
Appendix

A Method Details

A.1 The attention network

The attention network is implemented as a feedforward neural network with one hidden layer:

• Input layer: 12 units
• Hidden layer: N units coupled with a dropout layer p = 0.5

• Output layer: N units, softmax activation function

N is the capacity of policy memory. The 12 features of the input vcontext is listed in Table 4.

Now we explain the motivation behind these feature design. From these three policies, we tried
to extract all possible information. The information should be cheap to extract and dependent on
the current data, so we prefer features extracted from the outputs of these policies (value, entropy,
distance, return, etc.). Intuitively, the most important features should be the empirical returns, values
associated with each policy and the distances, which gives a good hint of which virtual policy will
yield high performance (e.g., a virtual policy that is closer to the policy that obtained high return and
low value loss).

A.2 The advantage function

In this paper, we use GAE [18] as the advantage function for all models and experiments

Ât =
1

Nactor

Nactor∑
i

T−t−1∑
k=0

(γλ)
k (
Vtarget − V

(
sit+k

))
where γ is the discounted factor andNactor is the number of actors. Vtarget = rit+k+γV

(
sit+k+1

)
.

Note that Algo. 1 illustrates the procedure for 1 actor. In practice, we use Nactor depending on the
tasks.

A.3 The objective function

Following [19], our objective function also includes value loss and entropy terms. This is applied to
all of the baselines. For example, the complete objective function for MCPO reads

L = LMCPO − c1Êt (Vθ (st)− Vtarget (st))2

+ c2Êt [− log (πθ (·|st))]
where c1 and c2 are value and entropy coefficient hyperparameters, respectively. Vθ is the value
network, also parameterized with θ.

B Experimental Details

B.1 Baselines and tasks

All baselines in this paper share the same setting of policy and value networks. Except for TRPO, all
other baselines use minibatch training. The only difference is the objective function, which revolves
around KL and advantage terms. We train all models with Adam optimizer. We summarize the
policy and value network architecture in Table 5.

The baselines ACKTR, PPO1, TRPO2 use available public code (Apache or MIT License). They are
Pytorch reimplementation of OpenAI’s stable baselines, which can reproduce the original perfor-
mance relatively well. For MDPO, we refer to the authors’ source code3 to reimplement the method.

1https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
2https://github.com/ikostrikov/pytorch-trpo
3https://github.com/manantomar/Mirror-Descent-Policy-Optimization

14

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-trpo
https://github.com/manantomar/Mirror-Descent-Policy-Optimization

Dimension Feature Meaning
1 D (θ, ψold) “Distance” between θ and ψold
2 D (θold, ψold) “Distance” between θold and ψold
3 D (θold, θ) “Distance” between θold and θ
4 Êt [Rt (ψold)] Approximate expected advantage of ψold
5 Êt [Rt (θold)] Approximate expected advantage of θold
6 Êt [Rt (θ)] Approximate expected advantage of θ
7 Êt [− log (πψold (·|st))] Approximate entropy of ψold
8 Êt [− log (πθold (·|st))] Approximate entropy of θold
9 Êt [− log (πθ (·|st))] Approximate entropy of θ

10 Êt (Vψold (st)− Vtarget (st))
2 Value loss of ψold

11 Êt (Vθold (st)− Vtarget (st))
2 Value loss of θold

12 Êt (Vθ (st)− Vtarget (st))2 Value loss of θ

Table 4: Features of the context vector.

Input type Policy/Value networks

Vector 2-layer feedforward
net (tanh, h=64)

Image
3-layer ReLU CNN with

kernels {32/8/4, 64/4/2, 32/3/1}+2-layer
feedforward net (ReLU, h=512)

Table 5: Network architecture shared across baselines.

For VMPO, we refer to this open source code4 to reimplement the method. We implement KL Fixed
and KL Adaptive, using objective function defined in Sec. 2.

We use environments from Open AI gyms 5, which are public and using The MIT License. Mujoco
environments use Mujoco software6 (our license is academic lab). Table 6 lists all the environments.

B.2 Details on Classical Control

For these tasks, all models share hyperparameters listed in Table 8. Besides, each method has its
own set of additional hyperparameters. For example, PPO, KL Fixed and KL Adaptive have ε, β
and dtarg, respectively. These hyperparameters directly control the conservativeness of the policy

4https://github.com/YYCAAA/V-MPO_Lunarlander
5https://gym.openai.com/envs/
6https://www.roboti.us/license.html

Tasks Continuous Gym
action category

Pendulum-v0
X

Classical
LunarLander-v2 Box2dBipedalWalker-v3 �

Unlock-v0
X MiniGridUnlockPickup-v0

MuJoCo tasks (v2): HalfCheetah
� MuJoCoWalker2d, Hopper, Ant

Humanoid, HumanoidStandup
Atari games (NoFramskip-v4):

X AtariBeamrider, Breakout
Enduro, Gopher

Seaquest, SpaceInvaders
BipedalWalkerHardcore-v3 � Box2d

Table 6: Tasks used in the paper.

15

https://github.com/YYCAAA/V-MPO_Lunarlander
https://gym.openai.com/envs/
https://www.roboti.us/license.html

Model Pendulum LunarLander BWalker
1M 1M 5M

KL Adaptive (dtarg = 0.003) -407.74±484.16 238.30±34.07 206.99±5.34
KL Adaptive (dtarg = 0.01) -147.52±9.90 254.26±19.43 247.70±14.16
KL Adaptive (dtarg = 0.03) -601.09±273.18 246.93±12.57 259.80±6.33
KL Fixed (β = 0.01) -1051.14±158.81 247.61±19.79 221.55±38.64
KL Fixed (β = 0.1) -464.29±426.27 256.75±20.53 263.56±10.04
KL Fixed (β = 1) -136.40±4.49 192.62±32.97 215.13±13.29
PPO (clip ε = 0.1) -282.20±243.42 242.98±13.50 205.07±19.13
PPO (clip ε = 0.2) -514.28±385.34 256.88±20.33 253.58±7.49
PPO (clip ε = 0.3) -591.31±229.32 259.93±22.52 260.51±17.86
MDPO (β0 = 0.5) -136.45±8.21 247.96±4.74 251.18±29.10
MDPO (β0 = 1) -139.14±10.32 207.96±43.86 245.27±10.47
MDPO (β0 = 2) -135.52±5.28 227.76±16.96 226.80±15.67
VMPO (α0 = 0.1) -144.51±7.04 201.87±29.48 236.57±10.62
VMPO (α0 = 1) -139.50±5.54 212.85±43.35 238.82±11.11
VMPO (α0 = 5) -296.48±213.06 222.13±35.55 164.40±40.36
MCPO (N = 5) -133.42±4.53 262.23±12.47 265.80±5.55
MCPO (N = 10) -146.88±3.78 263.04±11.48 266.26±8.87
MCPO (N = 40) -135.57±5.22 267.19±13.42 249.51±12.75

Table 7: Mean and std. over 5 runs on classical control tasks (with number of training environment
steps). Bold denotes the best mean. Underline denotes good results (if exist), statistically indifferent
from the best in terms of Cohen effect size less than 0.5.

update for each method. For MDPO, β is automatically reduced overtime through an annealing
process from 1 to 0 and thus should not be considered as a hyperparameter. However, we can still
control the conservativeness if β is annealed from a different value β0 rather 1. We realize that
tuning β0 helped MDPO (Table 7). We quickly tried with several values β0 ranging from 0.01 to 10
on Pendulum, and realize that only β0 ∈ {0.5, 1, 2} gave reasonable results. Thus, we only tuned
MDPO with these β0 in other tasks. For VMPO there are many other hyperparameters such as η0,
α0, εη and εα. Due to limited compute, we do not tune all of them. Rather, we only tune α0-the initial
value of the Lagrange multiplier that scale the KL term in the objective function. We refer to the
paper’s and the code repository’s default values of α0 to determine possible values α0 ∈ {0.1, 1, 5}.
For our MCPO, we can tune several hyperparameters such as N , βmin, and βmax. However, for
simplicity, we only tune N ∈ {5, 10, 40} and fix βmin = 0.01 and βmax = 10.

On our machines using 1 GPU Tesla V100-SXM2, we measure the running time of MCPO with
different N compared to PPO on Pendulum task, which is reported in Table 9. As N increases, the
running speed of MCPO decreases. For this reason, we do not test with N > 40. However, we
realize that with N = 5 or N = 10, MCPO only runs slightly slower than PPO. We also realize that
the speed gap is even reduced when we increase the number of actorsNactor as in other experiments.
In terms of memory usage, maintaining a policy memory will definitely cost more. However, as our
policy, value and attention networks are very simple. The maximum storage even for N = 40 is less
than 5GB.

In addition to the configurations reported in Table 1, for KL Fixed and PPO, we also tested with
extreme values β = 10 and ε ∈ {0.5, 0.8}. Figs. 7, 8 and 9 visualize the learning curves of all
configurations for all models.

B.3 Details on MiniGrid Navigation

Based on the results from the above tasks, we pick the best signature hyperparameters for the models
to use in this task as in Table 10. In particular, for each model, we rank the hyperparameters per task
(higher rank is better), and choose the one that has the maximum total rank. For hyperparameters
that share the same total rank, we prefer the middle value. The other hyperparameters for this task
is listed in Table 8.

16

Hyperparameter Pendulum LunarLander BipedalWalker MiniGrid BipedalWaker
Hardcore

Horizon T 2048 2048 2048 2048 2048
Adam step size 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Num. epochs K 10 10 10 10 10
Minibatch size B 64 64 64 64 64

Discount γ 0.99 0.99 0.99 0.99 0.99
GAE λ 0.95 0.95 0.95 0.95 0.95

Num. actors Nactor 4 4 32 4 128
Value coefficient c1 0.5 0.5 0.5 0.5 0.5

Entropy coefficient c2 0 0 0 0 0

Table 8: Network architecture shared across baselines on Pendulum, LunarLander, BipedalWalker,
MiniGrid and BipedalWaker Hardcore

Model Speed (env. steps/s)
MCPO (N=5) 1,170

MCPO (N=10) 927
MCPO (N=40) 560

PPO 1,250
Table 9: Computing cost of MCPO and PPO on Pendulum.

B.4 Details on Mujoco

For shared hyperparameters, we use the values suggested in the PPO’s paper, except for the number
of actors, which we increase to 16 for faster training as our models are trained for 10M environment
steps (see Table 11).

For the signature hyperparameter of each method, we select some of the reasonable values. For
PPO, the authors already examined with ε ∈ {0.1, 0.2, 0.3} on the same task and found 0.2 the best.
This is somehow backed up in our previous experiments where we did not see major difference in
performance between these values. Hence, seeking for other ε rather than the optimal ε = 0.2, we ran
our PPO implementation with ε ∈ {0.2, 0.5, 0.8}. For TRPO, the authors only used the KL radius
threshold δ = 0.01, which may be already the optimal hyperparameter. Hence, we only tried δ ∈
{0.005, 0.01}. The results showed that δ = 0.005 always performed worse. For MCPO and Mean
ψ, we only ran with extreme N ∈ {5, 40}. For MDPO, we still tested with β0 ∈ {0.5, 1, 2}. Full
learning curves with different hyperparameter are reported in Fig. 10. Learning curves including
TRGPPO7 are reported in Fig. 11

B.5 Details on Atari

For shared hyperparameters, we use the values suggested in the PPO’s paper, except for the number
of actors, which we increase to 32 for faster training (see Table 11). For the signature hyperparam-
eter of the baselines, we used the recommended value in the original papers. For MCPO, we use
N = 10 to balance between running time and performance. Table 12 shows the values of these
hyperparameters.

7We use the authors’ source code https://github.com/wangyuhuix/TRGPPO using default configura-
tion. Training setting is adjusted to follow the common setting as for other baselines (see Table 11).

0 25K 50K 75K 100K
S te p

0 .0

0 .5

A
v

g
.

R
e

tu
rn

0.9 0.9
Un lock

0 250K 500K 750K 1M
S te p

0 .0

0 .5

Un lockPicku p

KL Ad a p t ive
KL F ixe d
M CPO (Ours)
M DPO
PPO
VM PO

Figure 3: Unlock (left) and UnlockPickup (right)’s learning curves (mean and std. over 10 runs).

17

https://github.com/wangyuhuix/TRGPPO

Model Chosen hyperparameter
KL Adaptive dtarg = 0.01

KL Fixed β = 0.1
PPO ε = 0.2

MDPO β0 = 0.5
VMPO α0 = 1
MCPO N = 10

Table 10: Signature hyperparameters used in MiniGrid tasks.

Hyperparameter Mujoco Atari

Horizon T 2048 128
Adam step size 3× 10−4 2.5× 10−4

Num. epochs K 10 4
Minibatch size B 32 32

Discount γ 0.99 0.99
GAE λ 0.95 0.95

Num. actors Nactor 16 32
Value coefficient c1 0.5 1.0

Entropy coefficient c2 0 0.01
Table 11: Network architecture shared across baselines on Mujoco and Atari

We also report the average normalized human score (mean and median) of the models over 6 games
in Table 3. As seen, MCPO is significantly better than other baselines in terms of both mean and
median normalized human score. We also report full learning curves of models and normalized
human score including TRGPPO in 9 games in Fig. 5 and Table 3, respectively.

Fig. 5 visualizes the learning curves of the models. Regardless of our regular tuning, VMPO per-
forms poorly, indicating that this method is unsuitable or needs extensive tuning to work for low-
sample training regime. ACKTR, works extremely well on certain games (Breakout and Seaquest),
but shows mediocre results on others (Enduro, BeamRider), overall underperforming MCPO. PPO
is always similar or inferior to MCPO on this testbed. Our MCPO always demonstrates competitive
results, outperforming all other models in 4 games, especially on Enduro and Gopher, and showing
comparable results with that of the best model in the other 2 games.

To verify whether MCPO can maintain its performance over longer training, we examine Atari
training for 40 million frames. As shown in Fig. 6, MCPO is still the best performer in this training
regime.

B.6 Details on ablation study

In this section, we give more details on the ablated baselines. Unless state otherwise, the baseline
use N = 10.

• No ψ We only changed the objective to

L1 (θ) = Êt
[
τt (θ) Ât

]
− βÊt [KL [πθold (·|st) , πθ (·|st)]] (7)

Model Chosen hyperparameter
PPO ε = 0.2

ACKTR δ = 0.01
VMPO α0 = 5
MCPO N = 10

Table 12: Signature hyperparameters used in Atari tasks.

18

0 5M 10M
Step

0.550

0.575

0.600

0.625

0.650

t

Figure 4: HalfCheetah: Average αt over training time (mean and std. over 3 runs). The training
does not use learning rate decay to ensure that ψ and θold do not converge to the same policy towards
the end of training.

1

2

3

A
vg

.
R

e
tu

rn

1e3 BeamRider

0

2

4

1e2 Breakout

0

5

1e2 Enduro

1

2

3

A
vg

.
R

e
tu

rn

1e3 Gopher

0.5

1.0

1.5

1e3 Seaquest

2.5

5.0

7.5
1e2 SpaceInvaders

0 2M 5M 7M 10M
Step

0

2

4

A
vg

.
R

e
tu

rn

1e3 Qbert

0 2M 5M 7M 10M
Step

0.0

0.5

1.0

1e3 BankHeist

0 2M 5M 7M 10M
Step

1.0

0.5

1e1 IceHockey

ACKTR MCPO PPO TRGPPO VMPO

Figure 5: Atari games: learning curves (mean and std. over 5 runs) across 10M training steps.

2

4

6

8

A
v

g
.

R
e

tu
rn

1 e 3 Be a m Rid e r

0

2

4

6
1 e 2 Br e a kou t

0

1

2

3

1 e 3 En d u r o

0 10M 20M 30M 40M
S te p

0

1

2

3

4

5

A
v

g
.

R
e

tu
rn

1 e 4 Gop h e r

0 10M 20M 30M 40M
S te p

0 .5

1 .0

1 .5

1 e 3 S e a q u e s t

0 10M 20M 30M 40M
S te p

0 .5

1 .0

1 .5

2 .0

2 .5

1 e 3 S p a ce In va d e r s

ACKTR M CPO PPO

Figure 6: Atari games: learning curves (mean and std. over 5 runs) across 40M training steps.

19

1250

1000

750

500

250

KL Adaptive

d=0.003

d=0.01

d=0.03

KL Fixed

=0.01

=0.1

=1

=10

MCPO (Ours)

N=10

N=40

N=5

0 200K 400K 600K 800K 1M

1250

1000

750

500

250

MDPO

0=0.5

0=1

0=2

0 200K 400K 600K 800K 1M

PPO

clip=0.1

clip=0.2

clip=0.3

clip=0.5

clip=0.8

0 200K 400K 600K 800K 1M

VMPO

0=0.1

0=1

0=5

Figure 7: Pendulum-v0: learning curves (mean and std. over 5 runs) across 1M training steps.

where β is still determined by the β-switching rule. This baseline corresponds to setting
α = 0

• Fixed α = 0.5 We manually set α = 0.5 across training. This baseline uses both old and
virtual policy’s trust regions but with fixed balanced coefficient.

• Fixed α = 1.0 We manually set α = 1.0 across training. This baseline only uses virtual
policy’s trust region.

• Annealed β We determine the β in Eq. 3 by MDPO’s annealing rule, a.k.a, βi = 1.0 −
i

Ttotal
where Ttotal is the total number of training policy update steps and i is the current

update step. We did not test with other rules such as fixed or adaptive β as we realize that
MDPO is often better than KL Fixed and KL Adaptive in our experiments, indicating that
the annealed β is a stronger baseline.

• Adaptive β We adopt adaptive β, determined by the rule introduced in PPO paper (adaptive
KL) with dtarg = 0.03.

• Frequent writing We add a new policy toM at every policy update step.
• Uniform writing Inspired by the uniform writing mechanism in Memory-Augmented Neu-

ral Networks [9], we add a new policy to M at every interval of 10 update steps. The
interval size could be tuned to get better results but it would require additional effort, so we
preferred our diversity-promoting writing over this one.

• Sparse writing Uniform writing with interval of 100 update steps.
• Mean ψ The virtual policy is determined as

ψ =

|M|∑
j

θj (8)

• Half feature We only use features from 1 to 6 listed in Table 4.

The other baselines including KL Adaptive, KL Fixed, MDPO, PPO, and VMPO are the same as in
B.2. The full learning curves of all models with different hyperparameters are plotted in Fig. 2.

C Theoretical analysis of MCPO

In this section, we explain the design of our objective function L1 and L2. We want to emphasize
that the two trust regions (corresponding to θold and ψ) are both important for MCPO’s convergence.
Eq. 3 needs to include the old policy’s trust region because, in theory, constraining policy updates
using the last sampling policy’s trust region guarantees monotonic improvement [17]. However, in
practice, the old policy can be suboptimal and may not induce much improvement. This motivates us
to employ an additional trust region to regulate the update in case the old policy’s trust region is bad.
In doing so, we still want to maintain the theoretical property of trust-region update while enabling a
more robust optimization that works well even when the ideal setting for theoretical assurance does
not hold.

20

200

100

0

100

200

KL Adaptive

d=0.003

d=0.01

d=0.03

KL Fixed

=0.01

=0.1

=1

=10

MCPO (Ours)

N=10

N=40

N=5

0 200K 400K 600K 800K 1M

200

100

0

100

200

MDPO

0=0.5

0=1

0=2

0 200K 400K 600K 800K 1M

PPO

clip=0.1

clip=0.2

clip=0.3

clip=0.5

clip=0.8

0 200K 400K 600K 800K 1M

VMPO

0=0.1

0=1

0=5

Figure 8: LunarLander-v2: learning curves (mean and std. over 5 runs) across 5M training steps.

100

0

100

200

300
KL Adaptive

d=0.003

d=0.01

d=0.03

KL Fixed

=0.01

=0.1

=1

=10

MCPO (Ours)

N=10

N=40

N=5

0 1M 2M 3M 4M 5M

100

0

100

200

300
MDPO

0=0.5

0=1

0=2

0 1M 2M 3M 4M 5M

PPO

clip=0.1

clip=0.2

clip=0.3

clip=0.5

clip=0.8

0 1M 2M 3M 4M 5M

VMPO

0=0.1

0=1

0=5

Figure 9: BipedalWalker-v3: learning curves (mean and std. over 5 runs) across 1M training steps.

0

5000

A
vg

.
R

e
tu

rn
H

a
lf

ch
e
e
ta

h

TRPO

=0.005

=0.01

Mean

N=40

N=5

MCPO (Ours)

N=40

N=5

MDPO

0=0.5

0=1

0=2

Step

PPO

clip=0.2

clip=0.5

clip=0.8

TRG

0

2500

5000

A
vg

.
R

e
tu

rn
W

a
lk

e
r2

d

=0.005

=0.01

N=40

N=5

N=40

N=5

0=0.5

0=1

0=2

Step

clip=0.2

clip=0.5

clip=0.8

TRG

0

2000

4000

A
vg

.
R

e
tu

rn
H

o
p

p
e
r

=0.005

=0.01

N=40

N=5

N=40

N=5

0=0.5

0=1

0=2

Step

clip=0.2

clip=0.5

clip=0.8

TRG

0

2500

5000

A
vg

.
R

e
tu

rn
A

n
t

=0.005

=0.01

N=40

N=5

N=40

N=5
0=0.5

0=1

0=2

Step

clip=0.2

clip=0.5

clip=0.8

TRG

2500

5000

A
vg

.
R

e
tu

rn
H

u
m

a
n

o
id

=0.005

=0.01

N=40

N=5

N=40

N=5
0=0.5

0=1

0=2

Step

clip=0.2

clip=0.5

clip=0.8

TRG

0 5M 10M

100000

200000

A
vg

.
R

e
tu

rn
H

u
m

a
n

o
id

S
ta

n
d

u
p

=0.005

=0.01

0 5M 10M

N=40

N=5

0 5M 10M

N=40

N=5

0 5M 10M

0=0.5

0=1

0=2

0 5M 10M

clip=0.2

clip=0.5

clip=0.8

TRG

Figure 10: Mujoco: learning curves (mean and std. over 5 runs) across 10M training steps.

21

0

2

4

6
A

vg
.

R
e
tu

rn

1e3 HalfCheetah

0

2

4

1e3 Walker2d

0

1

2

3

1e3 Hopper

0 2M 4M 6M 8M 10M
Step

0

2

4

A
vg

.
R

e
tu

rn

1e3 Ant

0 2M 4M 6M 8M 10M
Step

0

2

4

6

1e3 Humanoid

0 2M 4M 6M 8M 10M
Step

0.5

1.0

1.5

2.0
1e5 HumanoidStandup

MCPO (Ours)
MDPO

Mean
PPO

TRGPPO
TRPO

Figure 11: Mujoco: learning curves (mean and std. over 5 runs) across 10M training steps.

It should be noted that constraining with a policy different from the sampling one would break the
monotonic improvement property of trust-region update. Fortunately, our theory proves that using
the two trust regions as defined in our paper helps maintain the monotonic improvement property.
This is an important result since if you use an arbitrary virtual policy to form the second trust region
(unlike the one we suggest in this paper), the property may not hold.

Similar to [17], we can construct a theoretically guaranteed version of our practical objective func-
tions that ensures monotonic policy improvement.

First, we explain the design of L1 by recasting L1 as

L1θold (θ) = Lθold (θ)

− C1D
max
KL (θold, θ)

− C2D
max
KL (ψ, θ)

where Lθold (θ) = η (πθold) +
∑
s ρπθold (s)

∑
a πθ (a|s)Aπθold (s, a)–the local approximation

to the expected discounted return η (θ), Dmax
KL (a, b) = maxsKL [πa (·|s) , πb (·|s)], C1 =

4maxs,a|Aπ(s,a)|γ
(1−γ)2 and C2 > 0. Here, ρπθold is the (unnormalized) discounted visitation frequen-

cies induced by the policy πθold .

As the KL is non-negative, L1θold (θ) ≤ Lθold (θ)−C1D
max
KL (θold, θ). According to [17], the RHS

is a lower bound on η (θ), so L1 is also a lower bound on η (θ) and thus, it is reasonable to maximize
the practical L1, which is an approximation of L1θold .

Next, we show that by optimizing both L1 and L2, we can interpret our algorithm as a monotonic
policy improvement procedure. As such, we need to reformulate L2 as

L2θold (ψ) = Lθold (ψ)− C1D
max
KL (θold, ψ)

Note that compared to the practical L2 (as defined in the main paper on page 5), we have introduced
here an additional KL term, which means we need to find ψ that is close to θold and maximizes the
approximate advantage Lθold (ψ). As we maximize L2θold (ψ), the maximizer ψ satisfies

L2θold (ψ) ≥ L2θold (θold) = Lθold (θold)

We also have

22

η (θ) ≥ L1θold (θ) (9)
η (θold) = Lθold (θold) ≤ L2θold (ψ)

= Lθold (ψ)− C1D
max
KL (θold, ψ)

= L1θold (ψ) (10)

Subtracting both sides of Eq. 10 from Eq. 9 yields

η (θ)− η (θold) ≥ L1θold (θ)− L1θold (ψ)

Thus by maximizing L1θold (θ), we guarantee that the true objective η (θ) is non-decreasing.

Although the theory suggests that the optimal L2 could be L∗2 =

Êt [Rt (ψϕ)− C1KL [πθold (·|st) , πψ (·|st)]], it would require additional tuning of C1. More
importantly, optimizing an objective in form of L∗2 needs a very small step size, and could converge
slowly. Hence, we simply discard the KL term and only optimize L2 = Êt [Rt (ψϕ)] instead.
Empirical results show that using this simplification, MCPO’s learning curves still generally
improve monotonically over training time.

23

