
Appendix: Scalable Neural Video Representations
with Learnable Positional Features

Website: https://subin-kim-cv.github.io/NVP

A More description of experimental setups

A.1 Metrics

• PSNR. To measure the reconstruction quality of models, we use peak signal-to-noise ratio (PSNR), evaluated
as − log10(MSE), where MSE denotes the mean-squared error between the ground-truth video and the
reconstructed video (as 0-1 scale).

• LPIPS. We use AlexNet [20] pretrained on ImageNet [10], which best performs as a forward metric.4 It
measures a weighted distance between normalized internal features of the real video and its reconstruction.

• FLIP. FLIP automates the difference evaluation between alternating images by building on principles of
human perception, where we use the official implementation.5

A.2 Further implementation details

Training details. We train the network by adopting mean-squared error as our loss function and using the
AdamW optimizer [27] with a learning rate of 0.01. We utilize HEVC [43] for the compression of our sparse
positional features and JPEG [49] for reducing the parameters of keyframes.

Architecture. For the learnable keyframes, which follow a multi-level structure, we set the number of levels as
16, per level scale γ as 1.35, and the coarsest resolution as 16× 16. To build models with different sizes, we
set the number of features per level as 2 and 4 for NVP-S and NVP-L, respectively. For the sparse positional
features, considering the number of video frames, we use a 3D grid size of 300× 300× 300 for ShakeNDry
and 300 × 300 × 600 for other videos in UVG-HD, which is ∼23× smaller than the video pixels. We then
concatenate 3× 3× 1 latent codes in sparse positional features. Same as the learnable keyframes, we set the
latent dimensions of sparse positional features to be 2 and 4 for NVP-S and NVP-L, respectively. In addition, we
design modulated implicit function as a 3-layer multi-layer perceptron (MLP) modulated by another modulator
network; both have a hidden size of 128. For the synthesizer network, we use SIREN [40], which uses sin(σtz)
with σt ∈ R as the activation functions, and set the temporal frequency of the first layer as σt = 30 and the
other layers as σt = 1. This network is modulated by a modulator network with LeakyReLU [53] activation.

We train the network with a batch size of 1,245,184, i.e., at each iteration, we randomly sample 1,245,184 pixels
from entire video pixels. We initialize the parameters of learnable keyframes (and sparse positional features) from
the uniform distribution U(−10−4, 10−4) and use Kaiming normal initialization for the modulator networks.
We train the network using AdamW optimizer [27] with the initial learning rate η = 0.01 and weight decay
λ = 0.001. We use a cosine annealing learning rate scheduler, where the current learning rate ηt at the t-th
iteration is defined as follows:

ηt = ηmin +
1

2
(η − ηmin)

(
1 + cos

( t
T
π
))
,

where ηmin is set to 0.00001, and the total iteration T is set to 100,000 for both NVP-S and NVP-L.

Compression procedure. Following the prior work[5], we used ffmpeg [48] to extract RGB frames from
compressed UVG-HD video files and to compress learnable positional features of NVP.

First, we use the following command to extract RGB videos from the original YUV videos of UVG-HD:

$ffmpeg -f rawvideo -vcodec rawvideo -s 3840 x2160 -r 120 -pix_fmt yuv420p \
-i INPUT.yuv OUTPUT/f%05d.png

where INPUT is the input file name, and OUTPUT is a directory to save decompressed RGB frames.

4https://github.com/richzhang/PerceptualSimilarity
5https://github.com/NVlabs/flip
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Then we use the following commands to compress learnable keyframes:

$ffmpeg -hide_banner -i input.png -qscale:v SCALE output.jpg

where SCALE is an output option that controls image quality.

We also use the following commands to compress sparse positional features:

$ffmpeg -framerate FR -i INPUT/f%05d.png -c:v hevc -preset slow -x265 -params \
bframes =0 -crf CRF OUTPUT.mp4

where FR and CRF indicate the frame rate and constant rate factor value that controls video quality and compres-
sion ratio, respectively. We summarize the hyperparameters used in the below table:

Table 5: Hyperparameter values used in the compression procedure.

Model SCALE Uθxy SCALE Uθxt SCALE Uθyt FR CRF

NVP-S 2 3 3 25 21
NVP-L 2 2 2 40 21

B Description of baseline methods

In this section, we briefly describe the specific parameter we used as baselines of video coordinate-based neural
representations (CNRs) for evaluating our framework at a high level. To compare the parameter efficiency, we
consider two situations: the average bits-per-pixel (BPP) of each baseline is either near 0.200 or 0.400. However,
in the case of Instant-ngp [34], to compare the compute efficiency, we set the total number of parameters as
similar as NVP-L when encoding time is ≤ 1 hour

• SIREN [40], which uses high frequency sine activations (i.e., sin(ω0z) with ω0 � 1) and takes spatio-
temporal coordinate (x, y, t) as input then outputs a corresponding RGB value for each pixel. We use a
5-layer multi-layer perceptron (MLP) with a hidden size of 2,048, where the frequency ω0 is set to 30 for all
sinusoidal activations.

• FFN [46] leverages random fourier feature (RFF) (i.e., [sin(2πWz), cos(2πWz)]) as a positional embed-
ding layer to encode spatio-temporal coordinates (x, y, t) and uses ReLU activation for further layers to
output a corresponding RGB value for each pixel. We use RFF with W ∈ R3×1024 with Wij ∼ N (0, σ2)
with σ = 10, and a 4-layer MLP with a hidden size of 2,048.

• NeRV [5], a CNR specialized for videos, takes a time index as input and outputs a corresponding RGB
image. We use two configurations provided in the official implementation:6 NeRV-S and NeRV-L for a small
and a large model, respectively. Specifically, we first apply a 2-layer MLP on the output of the positional
encoding layer, and then we stack 5 NeRV blocks with upscale factors 5, 3, 2, 2, 2, respectively. We set
the output channel for the first fully-connected layer as 128 for both models and change the expansion at
the beginning of convolutional block size for 4 and 8 for NeRV-S and NeRV-L, respectively. After training
one model for a single video separately, we prune the trained parameters by removing 15% of the weights,
quantize model weights to 8-bit, and apply entropy coding following the compression procedure in the paper.

• Instant-ngp [34] uses multiresolution hash tables of trainable feature vectors for a given input coordinate
(x, y, t). To be specific, on the UVG-HD benchmark, we set the number of levels as 15, the number of
features per level as 2, the maximum entries per level as 224, and the coarsest resolution as 16. We set
per level scale γ as 1.3 for ShakeNDry, and 1.5 for other videos in the UVG-HD. We use a small neural
network with 64 neurons and two hidden layers that use ReLU as output activation for a small latent-to-RGB
mapping.

6https://github.com/haochen-rye/NeRV
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C Video-wise main results

In this section, we provide video-wise quantitative results and qualitative illustrations.

Table 6: Quantitative results of NVP-S on 7 videos in UVG-HD: Beauty, Bosphorus, HoneyBee,
Jockey, ReadySetGo, ShakeNDry, and Yachtride.

Encoding time Video name BPP PSNR (↑) FLIP (↓) LPIPS (↓)

∼5 minutes

Beauty 0.875 33.80 0.061 0.399
Bosphorus 0.875 35.45 0.077 0.117
HoneyBee 0.875 37.89 0.048 0.127
Jockey 0.875 35.51 0.082 0.235
ReadySetGo 0.875 30.74 0.109 0.161
ShakeNDry 1.056 36.84 0.056 0.147
Yachtride 0.875 31.73 0.090 0.146

∼10 minutes

Beauty 0.875 34.52 0.055 0.362
Bosphorus 0.875 37.52 0.060 0.085
HoneyBee 0.875 38.51 0.044 0.124
Jockey 0.875 37.14 0.065 0.216
ReadySetGo 0.875 32.37 0.094 0.112
ShakeNDry 1.056 36.92 0.067 0.128
Yachtride 0.875 33.53 0.074 0.096

∼1 hour

Beauty 0.875 35.42 0.048 0.361
Bosphorus 0.875 40.06 0.048 0.065
HoneyBee 0.875 39.51 0.039 0.121
Jockey 0.875 38.91 0.050 0.201
ReadySetGo 0.875 34.68 0.074 0.080
ShakeNDry 1.056 38.81 0.045 0.118
Yachtride 0.875 35.88 0.060 0.068

∼8 hours

Beauty 0.277 34.82 0.054 0.286
Bosphorus 0.172 39.16 0.058 0.069
HoneyBee 0.192 38.38 0.049 0.095
Jockey 0.172 37.03 0.073 0.220
ReadySetGo 0.181 33.49 0.094 0.090
ShakeNDry 0.297 37.85 0.055 0.104
Yachtride 0.180 34.49 0.083 0.084

∼11 hours

Beauty 0.523 35.43 0.051 0.170
Bosphorus 0.333 40.21 0.056 0.049
HoneyBee 0.409 39.13 0.044 0.064
Jockey 0.323 37.86 0.067 0.205
ReadySetGo 0.351 34.49 0.091 0.073
ShakeNDry 0.585 38.70 0.052 0.088
Yachtride 0.359 36.44 0.075 0.066
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Ground Truth~5 minutes ~10 minutes ~1 hour

Figure 12: Reconstruction results on Beauty in UVG-HD after training NVP-S for “5 minutes”, “10
minutes”, and “1 hour” with a single NVIDIA V100 32GB GPU.

Ground Truth~5 minutes ~10 minutes ~1 hour

Figure 13: Reconstruction results on Bosphorus in UVG-HD after training NVP-S for “5 minutes”,
“10 minutes”, and “1 hour” with a single NVIDIA V100 32GB GPU.

17



Ground Truth~5 minutes ~10 minutes ~1 hour

Figure 14: Reconstruction results on Honeybee in UVG-HD after training NVP-S for “5 minutes”,
“10 minutes”, and “1 hour” with a single NVIDIA V100 32GB GPU.

Ground Truth~5 minutes ~10 minutes ~1 hour

Figure 15: Reconstruction results on Jockey in UVG-HD after training NVP-S for “5 minutes”, “10
minutes”, and “1 hour” with a single NVIDIA V100 32GB GPU.
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Ground Truth~5 minutes ~10 minutes ~1 hour

Figure 16: Reconstruction results on ReadySetGo in UVG-HD after training NVP-S for “5 minutes”,
“10 minutes”, and “1 hour” with a single NVIDIA V100 32GB GPU.

Ground Truth~5 minutes ~10 minutes ~1 hour

Figure 17: Reconstruction results on ShakeNDry in UVG-HD after training NVP-S for “5 minutes”,
“10 minutes”, and “1 hour” with a single NVIDIA V100 32GB GPU.
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Ground Truth~5 minutes ~10 minutes ~1 hour

Figure 18: Reconstruction results on Yachtride in UVG-HD after training NVP-S for “5 minutes”,
“10 minutes”, and “1 hour” with a single NVIDIA V100 32GB GPU.

D Comparison of video decoding time

We compare the decoding time of NVP with other baselines on a single GPU (NVIDIA V100 32GB).

Table 7: Decoding time of coordinate-based representations measured with FPS (higher is better).
It was measured on Jockey (600 frames with 1920 × 1080 resolution) in UVG-HD with a single
NVIDIA V100 32GB GPU.

Model BPP FPS

Instant-ngp [34] 7.352 29.81
NeRV-S [5] 0.177 45.39
NeRV-L [5] 0.426 15.28

NVP-S 0.172 6.51
NVP-L 0.359 4.87

NVP requires more decoding time than prior works, mainly due to (a) three learnable keyframes along each
spatio-temporal axis (three times more access than the single grids of Instant-ngp [34]) and (b) the modulation
architecture while evaluating the corresponding RGB values. However, note that the computation through
each keyframe does not depend on each other; in this respect, the decoding time of NVP can be sped up
significantly with a parallel design and implementation, e.g., following the implementation details from Instant-
ngp.7 Moreover, while (b) exhibits considerable improvements in encoding complicated videos, we also
demonstrate that our method still shows reasonable video encoding without modulations (both are shown in
Section 4.3 of the main text); hence, one can control the trade-off between the decoding time and encoding
quality by designating the multilayer perceptron (MLP) size and the whether the modulation is applied (or not).

7Unlike our method that utilizes the well-known Pytorch [36] framework, Instant-ngp utilizes C++/CUDA
to implement all of the components for enabling strong parallelism in training and inference. As the official
implementation of Instant-ngp8 states that the decoding time highly deviates if one uses non-C++/CUDA
frameworks, e.g., Pytorch, we argue the gap of decoding time in Table 7 mainly stems from such different
implementation details, and it can be remarkably mitigated by following their implementation.

8https://github.com/NVlabs/instant-ngp
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E More description and visualization of latent keyframes

Our keyframes aim to learn meaningful contents that are shared across a given video along an axis. For instance,
the temporal axis (Uθxy ) learns common contents in every timeframe, such as background and the watermark in
the video, which is invariant to timesteps.

The meanings of the other two keyframes (Uθxt and Uθxt ) may not be straightforward from their visualizations,
as the shared contents across the other two directions in raw RGB space is often ambiguous. However, we note
that we are learning the common contents in “latent space”; although they do not seem straightforward, they
indeed play a crucial role in promoting the succinct parametrization of a given video (see Figure 8).

Latent keyframes

Sparse positional features Multi-resolution structure 

Figure 19: Illustration of our latent keyframe structure.

(a) ShakeNDry (b) Honeybee

Figure 20: Illustration of our learnable latent keyframes Uθxy after encoding (a) ShakeNDry, and (b)
Honeybee in UVG-HD, respectively.

F Additional experiments on different datasets

F.1 Experiment on Big Buck Bunny

Following the experimental setup in NeRV [5], we provide additional experimental results in the Big Buck
Bunny video for a more intuitive comparison to prior work.

F.2 Experiment with new videos

We also provide additional experimental results on more complex videos. In particular, we consider the following
three new videos, where all of these videos are collected under the CC0 license:

• (Street) A timelapse video of a London street. People, cars, and buses are moving at different speeds as the
traffic signal changes.9

9https://pixabay.com/videos/id-28693/
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Table 8: PSNR values and encoding time of different CNRs to encode the Big Buck Bunny video. ↑
and ↓ denote higher and lower values are better, respectively.

Method BPP PSNR (↑) Encoding time (hr, ↓)
NeRV-S [5] 0.128 32.36 1.734
NVP-S (ours) 0.136 32.56 0.925

NeRV-M [5] 0.249 36.50 1.762
NVP-M (ours) 0.248 36.49 0.925

NeRV-L [5] 0.496 39.26 1.774
NVP-L (ours) 0.456 39.88 0.925

• (City) A timelapse video of the city at night. A lot of cars are moving speedily.10

• (Surfing) A video of a man surfing in the ocean. Huge ocean waves are changing dramatically and fast.11

Table 9: PSNR values to encode more temporally complex videos.

UVG-HD (avg.) Street City Surfing

BPP 0.412 0.214 0.173 0.311
PSNR 37.71 38.90 38.45 43.71

10https://pixabay.com/videos/id-19627/
11https://pixabay.com/videos/id-110734/
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G Video-wise compression result
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Figure 21: PSNR and LPIPS values of NVP and well-known video codecs over different BPP values
computed on the Beauty video in UVG-HD.
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Figure 22: PSNR and LPIPS values of NVP and well-known video codecs over different BPP values
computed on the Bosphorus video in UVG-HD.
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Figure 23: PSNR and LPIPS values of NVP and well-known video codecs over different BPP values
computed on the Honeybee video in UVG-HD.
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Figure 24: PSNR and LPIPS values of NVP and well-known video codecs over different BPP values
computed on the Jockey video in UVG-HD.
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Figure 25: PSNR and LPIPS values of NVP and well-known video codecs over different BPP values
computed on the ReadySetGo video in UVG-HD.
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Figure 26: PSNR and LPIPS values of NVP and well-known video codecs over different BPP values
computed on the ShakeNDry video in UVG-HD.
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Figure 27: PSNR and LPIPS values of NVP and well-known video codecs over different BPP values
computed on the Yachtride video in UVG-HD.
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H Comparison to learning-based video compression

In Figure 28, we compare compressed videos from NVP with well-known video codecs (H.264 [51], HEVC [43])
and state-of-the-art learning-based video compression methods (DVC [28], STAT-SSF-SP [56], HLVC [55],
Scale-space [1], Liu et al. [25], and NeRV [5]) on UVG-HD. We train NVP for every single video separately,
where we use the same architecture and hyperparameters for encoding and compressing all videos in UVG-HD.

Since our primary focus is not on video compression, there exists a gap between the existing compression
methods and NVP. However, we strongly believe that there are numerous future directions to engage NVP for
video compression, such as investigating per-video hyperparameter search strategy or designing better CNR
architecture more specialized for compression.
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Figure 28: PSNR values of NVP, well-known video codecs, and learning-based video compression
methods over different BPP values computed on UVG-HD.
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