Xue, and B. Zhou. MetaDrive: Composing Diverse Driving
Scenarios for Generalizable Reinforcement Learning. arXiv e-prints, art. arXiv:2109.12674,
Sept. 2021.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, Feb. 2015. doi: 10.1038/nature14236.

[29] Open Ended Learning Team, A. Stooke, A. Mahajan, C. Barros, C. Deck, J. Bauer, J. Sygnowski,
M. Trebacz, M. Jaderberg, M. Mathieu, N. McAleese, N. Bradley-Schmieg, N. Wong, N. Porcel,
R. Raileanu, S. Hughes-Fitt, V. Dalibard, and W. M. Czarnecki. Open-Ended Learning Leads to
Generally Capable Agents. arXiv e-prints, page arXiv:2107.12808, July 2021.

[30] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng,
Q. Yuan, W. Zaremba, and L. Zhang. Solving Rubik’s Cube with a Robot Hand. arXiv e-prints,
art. arXiv:1910.07113, Oct. 2019.

[31] E. Parisotto, J. Lei Ba, and R. Salakhutdinov. Actor-Mimic: Deep Multitask and Transfer
Reinforcement Learning. arXiv e-prints, page arXiv:1511.06342, Nov. 2015.

[32] A. Petrenko, E. Wijmans, B. Shacklett, and V. Koltun. Megaverse: Simulating Embodied
Agents at One Million Experiences per Second. arXiv e-prints, page arXiv:2107.08170, July
2021.

[33] R. Portelas, C. Colas, L. Weng, K. Hofmann, and P. Oudeyer. Automatic curriculum learning for
deep RL: A short survey. In C. Bessiere, editor, Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020, pages 4819–4825. ijcai.org, 2020. doi:
10.24963/ijcai.2020/671. URL https://doi.org/10.24963/ijcai.2020/671.

[34] A. Puigdomènech Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, D. Guo, and
C. Blundell. Agent57: Outperforming the Atari Human Benchmark. International Conference
on Machine Learning, page 507–517, Mar. 2020.

[35] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

12

https://godotengine.org/
https://github.com/facebookresearch/torchbeast
https://doi.org/10.24963/ijcai.2020/671
http://jmlr.org/papers/v22/20-1364.html


[36] A. A. Rusu, S. Gomez Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pas-
canu, V. Mnih, K. Kavukcuoglu, and R. Hadsell. Policy Distillation. arXiv e-prints, page
arXiv:1511.06295, Nov. 2015.

[37] M. Samvelyan, R. Kirk, V. Kurin, J. Parker-Holder, M. Jiang, E. Hambro, F. Petroni, H. Küttler,
E. Grefenstette, and T. Rocktäschel. MiniHack the Planet: A Sandbox for Open-Ended
Reinforcement Learning Research. arXiv e-prints, page arXiv:2109.13202, Sept. 2021.

[38] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun,
J. Malik, D. Parikh, and D. Batra. Habitat: A Platform for Embodied AI Research. arXiv
e-prints, page arXiv:1904.01201, Apr. 2019.

[39] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[40] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel,
and D. Hassabis. Mastering the game of Go without human knowledge. Nature, 550(7676):
354–359, Oct. 2017. doi: 10.1038/nature24270.

[41] S. Srivastava, C. Li, M. Lingelbach, R. Martín-Martín, F. Xia, K. Vainio, Z. Lian, C. Gokmen,
S. Buch, C. K. Liu, S. Savarese, H. Gweon, J. Wu, and L. Fei-Fei. BEHAVIOR: Benchmark
for Everyday Household Activities in Virtual, Interactive, and Ecological Environments. arXiv
e-prints, page arXiv:2108.03332, Aug. 2021.

[42] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber. Natural evolution
strategies. The Journal of Machine Learning Research, 15(1):949–980, 2014.

[43] F. Xia, A. R. Zamir, Z.-Y. He, A. Sax, J. Malik, and S. Savarese. Gibson env: real-world
perception for embodied agents. In Computer Vision and Pattern Recognition (CVPR), 2018
IEEE Conference on. IEEE, 2018.

[44] T. Yu, D. Quillen, Z. He, R. Julian, A. Narayan, H. Shively, A. Bellathur, K. Hausman,
C. Finn, and S. Levine. Meta-World: A Benchmark and Evaluation for Multi-Task and Meta
Reinforcement Learning. arXiv e-prints, page arXiv:1910.10897, Oct. 2019.

[45] A. Zhang, N. Ballas, and J. Pineau. A Dissection of Overfitting and Generalization in Continuous
Reinforcement Learning. arXiv e-prints, art. arXiv:1806.07937, June 2018.

[46] C. Zhang, O. Vinyals, R. Munos, and S. Bengio. A Study on Overfitting in Deep Reinforcement
Learning. arXiv e-prints, art. arXiv:1804.06893, Apr. 2018.

13


	Introduction
	Related work
	RL interface
	Game mechanics
	Rewards
	Observations
	Actions
	Simulator

	Procedural environment generation
	Benchmark
	Tasks
	Training and evaluation protocols
	Human performance
	Performance metrics

	Experiments
	Difficulty curriculum
	Baselines
	Results and discussion

	Limitations
	Future work
	Conclusions

