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Abstract

For a d-dimensional log-concave distribution π(θ) ∝ e−f(θ) constrained to a con-
vex body K, the problem of outputting samples from a distribution ν which is
ε-close in infinity-distance supθ∈K | log ν(θ)

π(θ) | to π arises in differentially private
optimization. While sampling within total-variation distance ε of π can be done
by algorithms whose runtime depends polylogarithmically on 1

ε , prior algorithms
for sampling in ε infinity distance have runtime bounds that depend polynomially
on 1

ε . We bridge this gap by presenting an algorithm that outputs a point ε-close
to π in infinity distance that requires at most poly(log 1

ε , d) calls to a membership
oracle for K and evaluation oracle for f , when f is Lipschitz. Our approach de-
parts from prior works that construct Markov chains on a 1

ε2 -discretization of K
to achieve a sample with ε infinity-distance error, and present a method to directly
convert continuous samples from K with total-variation bounds to samples with
infinity bounds. This approach also allows us to obtain an improvement on the
dimension d in the running time for the problem of sampling from a log-concave
distribution on polytopes K with infinity distance ε, by plugging in TV-distance
running time bounds for the Dikin Walk Markov chain.

1 Introduction

The problem of sampling from a log-concave distribution is as follows: For a convex body K ⊆
Rd and a convex function f : K → R, output a sample θ from the distribution π(θ) ∝ e−f(θ).
This is a basic problem in computer science, statistics, and machine learning, with applications
to optimization and integration [1, 29], Bayesian statistics [39], reinforcement learning [6], and
differential privacy [32, 20, 2, 24]. Sampling exactly from π is known to be computationally hard for
most interesting cases of K and f [16] and, hence, the goal is to output samples from a distribution
ν that is at a small (specified) “distance” to π. For applications such as computing the integral of
π, bounds in the total variation (TV) distance [1] or KL divergence (which implies a TV bound) are
sufficient. In applications such as computing the expectation of a Lipschitz function with respect to
π, Wasserstein distance may also be sufficient. In differentially private optimization [32, 20, 2, 19,
24], one requires bounds on the stronger infinity-distance –

d∞(ν, π) := sup
θ∈K

∣∣∣∣log ν(θ)
π(θ)

∣∣∣∣
– to guarantee pure differential privacy, and TV, KL, or Wasserstein bounds are insufficient; see [14].

Pure differential privacy (DP) is the strongest notion of DP and has been extensively studied (see e.g.
the survey [14]). It has advantages over weaker notions of differential privacy. E.g., when privacy
of “groups” of individuals (rather than just single individuals) must be preserved, any mechanism
which is (pure) ε-DP (with respect to single individuals), is also kε-DP with respect to subsets of
k individuals. Motivated by applications to differential privacy, we study the problem of designing
efficient algorithms to output samples from a distribution ν which is ε-close in d∞ to π.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Related works. Several lines of work have designed Markov chains that generate samples from
distributions that are close to a given log-concave distribution. These results differ in both their as-
sumptions on the log-density and its support, as well as the distance used to measure closeness. One
line of work includes bounds for sampling from a log-concave distribution on a compactly supported
convex body within TV distance O(δ), including results with running time that is polylogarithmic
in 1

δ [1, 30, 29, 34] (as well as other results which give a running time bound that is polynomial in 1
δ

[18, 17, 5, 4]). In addition to assuming access to a value oracle for f , some Markov chains just need
access to a membership oracle for K [1, 30, 29], while others assume that K is a given polytope:
{θ ∈ Rd : Aθ ≤ b} [23, 33, 35, 34, 26]. They often also assume that K is contained in a ball of
radius R and contains a ball of smaller radius r. Many of these results assume that the target log-
concave distribution satisfies a “well-rounded” condition which says that the variance of the target
distribution is Θ(d) [30, 29], or that it is in isotropic position (all eigenvalues of its covariance ma-
trix are Θ(1)) [25]; when applied to log-concave distributions that are not well-rounded or isotropic,
these results require a “rounding” pre-processing procedure to find a linear transformation which
makes the target distribution well-rounded or isotropic. Finally, it is often assumed that the func-
tion f is such that f is L-Lipschitz or β-smooth [34], including works handling the widely-studied
special case when f is uniform on K where L = β = 0 (see e.g. [28, 23, 33, 35, 26, 8, 21]).

Another line of work gives sampling algorithms with bounds on the distance to the target density π
in terms of Wasserstein distance [13, 11], KL divergence [40, 12], and Renyi divergence [36]. In
contrast to works which assume access to an oracle for the value of f , many of these results instead
assume access to an oracle for the gradient of f and require the log-density to be L-Lipschitz or
β-smooth on all of Rd (or on, e.g., a cube containing K) for some L, β > 0. However, as noted
earlier, bounds in the Wasserstein distance, KL divergence, and α-Renyi divergence (for α < ∞)
also do not imply bounds on the infinity distance, and the running time bounds provided by these
works are polynomial in 1

ε . (See also Appendix A for additional discussion and challenges.)

Among prior works that give algorithms with bounds on d∞, [20] applies the grid walk Markov
chain of [1] to sample from a uniform distribution on a convex body. [2] extends the approach
of [20] to log-Lipschitz log-concave distributions. Unlike the TV-distance case where algorithms
whose running time depends logarithmically on the error are known (e.g., [1, 29, 34]), the best
available bounds for sampling within O(ε) infinity-distance [20, 2] have runtime that is polynomial
in 1

ε and a relatively large polynomial in d.

Our contributions. We present a new approach to output samples, which come with d∞ bounds,
from a log-concave and log-Lipschitz distribution constrained to a a convex body. Specifically,
when K := {θ : Aθ ≤ b} is a polytope (where one is given A and b) our main result (Theorem
2.1) guarantees samples from a distribution that is within O(ε) error in d∞ and whose runtime de-
pends logarithmically on 1

ε compared to the polynomial dependence of [2]. Our approach departs
from prior works that construct Markov chains on a 1

ε2 -discretization of K to achieve a sample
with ε infinity-distance error, and we present a method (Algorithm 1) to directly convert continuous
samples from K with total-variation bounds to samples with infinity bounds (Theorem 2.2). This
continuous-space approach also allows us to obtain an improvement on the dimension d in the run-
ning time whenK is a polytope by plugging in TV-distance running time bounds for the Dikin Walk
Markov chain of [34]. As immediate applications, we obtain faster algorithms for differentially
private empirical risk minimization (Corollary 2.4) and low rank approximation (Corollary 2.5).

2 Results
Let B(v, s) := {z ∈ Rd : ‖z − v‖2 ≤ s} and ω denote the matrix-multiplication constant.

Theorem 2.1 (Main result) There exists an algorithm which, given ε, L, r, R > 0, A ∈ Rm×d,
b ∈ Rm that define a polytope K := {θ ∈ Rd : Aθ ≤ b} contained in a ball of radius R, a point
a ∈ Rd such that K contains a ball B(a, r) of smaller radius r, and an oracle for the value of a
convex function f : K → Rd, where f is L-Lipschitz, and defining π to be the distribution π ∝ e−f ,
outputs a point from a distribution ν such that d∞(ν, π) < ε. Moreover, with very high probability1,
this algorithm takes O(T ) function evaluations and O(T ×mdω−1) arithmetic operations, where
T = O((m2d3 +m2dL2R2)× [LR+ d log(Rd+LRd

rε )]).

1The number of steps is O(τ × T ), where E[τ ] ≤ 3, P(τ ≥ t) ≤
(

2
3

)t
for t ≥ 0, and τ ≤ O(d log(R

r
) +

LR) w.p. 1.

2



In comparison to the polynomial in 1
ε runtime bounds of [2], Theorem 2.1 guarantees a runtime that

is logarithmic in 1
ε , and also improves the dependence on the dimension d, in the setting where K

is a polytope. Specifically, [2] show that the number of steps of the grid walk to sample from π with
infinity-distance error at most ε is

O

(
1
ε2 (d10 + d6L4R4)× polylog

(
1
ε
,

1
r
,R, L, d

))
(Lemma 6.5 in the Arxiv version of [2]). When applying their algorithm to the setting where f is
constrained to a polytope K = {x ∈ Rd : Ax ≤ b}, each step of their grid walk Markov chain
requires computing a membership oracle forK and the value of the function f . The membership or-
acle can be computed in O(md) arithmetic operations. Thus the bound on the number of arithmetic
operations for each step of their grid walk is O(md) (provided that each function evaluation takes
at most O(md) arithmetic operations). Thus the bound on the number of arithmetic operations to
obtain a sample from π is O( 1

ε2 (md11 +md7L4R4)× polylog( 1
ε ,

1
r , R, L, d)). Thus, Theorem 2.1

improves on this bound by a factor of roughly 1
ε2m3 d

8−ω . For example, when m = O(d), as may
be the case in differentially private applications, the improvement is 1

ε2 d
5−ω .

We note that the bounds of [2] also apply in the more general setting where K is a convex body
with membership oracle. One can extend our bounds to achieve a runtime that is logarithmic in 1

ε
(and polynomial in d, L,R) in the more general setting where K is a convex body with membership
oracle; we omit the details (see Remark 2.3).

Moreover, we also note that while there are several results which achieve O(δ) TV bounds in time
logarithmic in 1

δ , TV bounds do not in general imply O(ε) bounds on the KL or Renyi divergence,
or on the infinity-distance, for any δ > 0.2 On the other hand, an ε-infinity-distance bound does
immediately imply a bound of ε on the KL divergence DKL, and α-Renyi divergence Dα, since
DKL(µ, π) ≤ d∞(µ, π) and Dα(µ, π) ≤ d∞(µ, π) for any α > 0 and any pair of distributions µ, π.
Thus, under the same assumptions on K and f , Theorem 2.1 implies a method of sampling from a
Lipschitz concave log-density onK with ε KL and Renyi divergence error in a number of arithmetic
operations that is logarithmic in 1

ε , with the same bound on the number of arithmetic operations.

The polynomial dependence on 1
ε in [2] is due to the fact that they rely on a discrete-space Markov

chain [1], on a grid with cells of widthw = O( ε
L
√
d
), to sample from π withinO(ε) infinity-distance.

Since their Markov chain’s runtime bound is polynomial in w−1, they get a runtime bound for
sampling within O(ε) infinity-distance that is polynomial in 1

ε . The proof of Theorem 2.1 bypasses
the use of discrete grid-based Markov chains by introducing Algorithm 1 which transforms any
sample within δ = O(εe−d−nLR) TV distance of the distribution π ∝ e−f on the continuous set
K (as opposed to a discretization of K), into a sample within O(ε) infinity-distance from π. This
allows us to make use of a continuous-space Markov chain, whose step size is not restricted to a grid
of width O( ε

L
√
d
) and is instead independent of ε, to obtain a sample within O(ε) infinity-distance

from π in time that is logarithmic in 1
ε .

Theorem 2.2 (Main technical contribution: Converting TV bounds to infinity-distance bounds)
There exists an algorithm (Algorithm 1) which, given ε, r, R, L > 0, a membership oracle for a
convex body K contained in a ball of radius R and containing a ball B(0, r), and an oracle which
outputs a point from a distribution µ which has TV distance

δ ≤ O

(
ε×

(
R(d log(R/r) + LR)2

εr

)−d
e−LR

)

from a distribution π ∝ e−f where f : K → R is an L-Lipschitz function (see Appendix B for the
exact values of δ and related hyper-parameters), outputs a point θ̂ ∈ K such that the distribution ν

2For instance, if π(θ) = 1 with support on [0, 1], for every δ > 0 there is a distribution ν where ‖ν −
π‖TV ≤ 2δ and yet d∞(ν, π) ≥ DKL(ν, π) ≥ 1

2 . (ν(θ) = e
1
δ on θ ∈ [0, δe− 1

δ ], ν(θ) = 1−δ

1−δe−
1
δ

on

(δe− 1
δ , 1] and ν(θ) = 0 otherwise)
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of θ̂ satisfies d∞(ν, π) ≤ ε. Moreover, with very high probability3, this algorithm finishes in O(1)
calls to the sampling and membership oracles, plus O(d) arithmetic operations.

To the best of our knowledge Theorem 2.2 is the first result which for any ε, L, r, R > 0, when
provided as input a sample from a continuous-space distribution on a convex body K within some
TV distance δ = δ(ε, r, R, L) > 0 from a given L-log-Lipschitz distribution π on K, where K
is contained in a ball of radius R and containing a ball of smaller radius r, outputs a sample with
distribution within infinity-distance O(ε) from π. This is in contrast to previous works [2] (see also
[20] which applies only to the special case where π is the uniform distribution on K) which instead
require as input a sample with bounded TV distance from the restriction of π on a discrete grid on
K, and then convert this discrete-space sample into a sample within infinity-distance O(ε) from the
continuous-space distribution π : K → R.

Algorithm 1: Interior point TV to infinity-distance converter
Input: d ∈ N
Input: A membership oracle for a convex body K ∈ Rd and an r > 0 such that B(0, r) ⊆ K.
Input: A sampling oracle which outputs a point from a distribution µ : K → R
Output: A point θ̂ ∈ K.

1 Hyperparameters: ∆ > 0, τmax ∈ N (set in Appendix B)
2 for i = 1, . . . , τmax do
3 Sample a point θ ∼ µ
4 Sample a point ξ ∼ Unif(B(0, 1))
5 Set Z ← θ + ∆rξ
6 Set θ̂ ← 1

1−∆Z

7 If θ̂ ∈ K, output θ̂ with probability 1
2 and halt. Otherwise, continue.

8 end
9 Sample a point θ̂ ∼ Unif(B(0, r))

10 Output θ̂

Remark 2.3 (Extension to convex bodies with membership oracles) We note that Theorem 2.1
can be extended to the general setting where K is an arbitrary convex body in a ball of radius
R and containing a ball of smaller radius r, and we only have membership oracle access to K.
Namely, one can plug in the results of [29] to our Theorem 2.2 to generate a sample from a L-
Lipschitz concave log-density on an arbitrary convex body K in a number of operations that is
(poly)-logarithmic in 1

ε ,
1
r and polynomial on d, L,R. We omit the details.

Applications to differentially private optimization. Sampling from distributions with O(ε)
infinity-distance error has many applications to differential privacy. Here, the goal is to find a ran-
domized mechanism h : Dn → R which, given a dataset x ∈ Dn consisting of n datapoints,
outputs model parameters θ̂ ∈ R in some parameter space R, which minimize a given (negative)
utility function f(θ, x), under the constraint that the output θ̂ preserves the pure ε-differential pri-
vacy of the data points x. A randomized mechanism h : Dn → R is said to be ε-differentially
private if for any datasets x, x′ ∈ D which differ by a single datapoint, and any S ⊆ R, we have that

P(h(x) ∈ S) ≤ eεP(h(x′) ∈ S);
see [14].

As one application of Theorem 2.1, we consider the problem of finding an (approximate) minimum
θ̂ of an empirical risk function f : K × Dn → R under the constraint that the output θ̂ is ε-
differentially private, where f(θ, x) :=

∑n
i=1 `i(θ, xi). Following [2], we assume that the `i(·, x)

are L-Lipschitz for all x ∈ Dn, i ∈ N, for some given L > 0. In this setting [2] show that the
minimum ERM utility bound under the constraint that θ̂ is pure ε-differentially private, Eθ̂[f(θ̂, x)]−
minθ∈K f(θ, x) = Θ(dLRε ), is achieved if one samples θ̂ from the exponential mechanism π ∝
e−

ε
2LR f with infinity-distance error at most O(ε). Plugging Theorem 2.1 into the framework of
3Algorithm 1 finishes in τ calls to the sampling and membership oracles, plus O(τd) arithmetic operations,

where E[τ ] ≤ 3 and P(τ ≥ t) ≤
(

2
3

)t
for all t ≥ 0 and τ ≤ 5d log(R

r
) + 5LR+ 2 w.p. 1.
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the exponential mechanism, we obtain a pure ε-differentially private mechanism which achieves the
minimum expected risk (Corollary 2.4, see Section C.1 for a proof).

Corollary 2.4 (Differentially private empirical risk minimization) There exists an algorithm
which, given ε, L, r, R > 0, A ∈ Rm×d, b ∈ Rm that define a polytope K := {θ ∈ Rd : Aθ ≤ b}
contained in a ball of radius R and containing a ball B(0, r) of smaller radius r, and a convex
function f(θ, x) :=

∑n
i=1 `i(θ, xi), where each `i : K → R is L-Lipschitz, outputs a random point

θ̂ ∈ K which is pure ε-differentially private and satisfies

Eθ̂[f(θ̂, x)]−min
θ∈K

f(θ, x) ≤ O
(
dLR

ε

)
.

Moreover, this algorithm takes at most T ×mdω−1 arithmetic operations plus T evaluations of the
function f , where T = O

(
(m2d3 +m2dn2ε2)× (εn+ d)log2(nRdrε )).

Corollary 2.4 improves on the previous bound [2] of O(( 1
ε2 (m + n)d11 + ε2n4(m + n)d7) ×

polylog(nRdrε ))) arithmetic operations by a factor of roughly max
(
d8−ω

ε2m2 ,
1

εm2nd
5
)

, in the setting
where the `i are L-Lipschitz on a polytope K and each `i can be evaluated in O(d) operations. See
Appendix C.1 for a proof of this corollary.

As another application, we consider the problem of finding a low-rank approximation of a sample
covariance matrix Σ =

∑n
i=1 uiu

>
i where the datapoints ui ∈ Rd satisfy ‖ui‖ ≤ 1, in a differen-

tially private manner. Given any k > 0, the goal is to find a (random) rank-k projection matrix P
which maximizes the average variance EP [〈Σ, P 〉] of the matrix Σ (also reffered to as the utility
of P ), under the constraint that the mechanism which outputs the matrix P is ε-differentially pri-
vate. This problem has many applications to statistics and machine learning, including differentially
private principal component analysis (PCA) [7, 3, 15, 24].

When privacy is not a concern, the solution P which maximizes the variance is just a projection
matrix onto the subspace spanned by top-k eigenvectors of Σ, and the maximum variance satisfies
〈Σ, P 〉 =

∑k
i=1 λi, where λ1 ≥ · · · ≥ λd > 0 denote the eigenvalues of Σ. However, when privacy

is a concern, there is a tradeoff between the desired privacy level ε and the utility EP [〈Σ, P 〉], and
the maximum utility EP [〈Σ, P 〉] one can achieve decreases with the privacy parameter ε. The best
current utility bound for an ε-differentially private low rank approximation algorithm was achieved
in [24], who show that one can find a pure ε-differentially private random rank-k projection matrix
P such that EP [〈Σ, P 〉] ≥ (1 − δ)

∑k
i=1 λi whenever

∑k
i=1 λi ≥ Ω

(
dk
εδ log 1

δ

)
for any δ > 0. To

generate the matrix P , their algorithm generates a sample, with infinity-distance error O(ε), from
a Lipschitz concave log-density on a polytope, and transforms this sample into a projection matrix
P . The sampling algorithm used in [24] has a bound of poly( 1

ε , d, λ1 − λd) arithmetic operations
and they leave as an open problem whether this can be improved from a polynomial dependence on
1
ε to a logarithmic dependence on 1

ε . Corollary 2.5 shows that a direct application of Theorem 2.1
resolves this problem. (See Section C.2 for a proof.)

Corollary 2.5 (Differentially private low rank approximation) There exists an algorithm which,
given a sample covariance matrix Σ =

∑n
i=1 uiu

>
i for datapoints ui ∈ Rd satisfying ‖ui‖ ≤ 1,

its eigenvalues λ1 ≥ . . . λd > 0, an integer k, and ε, δ > 0, outputs a random rank-k symmetric
projection matrix P such that P is ε-differentially private and satisfies the utility bound

EP [〈Σ, P 〉] ≥ (1− δ)
k∑
i=1

λi(Σ)

whenever
∑k
i=1 λi(Σ) ≥ C dk

εδ log 1
δ for some universal constant C > 0. Moreover the number of

arithmetic operations is logarithmic in 1
ε and polynomial in d and λ1 − λd.

3 Proof Overviews

Given any ε, and a function f : Rd → R, the goal is to sample from a distribution π(θ) ∝ e−f(θ),
constrained to a d-dimensional convex bodyK with infinity-distance error at mostO(ε) in a number
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of arithmetic operations that is logarithmic in 1
ε . We assume that K is contained in a ball of some

radius R > 0 and contains a ball of some radius r > 0, and f is L-Lipschitz. In addition we
would also like our bounds to be polylogarithmic in 1

r , and polynomial in d, L,R with a lower-
order dependence on the dimension d than currently available bounds for sampling from Lipschitz
concave log-densities on a polytope in infinity-distance [2]. We note that since whenever K is
contained in a ball of radius R and contains a ball B(0, r) of smaller radius r, we also have that
B(0, r) ⊆ K ⊆ B(0, 2R), without loss of generality, we may assume that B(0, r) ⊆ K ⊆ B(0, R)
as this would only change the bounds provided in our main theorems by a constant factor.

The main ingredient in the proof of Theorem 2.1 is Theorem 2.2 that uses Algorithm 1 to transform
a TV-bounded sample into a sample from π with error bounded in d∞. Subsequently, we invoke
Theorem 2.1 when K is given as a polytope K := {x ∈ Rd : Ax ≤ b} and plug in the Dikin
Walk Markov chain of [34] which generates independent samples from π with bounded TV error.
We first present an overview of the proof of Theorem 2.2. (The full proof has been omitted to space
restrictions and presented in Appendix B.) The proof of Theorem 2.1 is presented in Section 3.2.

3.1 Converting samples with TV bounds to infinity-distance bounds; proof of Theorem 2.2

Impossibility of obtaining log-dependence on infinity-distance via grid walk. One approach is
to observe that if e−f has support on a discrete space S with at most |S| points, then any ν such that
‖ν − π‖TV ≤ ε also satisfies

d∞(ν, π) ≤ 2|S|maxz∈S e−f(z)

minz∈S e−f(z) × ε

for any ε ≤ minz∈S π(z). This suggests forming a grid G over K, then using a discrete Markov
chain to generate a sample θ within O(ε) TV distance of the discrete distribution πG ∝ e−f with
support on the grid G, and then designing an algorithm which takes as input θ and outputs a point
with bounded infinity-distance to the continuous distribution π. This approach was used in [20] in
the special case when π is uniform on K, and then extended by [2] to log-Lipschitz log-concave
distributions. In their approach, [2] first run a “grid-walk” Markov chain on a discrete grid in a
cube containing K. They then apply the bound from [1] which says that the grid walk obtains a
sample Z within TV distance O(δ) from the distribution ∝ e−f (restricted to the grid) in time that
is polylogarithmic in 1

δ and quadratic in a−1, where a is the distance between neighboring grid
points. Since their grid has size |S| = Θ((Ra )d), a TV distance of O(δ) automatically implies an
infinity-distance of O(δc|S|), where c is the ratio of the maximum to the minimum probability mass
satisfying c ≤ eLR since f is L-Lipschitz on K ⊆ B(0, R). Thus, by using the grid walk to sample
within TV-distance δ = O

(
ε
|S|c

)
from the discrete distribution πG, they obtain a sample Z which

also has infinity-distance O(ε) from πG. Finally, to obtain a sample from the distribution π ∝ e−f

on the continuous space K, they sample a point uniformly from the “grid cell” [Z − a, Z + a]d

centered at Z. Since f is L-Lipschitz, the ratio e−f(Z)

e−f(w) is bounded by O(ε) for all w in the grid cell

[Z − a, Z + a]d as long as a = O
(

ε
L
√
d

)
, implying that the sample is an infinity-distance of O(ε)

from π ∝ e−f . However, since the running time bound of the grid walk is quadratic in a−1, the grid
coarseness a = O

(
ε

L
√
d

)
needed to achieve O(ε) infinity-distance from π leads to a running time

bound which is quadratic in 1
ε .

To get around this problem, rather than relying on the use of a discrete-space Markov chain such as
the grid walk to sample within O(ε) infinity-distance from π, we introduce an algorithm (Algorithm
1) which transforms any sample within δ = O

(
εe−d−LR

)
TV distance from the distribution π ∝

e−f on the continuous spaceK (as opposed to a grid-based discretization ofK), into a sample within
O(ε) infinity-distance from π. This allows us to make use of a continuous-space Markov chain, such
as the Dikin walk of [34], whose step-size is not restricted by a grid of coarseness w = O

(
ε

L
√
d

)
and instead is independent of ε, in order to generate a sample within O(ε) infinity-distance from π
in runtime that is logarithmic in 1

ε .

Converting continuous space TV-bounded samples to infinity-distance bounded samples. As
discussed in Section 1, there are many Markov chain results which allow one to sample from a log-

6



concave distribution onK with error bounded in weaker metrics such as total variation, Wasserstein,
or KL divergence. However, when sampling from a continuous distribution, bounds in these metrics
do not directly imply bounds in infinity-distance. And techniques used to prove bounds in weaker
metrics do not easily extend to methods for bounding the infinity-distance; see Section A.1.

Convolving with continuous noise. As a first attempt, we consider the following simple algorithm:
sample a point θ ∼ µ from a distribution µ with total variation error ‖µ − π‖TV ≤ O(ε). Since f
is L-Lipschitz, for any ∆ < ε

L and any ball B(z,∆) in the ∆-interior of K (denoted by int∆(K);

see Definition B.1), we can obtain a sample from a distribution ν such that log
(
ν(z)
µ(z)

)
≤ ε for all

z ∈ int∆(K) by convolving µwith the uniform distribution on the ballB(0,∆). Sampling from this
distribution ν can be achieved by first sampling θ ∼ µ and then adding noise ξ ∼ Unif(B(0,∆)) to
the sample θ.

Unfortunately, this simple algorithm does not allow us to guarantee that log( ν(z)
µ(z) ) ≤ ε at points

z /∈ int∆(K) which are a distance less than ∆ from the boundary of K. To see why, suppose
that K = [0, 1]d is the unit cube, that f is constant on K, and consider a point w = (1, . . . , 1) at
the corner of the cube K. In this case we could have that ν(z) ≤ 2−dπ(z) for all z in some ball
containing w, and hence d∞(ν, π) = sup

∣∣∣log( ν(z)
π(z) )

∣∣∣ ≥ d log(2), no matter how small we make ∆.

Stretching the convex body to handle points close to the boundary. To get around this problem, we
would like to design an algorithm which samples from some distribution ν such that

∣∣∣log ν(z)
π(z)

∣∣∣ ≤ ε

for all z ∈ K, including at points z near the corners of K. Towards this end, we first consider the
special case where K is itself contained in the ∆-interior of another convex body K ′, the function
f : K → R extends to an L-Lipschitz function on K ′ (also referred to here with slight abuse of
notation as f ) and where we are able to sample from the distribution ∝ e−f on K ′ with O(ε) total
variation error. If we sample θ ∼ e−f on K ′ with total variation error O(δ) where δ ≤ εe−d log(R),
add noise ξ ∼ Unif(B(0,∆)) to θ for ∆ = δ

LR , and then reject θ + ξ only if it is not in K, we
obtain a sample whose distribution is O(ε) from the distribution ∝ e−f on K in infinity-distance.

However, we would still need to define and sample from such a convex body K ′, and to make sure
that K ′ is not too large when compared to K; otherwise the samples from the distribution ∝ e−f

on K ′ may be rejected with high probability. Moreover, another issue we need to deal with is that f
may not even be defined outside of K.
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Figure 1: The construction used in the proof of Lemma B.1.

To get around these two problems, in Algorithm 1, we begin by taking as input a point θ ∼ µ sampled
from some distribution µ supported on K where ‖µ− π‖TV ≤ δ for some δ ≤ εe−d log(R), and add
noise ξ ∼ unif(B(0,∆r)) in order to sample from a distribution µ̂ which satisfies

∣∣∣log µ̂(z)
π(z)

∣∣∣ ≤ ε

for all z ∈ int∆r(K). Here r is the radius of the small ball contained in K; the choice of radius ∆r
for the noise distribution is because we will show in the following paragraphs that to sample from
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the distribution π on K with infinity-distance error ε it is sufficient sample a point in the ∆r-interior
of K and to then apply a “stretching” operation to K.

We still need a method of sampling within O(ε) infinity-distance error of π on all of K, including
in the region K\int∆r(K) near the boundary of K. Towards this end, after Algorithm 1 generates a
point Z = θ + ξ from the above-mentioned distribution µ̂, it then multiplies Z by 1

1−∆ and returns
the resulting point θ̂ := 1

1−∆Z if it is K, in other words, if Z ∈ (1 − ∆)K. If we can show that

(1−∆)K ⊆ int∆r(K), then this would imply that
∣∣∣log µ̂(z)

π(z)

∣∣∣ ≤ ε for all z ∈ (1−∆)K, and hence

that the distribution of ν̂ of the returned point θ̂ satisfies∣∣∣∣log ν̂(z)
π((1−∆)z)

∣∣∣∣ ≤ ∣∣∣∣log µ̂((1−∆)z)
π((1−∆)z)

∣∣∣∣+ log 1
(1−∆)d ≤ O(ε)

for all z ∈ K. Since f is L-Lipschitz we have
∣∣∣log π(θ)

π((1−∆)θ)

∣∣∣ = O(ε) for all θ ∈ K, and hence we

would then have that the distribution ν̂ of the point θ̂ returned by Algorithm 1 satisfies∣∣∣∣log ν̂(z)
π(z)

∣∣∣∣ =
∣∣∣∣log ν̂(z)

π((1−∆)z)

∣∣∣∣+O(ε) ≤ O(ε) ∀z ∈ K. (1)

However, for (1) to hold, we still need to show that (1−∆)K ⊆ int∆r(K) (proved in Lemma B.1).
In other words, we would like to show that for any point Z ∈ (1 −∆)K, there is a ball B(Z,∆r)
centered at Z of radius ∆r contained in K. To show this fact, it is sufficient to consider the convex
hull C of B(0, r) ∪

{
1

1−∆Z
}
⊆ K, and show that it contains the ball B(Z,∆r). Towards this end,

we make the following geometric construction: we let p be a point such that the line pθ̂ is tangent to
B(0, r), and q the point on pθ̂ which minimizes the distance ‖q − Z‖2 (see Figure 1). Since ∠0pθ̂
and ∠Zqθ̂ are both right angles, we have that the triangles 0pθ̂ and Zqθ̂ are similar triangles, and
hence that ‖Z−q‖2r = ‖Z−θ̂‖2

‖θ̂−0‖2
. In other words,

‖Z − q‖2 = ‖Z − θ̂‖2
‖θ̂ − 0‖2

× r =

∥∥∥Z − 1
1−∆Z

∥∥∥
2∥∥∥ 1

1−∆Z
∥∥∥

2

× r = ∆× r,

implying a ball of radius ∆r centered at Z is contained in C ⊆ K, and hence that

(1−∆)K ⊆ int∆r(K).

Bounding the infinity distance error. To complete the bound on the infinity-distance of the dis-
tribution ν̂ of the point returned by Algorithm 1 to the target distribution π, we must show
both a lower bound (Lemma B.5) and an upper bound (Lemma B.6) on the ratio ν̂(θ)

π(θ) at every
point θ ∈ K. Both the upper and lower bounds are necessary to bound the infinity-distance
d∞(ν̂(θ), π(θ)) = supθ∈K

∣∣∣log ν̂(θ)
π(θ)

∣∣∣.
Both Lemmas B.5 and B.6 require the input point to have TV error δ < ε( R∆r )−de−LR. The term
( R∆r )−d is a lower bound on the ratio of the volume of K to the volume of the smoothing ball
B(0,∆r); this bound holds since K is contained in a ball of radius R. The term e−LR is a lower
bound on the ratio minw∈K π(w)

maxw∈K π(w) of the minimum value of the density π to the maximum value of π
at any two points in K; this bound holds since f is L-Lipschitz.

The above choice of δ ensures that in any ball B(z,∆r) with center z in the ∆r-interior of K,
the distribution µ of the input point, which satisfies ‖µ − π‖TV ≤ δ, will have between e−ε and
eε times the probability mass which the target distribution π has inside the ball B(z,∆r). Thus,
when the distribution µ is smoothed by adding noise uniformly distributed on a ball of radius ∆r,
the smoothed distribution ν̃(θ) is within e−ε and eε times the target probability density π(θ) at any
point θ in the ∆r-interior of K, allowing us to bound the infinity distance error of the smoothed
distribution ν̃ at any point θ in the ∆r-interior of K. We then apply this fact, together with Lemma
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B.1 which says that for any point θ ∈ K the point (1−∆)θ is in the ∆r-interior of K, to bound the
distribution ν of the output point (after the stretching operation) as follows,

ν(θ) ≥ (1−∆)dν̃((1−∆)θ)
LemmaB.1
≥ (1−∆)dπ((1−∆)θ)× e−ε ≥ π(θ)e− ε2 . (2)

Here our choice of hyperparameter ∆ ≤ ε
max(d,LR) ensures that (1 − ∆)d = Ω(1) and, since f is

L-Lipschitz, that π((1 −∆)θ) ≥ e−επ(θ). This proves the lower bound (Lemma B.5). The proof
of the upper bound (Lemma B.6) follows in a similar way as equation (2) but with the inequalities
going in the opposite direction.

Bounding the number of iterations and concluding the proof of Theorem 2.2. We still need to deal
with the problem that the point θ̂ may not be accepted. If this occurs, roughly speaking, we repeat the
above procedure until a point θ̂ with distribution ν̂ is accepted. To bound the number of iterations,
we show that θ̂ is in K with high probability. Towards this end, we first use the facts that f is L-
Lipschitz and K ⊆ B(0, R), to show that the probability a point sampled from π ∝ e−f lies inside
(1 −∆)K is at least (1 −∆)de−L∆R ≥ 9

10 (Lemma B.2). Lemma B.2 says that if you stretch the
polytope by a factor of 1

1−∆ , then most of the volume of the stretched polytope ( 1
1−∆ )K remains

inside the original polytope K. The term (1−∆)d is just the ratio of the volume of (1−∆)K to the
volume of K. And, since f is L-Lipschitz, the term e−L∆R bounds the ratio π(θ)

π( 1
1−∆ θ)

of the target

density at any point θ ∈ K to the value of π at the point 1
1−∆θ to which the stretching operation

transports θ, whenever 1
1−∆θ ∈ K. The choice of hyperparameter ∆ ≤ ε

max(d,LR) ensures that the
acceptance probability (1 −∆)de−L∆R guaranteed by Lemma B.2 is at least 9

10 . Since the convex
body (1 − ∆)K contains the ball B(0, r2 ), applying Lemma B.1 a second time (this time to the
convex body (1−∆)K) we get that

(1− 3∆)K ⊆ int∆r((1−∆)K).

Thus, by Lemma B.2 we have that θ lies inside int∆r((1−∆)K) with probability at least 9
10−δ ≥

8
10

(as θ is sampled from π with TV error ≤ δ). Therefore, since ξ ∼ B(0,∆r), we must also have
that the probability that the point θ̂ = 1

1−∆ (θ + ξ) is in K (and is therefore not rejected) is greater
than 8

10
4. This implies that the number of iterations until our algorithm returns a point θ̂ is less than

k > 0 with probability at least 1 − 2−k, and the expected number of iterations is at most 2 (proved
in Corollary B.4).

Since each iteration requires one random sample θ from the distribution µ, and one call to a mem-
bership oracle for K (to determine if 1

1−∆Z ∈ K), the number of sampling oracle and membership
oracle calls required by Algorithm 1 is O(1) with very high probability. Therefore, with high proba-
bility, Algorithm 1 returns a point θ̂ from a distribution with infinity-distance at most ε from π after
O(1) calls to the sampling and membership oracles.

Since Algorithm 1 succeeds with probability 1− 2−k after k iterations, after

τmax = 5d log(R
r

) + 5LR+ ε

iterations Algorithm 1 will have succeeded with probability roughly 1−ε(Rr )−5de−5LR. In the very
unlikely event that Algorithm 1 still has not succeeded after τmax iterations, Algorithm 1 simply
outputs a point sampled from the uniform distribution on the ballB(0, r) of radius r contained inK.
The probability mass of the target distribution π inside this ball is at least as large as (Rr )−de−LR;
thus, since f is L-Lipschitz, we show in Corollary B.4 that outputing a sample from the uniform
distribution on this ball with probability ε(Rr )−5de−5LR does not change the ∞-distance error of
the sample returned by the algorithm by more than ε.

4In Algorithm 1 we reject θ̂ with a slightly higher probability to ensure that, in differential privacy appli-
cations, in addition to the privacy of the point returned by the algorithm, the runtime is also ε-differentially
private.
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3.2 Completing the proof of Theorem 2.1

Proof: By Theorem 1, the output of Algorithm 1 has infinity-distance error bounded by ε as long
as the input samples have TV distance error bounded by

δ ≤ O

(
ε×

(
R(d log(R/r) + LR)2

εr

)−d
e−LR

)
,

and, with high probability, Algorithm 1 requires O(1) such independent samples. To generate a
sample from π with TV error O(δ) when K = {θ ∈ Rd : Aθ ≤ b} is a polytope defined by m
inequalities, we use the Dikin Walk Markov chain of [34]. This Markov chain requires an initial
point from some distribution µ0 which is w-warm with respect to the stationary distribution π, that
is, supz∈K

µ0(z)
π(z) ≤ w. To obtain a warm start, we let µ0 be the uniform distribution on the ball with

radius r contained in K and sample from µ0. Since f is L-Lipschitz, and K is contained in a ball
of radius R, µ0 is w-warm with

w ≤ 1
Vol(B(0, r)) ×

(
maxz∈K π(θ)
minz∈K π(θ) ×Vol(B(0, R))

)
≤
(
R

r

)d
× eRL.

From [34], we have that from this w-warm start the Dikin Walk Markov chain requires at most
O((m2d4 + m2d2L2R2) log(wδ )) steps to generate a sample with TV distance at most δ from π,
where each step makes one function evaluation and O(mdω−1) arithmetic operations. Plugging in
the above values of δ, w the number of Markov chain steps is

T = O((m2d3 +m2dL2R2)× [LR+ d log(Rd+ LRd

rε
)])

to generate each independent sample with the required TV errorO(δ). Since the number of indepen-
dent samples required as input for Algorithm 1 is O(1) w.h.p., the number of arithmetic operations
for Algorithm 1 to output a point with at most ε infinity-distance error is O(T ×mdω−1).

Finally, we note that in the more general setting where K is a convex body with membership oracle
(but not necessarily) a polytope, we can instead use, for instance, the hit-and-run Markov chain
of [29] to generate samples from π with TV error O(δ) in a number of membership and function
evaluation oracle calls that is polynomial in d and poly-logarithmic in 1

δ , R, r. We can then plug this
sample into our Algorithm 1 to obtain a sample from π with infinity-distance errorO(ε) in a number
of oracle calls that is (poly)-logarithmic in 1

ε ,
1
r and polynomial on d, L,R. (see Remark 2.3).

4 Conclusion, Limitations, and Future Work

To the best of our knowledge, this is the first work that presents an algorithm for sampling from log-
concave distributions on convex bodies that comes with infinity-distance bounds and whose running
time depends logarithmically on 1/ε. Towards this, the main technical contribution is Algorithm
1 (and Theorem 2.2) which achieves this improved dependence on ε by taking as input continuous
samples from a convex body with TV bounds and converting them to samples with infinity-distance
bounds.

On the other hand, our bounds are polynomial in LR, yet there are algorithms for sampling from
logconcave distributions π ∝ e−f on a convex body in the total variation distance that are poly-
logarithmic in R and do not assume f to be Lipschitz [29]. Thus, the main open problem that
remains is whether one can also obtain running time bounds for sampling in the infinity-distance
which are poly-logarithmic in R and do not require f to be Lipschitz.

Our main result also has direct applications to differentially private optimization (Corollaries 2.4
and 2.5). Differential privacy is a notion which has been embraced in many technologies in societal
contexts where privacy of individuals is a concern. Hence, we see our work to have a potential of
positive societal impact and do not foresee any potential negative societal impacts.
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A Challenges obtaining infinity-distance bounds from continuous-space
Markov chains

A.1 Challenges in obtaining infinity-distance bounds via spectral gap methods

Many TV bounds for Markov chains have been obtained by applying isoperimetric inequalities for
log-concave distributions π, to bound the spectral gap γ := 1 − λ2(K) of the Markov transition
kernel operator K (see e.g. [27, 28]). If the initial distribution µ0 is such that supθ∈K

µ0(θ)
π(θ) is

bounded by some number w (e.g., by initializing the Markov chain at a uniform random point in a
ball contained in the interior of the polytope), a bound on the spectral gap ofK implies O(δ) bounds
on the total variation error in a number of steps that is logarithmic in w

δ .

Unfortunately, bounding the spectral gap does not in general allow one to obtain bounds on
the infinity-distance. While one can bound the χ2-divergence (which implies a bound on the
TV distance), by using the fact (first shown in [27]) that ‖Ktu0‖2 ≤ (1 − γ)t‖u0‖2, where
u0 := µ0 − projπ(µ0), a bound on the spectral gap does not imply a bound in the infinity-distance
error. The difficulty in bounding the infinity-distance error arises because, if the space S is continu-
ous, even though ‖Ktu0‖2 ≤ (1−γ)t‖u0‖2, there may still be some c > 0 for which ‖Ktu0‖∞ ≥ c
for all t > 0. For instance this is the case when π is the uniform distribution on a polytope K and
K is the transition Kernel of the Dikin walk, since for every time t, there is always a ball Bt ⊆ K
sufficiently close to the boundary of K such that the Dikin walk has probability zero of entering
Bt after t steps (for the Gaussian Dikin walk, the probability of entering Bt is very low, but still
nonzero). Thus, Ktµ0(z) = 0 for all points z ∈ Bt, and, since π(z) = 1

vol(K) at every point z ∈ K,
we must have ‖Ktµ0 − π‖∞ = ‖Ktu0‖∞ ≥ 1

vol(K) for all t ≥ 0.

On the other hand, in the special case when the space S is discrete and has a finite number of
elements |S|, the (`2-normalized) eigenvectors v have bounded infinity norm, ‖v‖∞ ≤ 1, and,
hence ‖Ktµ0 − projπ(µ0)‖∞ ≤ (1 − γ)t|S|. Thus, if S is discrete with finitely many elements,
bounding the spectral gap implies one can sample from π with infinity-distance error O(ε) in a
number of steps that is logarithmic in 1

ε ×
|S|

mini∈[S] π[i] if mini∈[S] π[i] > 0 (where, with slight abuse
of notation, we denote by π the probability mass function of the discrete Markov chain’s stationary
distribution).

Aside from bounding the spectral gap, many works instead make use of probabilistic coupling
methods to bound the distance of a continuous-space Markov chain to the target distribution in,
e.g., the Wasserstein distance metric (see for instance [13, 10]). And other works instead achieve
bounds in the KL divergence metric for, e.g., the Langevin dynamics Markov chain by analyzing
the (continuous-time) Langevin diffusion as a gradient flow of the KL divergence functional in the
space of probability distributions (see for instance [40, 9, 12]). In Appendix A.2 and A.3 we discuss
challenges which arise if one seeks to extend either of these methods to obtain O(ε) bounds in the
infinity-distance metric, in a number of Markov chain steps that is polylogarithmic in 1

ε .

A.2 Challenges in extending coupling-based analysis from Wasserstein (and TV) bounds to
infinity-distance bounds

As an alternative to bounding the spectral gap of a Markov chain, one can oftentimes instead make
use of a probabilistic coupling method to bound the error of the Markov chain. Here, one consid-
ers two Markov chains, one Markov chain started at an arbitrary initial point which is the initial
point provided to the Markov chain sampling algorithm, and another “imaginary” Markov chain
(oftentimes just a copy of the algorithm’s Markov chain) which is started at a random point dis-
tributed according to the target distribution π and for which π is a stationary distribution. The
goal is to find a joint distribution– also called a probabilistic coupling– for the steps of the two
Markov chains such that the distance between the two chains becomes very small in some met-
ric of interest after the Markov chains take multiple steps. If one can find such a coupling, then
one can bound the distance of the algorithm’s Markov chain to the target distribution π in the
relevant metric. If a coupling is found such that the distance between the two Markov chains
contracts in the Euclidean distance, then this implies bounds in the Wasserstein metrics. A con-
traction of the expected (squared) Euclidean distance implies bounds in the 1- (or 2)-Wasserstein
metric (see e.g. [13, 10]). However, for any k ∈ N, a bound on the k-Wasserstein distance
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Wk(ν, π) := supρ∼Π(µ,π)(E(X,Y )∼ρ[‖X − Y ‖k]) 1
k < ε, where Π(µ, π) denotes the set of all

possible couplings of the distributions µ and π, does not imply a bound on the infinity-distance
supθ∈S

∣∣∣log ν(θ)
π(θ)

∣∣∣. For instance, consider π ∝ unif[0, 1], and ν the uniform distribution on the

grid {1, 2, . . . , n} for n < 1
4ε . And consider the coupling Π(π, ν) of π and ν, which, for every

i ∈ {1, 2, . . . , n}, transports all the probability mass of π in the interval ( in ,
i+1
n ] to a point mass at

i+1
n . This coupling does not transport any of the probability mass a distance of more that 1

2ε, and
hence Wk(π, ν) < ε for any k ∈ N ∪ {∞}. On the other hand, since ν has atomic point-masses
while π is a continuous distribution, we have d∞(π, µ) = supθ∈S

∣∣∣log ν(θ)
π(θ)

∣∣∣ =∞.

In some cases, a contraction can be shown to occur with probability 1, yielding a sample with bounds
in the∞-Wasserstein metric. For instance, this is the case for “idealized” versions of the Hamilto-
nian Monte Carlo Markov chain whose steps are determined by continuous trajectories determined
by the Hamiltonian mechanics [31, 38]. For this idealized version of the Hamiltonian Monte Carlo
Markov chain, in the special case where the target log-density is strongly convex and smooth on all
of Rd, one can oftentimes show that the two chains contract to within a Euclidean distance of O(ε),
and generate a sample θ̂ from π with an error ofO(ε) in the∞-Wasserstein metric, after a number of
Markov chain steps that is logarithmic in 1

ε . From such θ̂, if f is 1-Lipschitz on Rd, one can obtain
a sample from π with O(εd) infinity-distance error by adding a uniform random vector on a ball of
radius roughly εd. One can extend this approach to the problem of sampling from, e.g., smooth and
Lipschitz convex log-densities supported on a polytope, by extending f to a L-Lipschitz log-density
on all of Rd, and adding a strongly convex regularizer. However, to implement such a Markov
chain as an algorithm, the trajectories must be discretized, and the number of discretization steps
to bring the two Markov chains within O(ε) Euclidean distance is polynomial in 1

ε (a polynomial
dependence on ε also occurs when one only seeks an O(ε) bound on the 1- or 2- Wasserstein er-
ror for many Markov chain algorithms via contractive couplings, including “Unadjusted” Langevin
dynamics Markov chains [13, 10]). Thus, we need a different approach if we wish to achieve O(ε)
infinity-divergence bounds in runtime logarithmic in 1

ε .

Another approach would be to design a coupling such that the two Markov chains contract within
some distanceO( 1

d ), and then to propose to add a uniform random vector on a ball of radius roughly
Θ(1) to each Markov chain and accept this proposed step according to the Metropolis acceptance
rule for π. If f is 1-Lipschitz on Rd (or on the constraint set K), the acceptance probability will
be at least 1

2 and one can show that the total variation distance of two Markov chains is at least 1
2

after some number T steps where T is polynomial in 1
ε . Repeating this coupling every T steps, one

can show that the total variation distance of the two chains decreases by a factor of at least 1
2 every

T steps, allowing one to generate a sample from π with total variation error O(ε) in a number of
steps that is logarithmic in 1

ε . In other words, there exists a coupling of the two chains such that
after a number of steps that is logarithmic in 1

ε , the algorithm’s Markov chain is equal to the chain
with distribution π with probability 1 − O(ε). However, we may still have that, with probability
roughly ε, the algorithm’s Markov chain is concentrated in a region of space of volume O(ε) where
the total probability mass of π is much smaller than ε, which would mean that the infinity-distance
to π would be Ω(1) even though the total variation distance to π is O(ε).

A.3 Challenges in extending methods based on gradient flows in space of distributions from
KL bounds to infinity-distance bounds

In addition to Markov chain bounds achieved via probabilistic coupling methods, bounds for certain
Markov chains can also be achieved by analyzing, e.g., the Langevin diffusion process as a gradient
flow of the KL divergence functional (also called the relative entropy functional) in the space of
probability distributions under the 2-Wasserstein metric. Using this approach, one can show that the
Langevin diffusion process with stationary distribution π converges to within KL divergence dis-
tance ε of π in (continuous) time t that is logarithmic in 1

ε , if, for instance, π is strongly log-concave
and smooth (see e.g. [37, 22]). One can then discretize the Langevin diffusion process using a
discrete-time Markov chain algorithm (such as the Langevin dynamics Markov chain), and bound
the distance between the distribution of the algorithm’s Markov chain and the diffusion process in
the KL or Renyi divergence metrics (see for instance [40, 9, 12] for Langevin dynamics Markov
chains). However, these bounds are polynomial in 1

ε rather than logarithmic in 1
ε . The polyno-
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mial dependence on ε is due to the fact that the discretization step size for the Langevin dynamics
algorithms to approximate the Langevin diffusion process with error O(ε) is polynomial in 1

ε .

For instance, if one wishes to sample from π ∼ e−f(θ) with support on the interval [−2, 2], one
can use the Langevin dynamics Markov chain, which is a (first-order) “Euler” discretization of the
Langevin diffusion on R with updates θ̂i+1 at each step i+1 given as follows: θ̂i+1 = θ̂i−η∇f(θ̂i)+√

2ηξ, where ξ ∼ N(0, Id). To (approximately) sample from π ∼ e−f(θ) with support on [−2, 2],
one could then output only those steps of the Markov chain which fall inside the constraint interval
[−2, 2]. If f : R1 → R, f(θ) = 1

2θ
2, then the Langevin diffusion is dθ = −θdt +

√
2dWt,

and the discretization is θ̂i+1 = θ̂i − ηθ̂i + 2√ηξ. The solution to the (continuous-time) Langevin
diffusion at time t is a Gaussian random variable θt ∼ N (θ0e

−t, 1 − e−2t), and its stationary
distribution is the target distribution ∝ e−

1
2 θ

2
. On the other hand, the stationary distribution of

the discrete-time Markov chain with step size parameter η is N(0, 1
1− 1

2η
). Therefore, to have the

Langevin Markov chain approximate the Langevin diffusion to within infinity-distance error O(ε)
(even just in a compact constraint interval such as K = [−2, 2]), we would need to have a step size
η = poly(ε), and the number of Markov chain steps required to sample within infinity-distance
error O(ε) would be polynomial in 1

ε .

B Proofs of Theorem 2.2 and Theorem 2.1

In this section, we first prove our main technical result, Theorem 2.2 (Appendix B.1). The Lemmas
we use to prove Theorem 2.2 are proved in Appendix B.2, B.3, and B.4. Finally, we plug in TV
bounds for the Dikin Walk Markov chain [34] to Theorem 2.2 to complete the proof of Theorem 2.1
(Appendix B.5).

In the following, we define the random variable τ to be the number of iterations of the “for” loop
started by Algorithm 1 if Algorithm 1 halts while it is running the for loop. Otherwise, we set
τ = τmax + 1.

Setting the parameters. In the following, we assume that

1. τmax ≥ 5d log(Rr ) + 5LR+ ε,

2. ∆ ≤ ε
512τmax max(d,LR) ,

3. and δ ≤ 1
64ε× ( R∆r )−de−LR.

B.1 Bounding the number of iterations and completing the proof of Theorem 2.2

Proof: [of Theorem 2.2]

Correctness. By Lemmas B.5 and B.6, we have that

1. The distribution ν of the output θ̂ of Algorithm 1 satisfies d∞(ν, π) ≤ ε.

2. Moreover, the distribution ν̂ of θ̂ conditional on τ ≤ t satisfies d∞(ν̂, π) ≤ ε for any
t < τmax.

Bounding the number of operations. Each iteration of Algorithm 1 requires one call to the sam-
pling oracle (Line 3) for µ, and one call to the membership oracle for K (Line 8). In addition, each
line of Algorithm 1 requires no more than O(d) arithmetic operations. Thus, each iteration of Algo-
rithm 1 can be computed in one call to the sampling oracle for µ, one call to the membership oracle
for K, plus O(d) arithmetic operations. The number of iterations τ is random, and can be bounded
as follows:

By Corollary B.4 we have that E[τ ] ≤ 3 and P(τ ≥ t) ≤
( 2

3
)t

. By Corollary B.4 we also have that(
1
2

)t
≤ P(τ ≥ t) ≤

(
1
2 + ε

8τmax

)t
∀t ≤ τmax,
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and, hence, that

(
1
2

)t
≤ P(τ ≥ t) ≤

(
1
2

)t
×
(

1 + ε

4τmax

)t
∀t ≤ τmax

≤
(

1
2

)t
× e ε4 ∀t ≤ τmax.

Thus, we have that, for all t ≤ τmax,

P(τ = t) = P(τ ≥ t)− P(τ ≥ t+ 1) ≤
(

1
2

)t
e
ε
4 −

(
1
2

)t+1
(3)

and that

P(τ = t) = P(τ ≥ t)− P(τ ≥ t+ 1) ≥
(

1
2

)t
−
(

1
2

)t+1
e
ε
4 . (4)

Thus, we have that(
1
2

)t(
1− 1

2e
ε
4

)
Eq. (4)
≤ P(τ = t)

Eq. (3)
≤

(
1
2

)t(
e
ε
4 − 1

2

)
∀t ≤ τmax,

and, hence, that (
1
2

)t
e−

ε
2 ≤ P(τ = t) ≤

(
1
2

)t
e
ε
2 ∀t ≤ τmax, (5)

since ε ≤ 1.

B.2 Stretching the polytope to avoid samples near the boundary

Definition B.1 (Interior) For any ∆ ≥ 0 and any S ⊆ Rd, we define the ∆-interior of S, int∆(S),
as

int∆(S) = {z ∈ S : B(z,∆) ∈ S}.

Lemma B.1 Let Z ∈ Rd and 0 ≤ ∆ ≤ 1
2 . Then if 1

1−∆Z ∈ K, we also have that Z ∈ int∆r(K).

Proof: Let C be the convex hull of B(0, r) ∪
{

1
1−∆Z

}
. Since B(0, r) ⊆ K and 1

1−∆Z ∈ K, we
have that the convex hull C ⊆ K.

Let h := max {s > 0 : B (Z, s) ∈ C}. Defining the point θ̂ := 1
1−∆Z, the point p to be a point

such that the line pθ̂ is tangent to B(0, r), and the point q to be a point on pθ̂ which minimizes the
distance ‖q−Z‖2 (see Figure 1). Then we have that the triangles 0pθ̂ and Zqθ̂ are similar triangles,
since ∠0pθ̂ and ∠Zqθ̂ are both right angles. Thus, ‖Z−q‖2r = ‖Z−θ̂‖2

‖θ̂−0‖2
.

Therefore,
h = ‖Z − q‖2

= ‖Z − θ̂‖2
‖θ̂ − 0‖2

× r

=
‖Z − 1

1−∆Z‖2
‖ 1

1−∆Z‖2
× r

=
‖ ∆

1−∆Z‖2
‖ 1

1−∆Z‖2
× r

= ∆× r

Thus, Z ∈ int∆r(C) ⊆ int∆r(K).
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B.3 Bounding the acceptance probability

The following lemma allows us to bound the expected number of oracle calls in Algorithm 1.

Lemma B.2 For any 0 ≤ ∆ ≤ 1
4 , we have that

PZ∼π((Z ∈ (1−∆)K) ≥ (1−∆)de−2L∆R.

Hence, since by Lemma B.1 (1−∆)K ⊆ int∆r(K), we also have that

PZ∼π(Z ∈ int∆r(K)) ≥ (1−∆)de−2L∆R.

Proof:

Let c = (
∫
K
e−f(θ)dθ)−1 be the normalizing constant of π, that is, π(θ) = ce−f(θ) for θ ∈ K. And

let π̃ be the distribution

π̃(θ) =
{
c̃e−f(

1
1−∆ θ) if θ ∈ (1−∆)K

0 otherwise

where c̃ = (
∫

(1−∆)K e
−f( 1

1−∆ θ)dθ)−1 is the normalizing constant of π̃. In other words, if Z ∼ π

then we have (1−∆)Z ∼ π̃. Then

c̃ =
(

1
1−∆

)d
c. (6)

Thus,
π̃(θ)
π(θ) = c̃

c
ef(θ)−f( 1

1−∆ θ) =
(

1
1−∆

)d
ef(θ)−f( 1

1−∆ θ) ∀θ ∈ (1−∆)K. (7)

Since K ⊆ B(0, R), we have that∥∥∥∥ 1
1−∆θ − θ

∥∥∥∥
2

= ∆
1−∆‖θ‖2 ≤ 2∆‖θ‖2 ≤ 2∆R, (8)

for all θ ∈ K. Therefore, since f is L-Lipschitz, Equations (6) and (7) imply that(
1

1−∆

)d
e−2L∆R ≤ π̃(θ)

π(θ) ≤
(

1
1−∆

)d
e2L∆R ∀θ ∈ (1−∆)K. (9)

Therefore,

PZ∼π(Z ∈ (1−∆)K) =
∫
θ∈(1−∆)K

π(θ)dθ

Eq. 9
≥
∫
θ∈(1−∆)K

(1−∆)de−2L∆Rπ̃(θ)dθ

= (1−∆)de−2L∆R
∫
θ∈(1−∆)K

π̃(θ)dθ

= (1−∆)de−2L∆R.

Corollary B.3 For any 0 ≤ ∆ ≤ 1
2 , we have that

PZ∼π(Z ∈ int∆r((1−∆)K)) ≥ [(1−∆)de−2L∆R]2.
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Proof: First, we apply Lemma B.2 to the convex body K and the distribution π to show that

PZ∼π((Z ∈ (1−∆)K) ≥ (1−∆)de−2L∆R. (10)

Next, we let π†(θ) ∝ e−f(θ)
1{θ ∈ (1 − ∆)K}, and we apply Lemma B.2 again, but this time to

the convex body (1−∆)K (which, like K, is contained in B(0, R)) and the distribution π† (which,
like π, has L-Lipschitz log-density) to show that

PW∼π†(W ∈ int∆r((1−∆)K)) ≥ (1−∆)de−2L∆R. (11)
Thus,

PZ∼π(Z ∈ int∆r((1−∆)K))

= PZ∼π
(
Z ∈ int∆r((1−∆)K)

∣∣∣∣Z ∈ (1−∆)K
)
× PZ∼π((Z ∈ (1−∆)K)

= PW∼π†(W ∈ int∆r((1−∆)K))× PZ∼π̂((Z ∈ (1−∆)K)
Eq. (10),(11)
≥ [(1−∆)de−2L∆R]2.

Corollary B.4 Algorithm 1 finishes in τ calls to the sampling oracle, where(
1
2

)t
≤ P(τ ≥ t) ≤

(
1
2 + ε

8τmax

)t
≤
(

2
3

)t
∀t ∈ [τmax],

and, hence,
E[τ ] ≤ 3.

Proof: By Corollary B.3, we have that, conditional on Algorithm 1 reaching some iteration i ∈ N,
the probability that Algorithm i will reject θ̂ at step i is

P(θ̂ rejected at step i|step i reached) ≤ 1
2 + 1

2 (1− PZ∼π(Z ∈ int∆r((1−∆)K)))
Corr. B.3
≤ 1

2 + 1
2
(
1− [(1−∆)de−2L∆R]2

)
≤
(

1
2 + ε

8τmax

)t
≤ 2

3 , (12)

where the second-to-last inequality holds because ∆ ≤ ε
512τmax max(d,LR) . The last inequality holds

because τmax ≥ ε
3 . Hence,

P(τ ≥ t) ≤ Πt
i=1P(θ̂ rejected at step i|step i reached)

Eq. (12)
≤

( 2
3
)t ∀t ≥ 0, (13)

and

E[τ ] ≤
∞∑
t=1

P(τ ≤ t)

=
∞∑
t=1

P(τ ≥ t)

Eq. 13
≤

∞∑
t=1

(
2
3

)t
= 1

1− 2
3

= 3. (14)
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B.4 Bounding the infinity-distance error

The next lemma allows us to provide a lower bound on the density ν of the output θ̂. Let ν̃ be the
distribution of the random variable Z = y + ∆rξ, where y ∼ µ, and ξ ∼ unif(B(0, 1)). Let ν∗ be
the distribution of

(
1

1−∆

)
Z conditional on the event that

(
1

1−∆

)
Z ∈ K.

Lemma B.5 For every θ ∈ K we have

ν∗(θ) ≥ e− ε2π(θ),

and

ν(θ) ≥ e−επ(θ).

Proof: For all θ ∈ int∆r(K), we have

ν̃(θ) = 1
Vol(B(0,∆r))

∫
w∈B(0,∆r)

µ(θ + w)dw

≥ 1
Vol(B(0,∆r))

[∫
w∈B(0,∆r)

π(θ + w)dw − δ
]

≥ π(θ)e−L∆r − δ

Vol(B(0,∆r))

= π(θ)e−L∆r − δ

Vol(B(0,∆r)) × π(θ)× 1
π(θ)

≥ π(θ)e−L∆r − δ

Vol(B(0,∆r)) × π(θ)×
(

maxw∈K π(w)
minw∈K π(w) ×Vol(B(0, R))

)
≥ π(θ)e−L∆r −

(
R

∆r

)d
× δ × π(θ)× eLR

= π(θ)×
[
e−L∆r −

(
R

∆r

)d
× δ × eLR

]
≥ π(θ)× e− ε8 . (15)

Where the last inequality holds since ∆ ≤ ε
16Lr and δ ≤ (e− ε

16 − e− ε8 ) ×
(
R
∆r
)−d

e−LR. Thus,
with probability at least 1− δ̂, we have that the conditional distribution ν̃ satisfies:

ν̃(θ) ≥ π(θ)× e− ε8 ∀θ ∈ int∆r(K). (16)

Recall that ν̃ is the distribution of the random variable Z = y + ∆rξ, where y ∼ µ. And recall that
ν∗ is the distribution of ( 1

1−∆ )Z conditional on the event that ( 1
1−∆ )Z ∈ K. Then Inequality (16)

implies that ∀θ ∈ K

ν∗(θ) ≥ (1−∆)dν̃((1−∆)θ)
Eq. (16), LemmaB.1

≥ (1−∆)dπ((1−∆)θ)× e
−ε
8

≥ π((1−∆)θ)e− ε4

≥ π(θ)e− ε2 , (17)

where the second Inequality holds by Inequality (16) since (1 −∆)θ ∈ int∆r(K) by Lemma B.1.
The third inequality holds because ∆ ≤ min(1,ε)

16d . The last inequality holds since ∆ ≤ ε
16LR since

K ⊆ B(0, R) implies that ‖∆θ‖ ≤ ∆R.
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Finally, Corollary B.4 implies that

ν(θ) ≥ P(τ < τmax)× ν∗(θ)
Corr. B.4
≥

(
1−

(
2
3

)τmax)
× ν∗(θ)

≥ e−
ε
2 × ν∗(θ)

Eq. 17
≥ e−ε × ν(θ),

where the third inequality holds since τmax ≥ log( 4
ε ) and ε ≤ 1.

Lemma B.6 For every θ ∈ K we have

ν∗(θ) ≤ e ε2π(θ),

and
ν(θ) ≤ eεπ(θ).

Proof: For all θ ∈ K, we have

ν̃(θ) = 1
Vol(B(0,∆r))

∫
w∈B(0,∆r)

µ(θ + w)dw

≤ 1
Vol(B(0,∆r))

[∫
w∈B(0,∆r)

π(θ + w)dw + δ

]

≤ π(θ)eL∆r + δ

Vol(B(0,∆r))

= π(θ)eL∆r + δ

Vol(B(0,∆r)) × π(θ)× 1
π(θ)

≤ π(θ)eL∆r + δ

Vol(B(0,∆r)) × π(θ)×
(

maxw∈K π(w)
minw∈K π(w) ×Vol(B(0, R))

)
≤ π(θ)eL∆r +

(
R

∆r

)d
× δ × π(θ)× eLR

= π(θ)×
[
eL∆r +

(
R

∆r

)d
× δ × eLR

]
≤ π(θ)× e ε8 , (18)

where the last inequality holds since ∆ ≤ ε
16Lr and δ ≤ (e ε

16 − e ε8 )× ( R∆r )−de−LR.

Moreover, by Corollary B.3 and Inequality (15) we have that

PZ∼ν̃(Z ∈ int∆r((1−∆)K))
Eq. (15)
≥ e

−ε
8 × PZ∼π(Z ∈ int∆((1−∆)K))

Corr. B.3
≥ e

−ε
8 × [(1−∆)de−L∆R]2

≥ e
−ε
4 , (19)

where the last inequality holds since ∆ ≤ min(1,ε)
64d and ∆ ≤ ε

128LR . Thus, Inequality (19) implies
that ∫

K̂

ν∗(θ)dθ ≤ e ε4
∫
K̂

ν̃(θ)dθ. (20)

Recall that ν̃ is the distribution of the random variable Z = y + ∆rξ, where y ∼ µ. And recall that
ν∗ is the distribution of ( 1

1−∆ )Z conditional on the event that ( 1
1−∆ )Z ∈ K. Therefore, inequality

(20) implies that, for all θ ∈ K,
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ν∗(θ) =
∫
K
ν∗(z)dz∫

K
ν̃(z)dz

ν̃((1−∆)θ)

Eq. 20
≤ e

ε
4 × ν̃((1−∆)θ)

Eq. 18
≤ e

ε
4 × e ε8π((1−∆)θ)

≤ e 3ε
8 × e∆LRπ(θ)

≤ e ε2π(θ), (21)

where the second-to-last inequality holds because π ∝ e−f where f is L-Lipschitz, and since ‖(1−
∆)θ− θ‖ = ∆‖θ‖ ≤ ∆R because K ⊆ B(0, R). And the last inequality holds because ∆ ≤ ε

32LR .

Finally, Corollary B.4 implies that

ν(θ) ≤ ν∗(θ) + P(τ = τmax)× 1
B(0, r)

Corr. B.4
≤ e

ε
2π(θ) +

(
2
3

)τmax

× 1
B(0, r)

≤ e
ε
2π(θ) +

(
2
3

)τmax

× 1
B(0, r) × π(θ)×

(
maxw∈K π(θ)
minw∈K π(θ) ×Vol(B(0, R))

)
≤ e

ε
2π(θ) +

(
2
3

)τmax

×
(
R

r

)d
× eLR × π(θ)

≤ eεπ(θ),
where the last inequality holds because τmax ≥ 5d log(Rr ) + 5LR+ ε.

B.5 Proof of Theorem 2.1

Proof: [of Theorem 2.1] We implement Algorithm 1, using the Dikin Walk Markov chain in [34]
as a subroutine to compute the TV-bounded sampling oracle for the distribution µ.

To apply Algorithm 1 and Theorem 2.2, we require that ‖µ − π‖TV ≤ δ, where δ = 1
64ε ×

( R∆r )−de−LR, as well as the following hyperparameter values for Algorithm 1:

1. ∆ = ε
512τmax max(d,LR) , and

2. τmax = 5d log(Rr ) + 5LR+ ε.

To sample from such a distribution µ, we implement the Dikin Walk Markov chain given in Sec-
tion 3 of [34], with logarithmic-barrier for the polytope K and hyper-parameters specified by their
Condition 2, for δ = 1

64ε× ( R∆r )−de−LR. To provide an initial point θ0 to the Dikin Walk Markov
chain, we sample θ0 ∼ unif(B(0, r)). Since f is L-Lipschitz and B(0, r) ⊆ K ⊆ B(0, R), the
distribution µ0 of the initial point θ0 satisfies

sup
z∈K

µ0(z)
π(z) ≤

1
Vol(B(0, r)) ×

(
maxz∈K π(θ)
minz∈K π(θ) ×Vol(B(0, R))

)
≤
(
R

r

)d
× eRL.

Thus, the distribution µ0 of the initial point θ0 is w-warm with respect to the distribution π, for
w =

(
R
r

)d × eRL.

By Lemma 4 of [34], their Dikin Walk Markov chain, with initial point θ0, outputs a point ‖µ −
π‖TV ≤ δ and takes at most

O
(

(m2d3 +m2dL2R2) log(w
δ

)
)

= O

(
(m2d3 +m2dL2R2)×

[
LR+ d log

(
Rd+ LRd

rε

)])
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steps. Moreover, each iteration takes O(1) function evaluations and mdω−1 arithmetic operations.

Bounding the infinity-distance. Since the distribution µ of the point θ̂ provided by the Dikin
Walk Markov chain satisfies ‖µ− π‖TV ≤ δ, we have, by Theorem 2.2, that Algorithm 1 outputs a
point θ̂ ∈ K, such that the distribution ν of θ̂ satisfies d∞(ν, π) ≤ ε.

Bounding the number of operations. Moreover, by the proof of Theorem 2.2, we also have
that Algorithm 1 finishes in τ calls to the sampling oracle (computed via the Dikin Walk Markov
chain) and τ calls to the membership oracle, plus O(τd) arithmetic operations, where E[τ ] ≤ 3 and
P(τ ≥ t) ≤

( 2
3
)t

for all τ ≤ τmax.

The membership oracle for K can be computed in md steps since this can be done by checking the
inequality Aθ ≤ b.
Thus, the total number of steps, when implementing Algorithm 1 with the Dikin Walk Markov chain
as subroutine is

O
(
τ × (m2d3 +m2dL2R2) log(w

δ
)
)

= O

(
τ × (m2d3 +m2dL2R2)×

[
LR+ d log

(
Rd+ LRd

rε

)])
,

where E[τ ] ≤ 3 and P(τ ≥ t) ≤
( 2

3
)t

for all t ≥ 0, and τ ≤ τmax w.p. 1, and where each step takes
O(1) function evaluations and mdω−1 arithmetic operations.

C Proofs of applications to differentially private optimization

C.1 Proof of Corollary 2.4

To prove Corollary 2.4 we will need the following Lemma about the exponential mechanism from
[2]:

Lemma C.1 (Theorems III.1 and III.2 in [2]) Suppose that θ̂ is sampled from the distribution
π(θ) ∝ e−

ε
2LR f(θ,x) where f(θ, x) =

∑n
i=1 `i(θ, xi) where each `i : K × D → R is L-Lipschitz

and convex, and K ⊆ B(0, R) is convex. Then θ̂ is ε-differentially private and achieves ERM utility

E[f(θ̂, x)−min
θ∈K

f(θ, x)] = O

(
dLR

ε

)
.

Proof: [of Corollary 2.4] To prove Corollary 2.4, we first use Algorithm 1 and the Dikin Walk
Markov chain from [34] to (approximately) sample from the distribution π(θ) ∝ e− ε

2LR f(θ,x). How-
ever, if Algorithm 1 has not halted after t = 10 log(dε ) iterations, we stop running Algorithm 1 and
instead output θ̂ = 0 ∈ K.

Showing ε-differential privacy. Since f(θ, x) :=
∑n
i=1 `i(θ, xi), where each `i is an L-Lipschitz

function of θ, we have that f is an is a nL-Lipschitz function of θ, and hence that ε
2LRf is a nε

R -
Lipschitz function of θ.

By Theorem 2.1, Algorithm 1 (with Dikin Walk Markov chain from [34] as subroutine), conditional
on Algorithm 1 halting after t = 10 log(nεd ) iterations, outputs a point θ̂ from a distribution ν̂ where

d∞(ν̂, π) < ε, (22)

with probability at least

P(τ ≤ t) ≥ 1−
(

2
3

)t+1
. (23)

Otherwise, we output θ̂ = 0 ∈ K. To see why the event when our algorithm outputs θ̂ = 0 satisfies
ε-differential privacy, from Equation (5) in the proof of Theorem 2.2 we have that the probability
P(τ = τmax) that Algorithm 1 will reject at all τmax iterations satisfies
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(
1
2

)τmax

e−
ε
2 ≤ P(τ = τmax) ≤

(
1
2

)τmax

e
ε
2 , (24)

But P(τ = τmax) = P(θ̂ = 0), since (ignoring events of probability measure zero) Algorithm 1
outputs θ̂ = 0 if and only if the number of rejections τ satisfies τ = τmax. Therefore, for any dataset
x ∈ Dn, Inequality (24) implies that the probability P(θ̂ = 0) ≡ P(θ̂ = 0|x) that Algorithm 1
outputs the point 0 ∈ K satisfies(

1
2

)τmax

e−
ε
2 ≤ P(θ̂ = 0|x) ≤

(
1
2

)τmax

e
ε
2 . (25)

Therefore, for any x, x′ ∈ Dn, Inequality (25) implies that P(θ̂ = 0|x) ≤ eεP(θ̂ = 0|x′), implying
that the event when our Algorithm outputs θ̂ = 0 satisfies the definition of ε-differential privacy.
Thus, by Equation (22) and Lemma C.1, we have that θ̂ is pure ε-differentially private.

Bounding the ERM utility. Moreover, by Equations (22), (23) , and Lemma C.1, we have that θ̂
achieves ERM utility

E[f(θ̂, x)−min
θ∈K

f(θ, x)] ≤ Eξ∼ν̂ [f(ξ, x)−min
θ∈K

f(θ, x)] + P(τ > t)× [f(0, x)−min
θ∈K

f(θ, x)]

Eq. 22,23
≤ eε × Ez∼π[f(z, x)−min

θ∈K
f(θ, x)] +

(
2
3

)t+1
× 2nLR

≤ eε × Ez∼π[f(z, x)−min
θ∈K

f(θ, x)] +
(

2
3

)10 log(nεd )
× 2nLR

Lemma C.1
≤ eε ×O

(
dLR

ε

)
+ dLR

ε

= O

(
dLR

ε

)
,

where the second inequality holds since f is nL-Lipschitz and K ⊆ B(0, R).

Bounding the number of operations. Moreover, also by Theorem 2.1, the sum T of the number
of steps of Dikin Walk [34] over all the times it is called by Algorithm 1 is at most O(t× (m2d3 +
m2dn2ε2) × [εn + dlog(Rd+nεd

rε )]) steps. And each step takes O(mdω−1) arithmetic operations,
plus one evaluation of the value of f (and hence n evaluations of functions `i). Thus, the number of
steps is at most T = O((m2d3 + m2dn2ε2) × [εn + dlog(Rd+nεd

rε )] × log(nεd ) steps, where each
step takes O(mdω−1) arithmetic operations, plus one evaluation of the function f . Thus, Algorithm
1 finishes in at most T ×mdω−1 arithmetic operations plus T evaluations of the function f , where
T = O((m2d3 +m2dn2ε2)× [εn+ d]× log2(nεd )).

C.2 Proof of Corollary 2.5

Proof: [of Corollary 2.5]

[24] show that one can find a pure ε-differentially private rank-k projection P such that
EP [〈Σ, P 〉] ≥ (1 − δ)

∑k
i=1 λi whenever

∑k
i=1 λi ≥

dk
εδ log 1

δ for any δ > 0 and some univer-
sal constant C > 0, where λ1 ≥ · · · ≥ λd > 0 denote the eigenvalues of Σ, by generating a
sample from a linear (and hence log-Lipschitz) log-concave distribution π on a polytope K with
infinity-distance error O(ε).

Specifically, their linear log-density π has Lipschitz constant L = d2(λ1 − λd), (first equation
in Section 5.2 in the arXiv version of [24]). Their polytope K is in R

d(d−1)
2 and is defined by

m = d(d − 1) inequalities (Equations (5) and (6) in the arXiv version of [24]). Moreover, K is
contained in a ball of radius R =

√
d, ((Lemma 4.7) of [24]) and contains a ball of radius r = 1

8d2

((Lemma 4.8) of [24]).
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Applying Theorem 2.1 with the above parameters for m,L, r,R and the dimension d(d−1)
2 , we

obtain a sample from the distribution π with infinity-distance error O(ε) in a number of arithmetic
operations that is logarithmic in 1

ε and polynomial in d and λ1 − λd.

Remark C.2 (Privacy of running time) In the proof of Theorem 2.2 we also show that the prob-
ability distribution of the number of iterations τ of Algorithm 1 satisfies

( 1
2
)t
e−

ε
2 ≤ P(τ = t) ≤( 1

2
)t
e
ε
2 for all t ≤ τmax. This ensures that the number of iterations τ is ε-pure DP; thus a mali-

cious adversary cannot gain much information about the dataset by measuring the time it takes for
Algorithm 1 to finish.

D Performance of Algorithm 1 on simple test functions

In this section we implement Algorithm 1 on two distributions: a simple one-dimensional distribu-
tion, and a d = 100 dimensional “Dirichlet” distribution. Simulations were performed in Matlab,
on a 1.6 GHz Dual-Core Intel Core i5 2019 Macbook Air laptop.

One-dimensional distribution: We first investigate the performance of Algorithm 1 on a simple one-
dimensional distribution π, to verify that our algorithm generates points within the required infinity
distance. We do this by generating a histogram of the output of Algorithm 1, by running Algorithm
1 107 times. For this experiment, we choose a simple one-dimensional distribution as this allows
us to obtain a more precise estimate of the infinity distance, since the number of points needed to
compute the histogram grows exponentially with the dimension.

We consider the target distribution π(θ) ∝ e− 1
2 (3−θ), with support onK = [−1, 3]. And we provide

Algorithm 1 with samples from a distribution

µ(θ) ∝
{
e−

1
2 (3−θ) θ ∈ K\([0.499, 0.501] ∪ [1.999, 2.001] ∪ [2.999, 3])

0 otherwise.

Note that this distribution µ satisfies ‖π−µ‖TV ≤ 1
100 , and yet d∞(π, µ) = supθ∈K | log ν(θ)

π(θ) | =∞
since there are points θ ∈ K where ν(θ) = 0 but π(θ) > 0.

We run Algorithm 1 107 times (with parameters ε = 0.1, L = 1
2 , R = 4, and ∆ = ε

max(d,LR) =
0.05), to generate a histogram of the distribution ν of the output of Algorithm 1 (Figure 2). We
observe that Algorithm 1 terminates after an average of 2.1904 iterations, and generates points from
a distribution ν with d∞(ν, π) = 0.1054, roughly matching the value of the parameter ε = 1

10 .
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Figure 2: Histogram of the distribution ν(θ) of the output of Algorithm 1 (blue curve) for target
distribution π(θ) = e−

1
2 (3−θ) with support on K = [−1, 3] (dashed black curve), when provided

with samples from a distribution µ such that ‖π − µ‖TV ≤ 1
100 and d∞(π, µ) = ∞. Algorithm 1

(with parameter ε = 0.1) terminated after an average of 2.1904 iterations, and generated points from
a distribution ν with d∞(ν, π) = 0.1054, which roughly matches the choice of parameter ε = 0.1.
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100-dimensional Dirichlet distribution: We also implement Algorithm 1 on a d = 100 dimensional
distribution. Specifically, we consider the Dirichlet distribution π(θ) ∝

∏d
i=1 θi with support on the

simplex K = {θ ∈ Rd :
∑d
i=1 θi ≤ 1, θi ∈ [0, 1]∀i ∈ [d]}. And we provide Algorithm 1 with

samples from a distribution

µ(θ) =
{
π(θ) θ /∈ B(0, 1

100 )
0 otherwise.

Note that this distribution µ satisfies ‖π−µ‖TV < 10−d, and yet d∞(π, µ) = supθ∈K | log ν(θ)
π(θ) | =

∞ since there are points θ ∈ K where ν(θ) = 0 but π(θ) > 0. We observe that Algorithm 1
terminates after an average of 1.9935 iterations (with the average taken over 105 runs of Algorithm
1). (We do not compute the histogram and infinity distance for the d = 100 dimensional Dirichlet
distribution, since the number of points needed to compute the histogram grows exponentially with
d.)
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