
A Open source code

This section is meant to give an overview of our opensource code. Together with our paper
submission we include a link to anonymous github repository.

• neural_testbed: https://github.com/deepmind/neural_testbed

Together with this git repo, we include a ‘tutorial colab’ – a Jupyter notebooks that can be run
in the browser without requiring any local installation at neural_testbed/tutorial.ipynb.
Our library is written in Python, and relies heavily on JAX for scientific computing (Bradbury
et al., 2018). We view this open-source effort as a major contribution of our paper.

B Testbed Pseudocode

We present the testbed pseudocode in this section. Specifically, Algorithm 2 is the pseudocode
for our neural testbed, and Algorithm 3 is an approach to estimate the likelihood of a test data
τ -sample conditioned on an agent’s belief, based on the standard Monte-Carlo estimation.
The presented testbed pseudocode works for any prior P(E ∈ ·) over the environment and
any input distribution PX , including the ones described in Section 3.1. We also release full
code and implementations in Appendix A.
In addition to presenting the testbed pseudocode, we also explain our choices of experiment
parameters in Appendix C. To apply Algorithm 2, we need to specify an input distribution
PX and a prior distribution on the environment P(E ∈ ·). Recall from Section 3.1 that we
consider binary classification problems with input dimension 2. We choose PX = N(0, I), and
we consider three environment priors distinguished by a temperature parameter that controls
the signal-to-noise ratio (SNR) regime. We sweep over temperatures in {0.01, 0.1, 0.5}. The
prior distribution P(E ∈ ·) is induced by a distribution over MLPs with 2 hidden layers and
ReLU activation. The MLP is distributed according to standard Xavier initialization, except
that biases in the first layer are drawn from N(0, 1

2). The MLP outputs two units, which are
divided by the temperature parameter and passed through the softmax function to produce
class probabilities. The implementation of this generative model is in our open source code
under the path /generative/factories.py.
We now describe the other parameters we use in the Testbed. In Algorithm 2, we pick the order
of predictive distributions τ ∈ {1, 10}, training dataset size T ∈ {1, 3, 10, 30, 100, 300, 1000},
number of sampled problems J = 10, and number of testing data τ -samples N = 1000. To
apply Algorithm 3, we sample M = 1000 models from the agent.

C Agents

In this section, we describe the benchmark agents in Section 3.3 and the choice of various
hyperparameters used in the implementation of these agents. The list of agents include
MLP, ensemble, dropout, Bayes by backprop, stochastic Langevin MCMC, ensemble+ and
hypermodel. We will also include other agents such as KNN, random forest, and deep kernel,
but the performance of these agents was worse than the other benchmark agents, so we
chose not to include them in the comparison in Section 4. In each case, we attempt to match
the “canonical” implementation. The complete implementation of these agents including
the hyperparameter sweeps used for the Testbed are available in Appendix A. We make use
of the Epistemic Neural Networks notation from (Osband et al., 2021) in our code. We set
the default hyperparameters of each agent to be the ones that minimize the aggregated KL
score dagg

KL = d1
KL + 1

10 d10
KL.

C.1 MLP

The mlp agent learns a 2-layer MLP with 50 hidden units in each layer by minimizing the cross-
entropy loss with L2 weight regularization. The L2 weight decay scale is chosen either to be λ 1

T

or λ
d
√

β

T , where d is the input dimension, β is the temperature of the generative process and

13

https://github.com/deepmind/neural_testbed
/generative/factories.py

Algorithm 2 Neural Testbed
Require: the testbed requires the following inputs

1. prior distribution over the environment P(E ∈ ·), input distribution PX

2. agent fθ

3. number of training data T , test distribution order τ
4. number of sampled problems J , number of test data samples N
5. parameters for agent likelihood estimation, as is specified in Algorithm 3

for j = 1, 2, . . . , J do
Step 1: sample environment and training data

1. sample environment E ∼ P(E ∈ ·)
2. sample T inputs X0, X1, . . . , XT −1 i.i.d. from PX

3. sample the training labels Y1, . . . , YT conditionally i.i.d. as

Yt+1 ∼ P (Y ∈ ·|E , X = Xt) ∀t = 0, 1, . . . , T − 1

4. choose the training dataset as DT = {(Xt, Yt+1) , t = 0, . . . , T − 1}
Step 2: train agent

train agent fθT
based on training dataset DT

Step 3: compute likelihoods
for n = 1, 2, . . . , N do

1. sample X
(n)
T , . . . , X

(n)
T +τ−1 i.i.d. from PX

2. generate Y
(n)

T +1, . . . , Y
(n)

T +τ conditionally independently as

Y
(n)

t+1 ∼ P
(

Y ∈ ·
∣∣∣E , X = X

(n)
t

)
∀t = T, T + 1, . . . , T + τ − 1

3. compute the likelihood under the environment E as

pj,n = P
(

Y
(n)

T +1:T +τ

∣∣∣E , X
(n)
T :T +τ−1

)
=
∏T +τ−1

t=T Pr
(

Y
(n)

t+1

∣∣∣E , X
(n)
t

)
4. estimate the likelihood conditioned on the agent’s belief

p̂j,n ≈ P
(

ŶT +1:T +τ = Y
(n)

T +1:T +τ

∣∣∣θT , X
(n)
T :T +τ−1, Y

(n)
T +1:T +τ

)
,

based on Algorithm 3 with test data τ -sample
(

X
(n)
T :T +τ−1, Y

(n)
T +1:T +τ

)
.

end for
return 1

JN

∑J
j=1

∑N
n=1 log (pj,n/p̂j,n)

Algorithm 3 Monte Carlo Estimation of Likelihood of Agent’s Belief
Require: the Monte-Carlo estimation requires the following inputs

1. trained agent fθT
and number of Monte Carlo samples M

2. test data τ -sample (XT :T +τ−1, YT +1:T +τ)
Step 1: sample M models Ê1, . . . , ÊM conditionally i.i.d. from P

(
Ê ∈ ·

∣∣∣θT

)
Step 2: estimate p̂ as

p̂ = 1
M

M∑
m=1

P
(

ŶT +1:T +τ = YT +1:T +τ

∣∣∣Êm, XT :T +τ−1, YT +1:T +τ

)
return p̂

14

T is the size of the training dataset. We sweep over λ ∈ {10−4, 10−3, 10−2, 10−1, 1, 10, 100}.
We implement the MLP agent as a special case of a deep ensemble (C.2). The implementation
and hyperparameter sweeps for the mlp agent can be found in our open source code, as a
special case of the ensemble agent, under the path /agents/factories/ensemble.py.

C.2 Ensemble

We implement the basic “deep ensembles” approach for posterior approximation (Lakshmi-
narayanan et al., 2017). The ensemble agent learns an ensemble of MLPs by minimizing the
cross-entropy loss with L2 weight regularization. The only difference between the ensemble
members is their independently initialized network weights. We chose the L2 weight scale
to be either λ 1

MT or λ
d
√

β

MT , where M is the ensemble size, d is the input dimension, β is
the temperature of the generative process, and T is the size of the training dataset. We
sweep over ensemble size M ∈ {1, 3, 10, 30, 100} and λ ∈ {10−4, 10−3, 10−2, 10−1, 1, 10, 100}.
We find that larger ensembles work better, but this effect is within margin of error after 10
elements. The implementation and hyperparameter sweeps for the ensemble agent can be
found in our open source code under the path /agents/factories/ensemble.py.

C.3 Dropout

We follow Gal and Ghahramani (2016) to build a droput agent for posterior approximation.
The agent applies dropout on each layer of a fully connected MLP with ReLU activation
and optimizes the network using the cross-entropy loss combined with L2 weight decay.
The L2 weight decay scale is chosen to be either l2

2T (1 − pdrop) or d
√

βl

T where pdrop is
the dropping probability, d is the input dimension, β is the temperature of the data gen-
erating process, and T is the size of the training dataset. We sweep over dropout rate
pdrop ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, length scale (used for L2 weight decay)
l ∈ {1, 3, 10}, number of neural network layers ∈ {2, 3}, and hidden layer size ∈ {50, 100}.
The implementation and hyperparameter sweeps for the dropout agent can be found in our
open source code under the path /agents/factories/dropout.py.

C.4 Bayes-by-backprop

We follow Blundell et al. (2015) to build a bbb agent for posterior approximation. We consider
a scale mixture of two zero-mean Gaussian densities as the prior. The Gaussian densities
have standard deviations σ1 and σ2, and they are mixed with probabilities p and 1 − p,
respectively. We sweep over σ1 ∈ {0.3, 0.5, 0.7, 1, 2, 4}, σ2 ∈ {0.3, 0.5, 0.7}, p ∈ {0, 0.5, 1},
learning rate ∈ {10−3, 3 × 10−3}, number of training steps ∈ {1000, 2000}, number of neural
network layers ∈ {2, 3}, hidden layer size ∈ {50, 100}, and the ratio of the complexity cost
to the likelihood cost ∈ {1, d

√
β}, where d is the input dimension and β is the temperature

of the data generating process. The implementation and hyperparameter sweeps for the bbb
agent can be found in our open source code under the path /agents/factories/bbb.py.

C.5 Stochastic gradient Langevin dynamics

We follow Welling and Teh (2011) to implement a sgmcmc agent using stochastic gradient
Langevin dynamics (SGLD). We consider two versions of SGLD, one with momentum and
other without the momentum. We consider independent Gaussian prior on the neural network
parameters where the prior variance is set to be

σ2 = λ
T

d
√

β
,

where λ is a hyperparameter that is swept over {0.0025, 0.01, 0.04}, d is the input dimension,
β is the temperature of the data generating process, and T is the size of the training dataset.
We consider a constant learning rate that is swept over {10−4, 5 × 10−4, 10−3, 5 × 10−3}. For
SGLD with momentum, the momentum decay term is always set to be 0.9. The number of
training batches is 5 × 105 with burn-in time of 105 training batches. We save a model every
1000 steps after the burn-in time and use these models as an ensemble during the evaluation.

15

/agents/factories/ensemble.py
/agents/factories/ensemble.py
/agents/factories/dropout.py
/agents/factories/bbb.py

The implementation and hyperparameter sweeps for the sgmcmc agent can be found in our
open source code under the path /agents/factories/sgmcmc.py.

C.6 Ensemble+

We implement the ensemble+ agent using deep ensembles with randomized prior functions
(Osband et al., 2018) and bootstrap sampling (Osband and Van Roy, 2015). Similar to the
vanilla ensemble agent in Section C.2, we consider L2 weight scale to be either λ 1

MT or

λ
d
√

β

MT . We sweep over ensemble size M ∈ {1, 3, 10, 30, 100} and λ ∈ {0.1, 0.3, 1, 3, 10}. The
randomized prior functions are sampled exactly from the data generating process, and we
use a prior scale of 3/

√
β. In addition, we sweep over bootstrap type (none, exponential,

bernoulli).
Note that an ensemble+ agent is obtained by an addition of a prior network to the ensemble
agent. We find that the addition of randomized prior functions is crucial for improvement in
performance over vanilla deep ensembles in terms of the quality of joint predictions. The
implementation and hyperparameter sweeps for the ensemble+ agent can be found in our
open source code under the path /agents/factories/ensemble_plus.py.

C.7 Hypermodel

We follow Dwaracherla et al. (2020) to build a hypermodel agent for posterior approximation.
We consider a linear hypermodel over a 2-layer MLP base model. We sweep over index
dimension ∈ {1, 3, 5, 7}. The L2 weight decay is chosen to be either λ 1

T or λ
d
√

β

T with
λ ∈ {0.1, 0.3, 1, 3, 10}, where d is the input dimension, β is the temperature of the data
generating process, and T is the size of the training dataset. We sweep over bootstrap
type (none, exponential, bernoulli). We use an additive prior which is a linear hypermodel
prior over an MLP base model, which is similar to the generating process, with number of
hidden layers in {1, 2}, 10 hidden units in each layer, and prior scale from {1/

√
β, 1/β}. The

implementation and hyperparameter sweeps for the hypermodel agent can be found in our
open source code under the path /agents/factories/hypermodel.py.

C.8 Non-parametric classifiers

K-nearest neighbors (k-NN) (Cover and Hart, 1967) and random forest classifiers (Friedman,
2017) are simple and cheap off-the-shelf non-parametric baselines (Murphy, 2012; Pedregosa
et al., 2011). The ‘uncertainty’ in these classifiers arises merely from the fact that they produce
distributions over the labels and as such we do not expect them to perform well relative to
more principled approaches. Moreover, these methods have no capacity to model dτ

KL for
τ > 1. For the knn agent we swept over the number of neighbors k ∈ {1, 5, 10, 30, 50, 100}
and the weighting of the contribution of each neighbor as either uniform or based on distance.
For the random_forest agent we swept over the number of trees in the forest {10, 100, 1000},
and the splitting criterion which was either the Gini impurity coefficient or the information
gain. To prevent infinite values in the KL we truncate the probabilities produced by these
classifiers to be in the interval [0.01, 0.99]. The implementation and hyperparameter sweeps
for the knn and random_forest agents can be found in our open source code under the
paths /agents/factories/knn.py and /agents/factories/random_forest.py.

C.9 Gaussian process with learned kernel

A neural network takes input Xt ∈ X and produces output Zt+1 = Wϕθ(Xt) + b ∈ RK ,
where W ∈ RK×m is a matrix, b ∈ RK is a bias vector, and ϕθ : X → Rm is the output
of the penultimate layer of the neural network. In the case of classification the output
Zt+1 corresponds to the logits over the class labels, i.e., Ŷt+1 ∝ exp(Zt+1). The neural
network should learn a function that maps the input into a space where the classes are
linearly distinguishable. In other words, the mapping that the neural network is learning
can be considered a form of kernel (Schölkopf and Smola, 2018), where the kernel function
k : X ×X → R is simply k(X, X ′) = ϕθ(X)⊤ϕθ(X ′). With this in mind, we can take a trained

16

/agents/factories/sgmcmc.py
/agents/factories/ensemble_plus.py
/agents/factories/hypermodel.py
/agents/factories/knn.py
/agents/factories/random_forest.py

neural network and consider the learned mapping to be the kernel in a Gaussian process
(GP) (Rasmussen, 2003), from which we can obtain approximate uncertainty estimates.
Concretely, let Φ0:T −1 ∈ RT ×m be the matrix corresponding to the ϕθ(Xt), t = 0, . . . , T − 1,
vectors stacked row-wise and let ΦT :T +τ−1 ∈ Rτ×m denote the same quantity for the test
set. We can write the kernel function evaluated on the training and test datasets using these
matrices. Fix index i ∈ {0, . . . , K − 1} to be a particular class index. A GP models the joint
distribution over the dataset to be a multi-variate Gaussian, i.e.,[

Z
(i)
1:T

Z
(i)
T +1:T +τ

]
∼ N

([
µ

(i)
1:T

µ
(i)
T +1:T +τ

]
,

[
σ2I + Φ0:T −1Φ⊤

0:T −1 ΦT :T +τ−1Φ⊤
0:T −1

Φ0:T −1Φ⊤
T :T +τ−1 ΦT :T +τ−1Φ⊤

T :T +τ−1

])
where σ > 0 models the noise in the training data measurement and µ

(i)
1:T , µ

(i)
T +1:T +τ are the

means under the GP. The conditional distribution is given by

P (Z(i)
T +1:T +τ | Z

(i)
1:T , X0:T +τ−1) = N

(
µ

(i)
T +1:T +τ |1:T , ΣT +1:T +τ |1:T

)
where
ΣT +1:T +τ |1:T = ΦT :T +τ−1Φ⊤

T :T +τ−1 − ΦT :T +τ−1Φ⊤
0:T −1(σ2I + Φ0:T −1Φ⊤

0:T −1)−1Φ0:T −1Φ⊤
T :T +τ−1.

and rather than use the GP to compute µ
(i)
T +1:T +τ |0:T (which would not be possible since we

do not observe the true logits) we just take it to be the output of the neural network when
evaluated on the test dataset. The matrix being inverted in the expression for ΣT +1:T +τ |0:T
has dimension T × T , which may be quite large. We use the Sherman-Morrison-Woodbury
identity to rewrite it as follows (Woodbury, 1950)

ΣT +1:T +τ |0:T = ΦT :T +τ−1(I − Φ⊤
0:T −1(σ2I + Φ0:T −1Φ⊤

0:T −1)−1Φ0:T −1)Φ⊤
T :T +τ−1

= σ2ΦT :T +τ−1(σ2I + Φ⊤
0:T −1Φ0:T −1)−1Φ⊤

T :T +τ−1,

which instead involves the inverse of an m × m matrix, which may be much smaller. If we
perform a Cholesky factorization of positive definite matrix (σ2I + Φ⊤

0:T −1Φ0:T −1) = LL⊤

then the samples for all logits simultaneously can be drawn by first sampling ζ ∈ Rm×K ,
with each entry drawn IID from N (0, 1), then forming

ŶT +1:T +τ ∝ exp(µT +1:T +τ |1:T + σΦT :T +τ−1L−⊤ζ).
The implementation and hyperparameter sweeps for the deep_kernel agent can be found in
our open source code under the path /agents/factories/deep_kernel.py.

C.10 Other agents

In our paper we have made a concerted effort to include representative and canonical agents
across different families of Bayesian deep learning and adjacent research. In addition to
these implementations, we performed extensive tuning to make sure that each agent was
given a fair shot. However, with the proliferation of research in this area, it was not possible
for us to evaluate all competiting approaches. We hope that, by opensourcing the Neural
Testbed, we can allow researchers in the field to easily assess and compare their agents to
these baselines.
For example, we highlight a few recent pieces of research that might be interesting to evaluate
in our setting. Of course, there are many more methods to compare and benchmark. We
leave this open as an exciting area for future research.

• Neural Tangent Kernel Prior Functions (He et al., 2020). Proposes a specific type
of prior function in ensemble+ inspired by connections to the neural tangent kernel.

• Functional Variational Bayesian Neural Networks (Sun et al., 2019). Applies
variational inference directly to the function outputs, rather than weights like bbb.

• Variational normalizing flows (Rezende and Mohamed, 2015). Applies variational
inference over a more expressive family than bbb.

• No U-Turn Sampler (Hoffman et al., 2014). Another approach to sgmcmc that attempts
to compute the posterior directly, computational costs can grow large.

17

/agents/factories/deep_kernel.py

D Testbed results

In this section, we provide the complete results of the performance of benchmark agents
on the Testbed, broken down by the temperature setting, which controls the SNR, and the
size of the training dataset. We select the best performing agent, based on aggregated score
d1

KL + d10
KL/10, within each agent family and plot d1

KL and d10
KL with the performance of an

MLP agent as a reference. We also provide a plot comparing the training time of different
agents.

D.1 Visualizing ensemble vs ensemble+

Figure 12 provides additional intuition into how the randomized prior functions are able
to drive improved performance. Figure 12a shows a sampled generative model from our
Testbed, with the training data shown in red and blue circles. Figure 12b shows the mean
predictions and 4 randomly sampled ensemble members from each agent (top=ensemble,
bottom=ensemble+). We see that, although the agents mostly agree in their mean predictions,
ensemble+ produces more diverse sampled outcomes enabled by the addition of randomized
prior functions. In contrast, ensemble produces similar samples, which may explain why its
performance is close to baseline mlp in this setting.

(a) True model. (b) Agent samples: only ensemble+ produces diverse decision boundaries.

Figure 12: Visualization of the predictions of ensemble and ensemble+ agents.

D.2 Performance breakdown

Figures 13 and 14 show the KL estimates evaluated on τ = 1 and τ = 10, respectively. For
each agent, for each SNR regime, for each number of training points we plot the average
KL estimate from the Testbed. In each plot, we include the “baseline” mlp agent as a black
dashed line to allow for easy comparison across agents. A detailed description of these
benchmark agents can be found in Appendix C.

D.3 Training time

Figure 15 shows a plot comparing the d10
KL and training time of different agents normalized

with that of an MLP. The parameters of each agent are selected to maximize the d10
KL. We

can see that sgmcmc agent has the best performance, but at the cost of more training time
(computation). Both ensemble+ and hypermodel agents have similar performance as sgmcmc
with lower training time. We trained our agents on CPU only systems.

18

E Sequential Decision Problems

This section provides supplementary information for the sequential decision problems in
Section 5. All of the code necessary to reproduce the experiments is opensourced in the
/bandit/ directory.

E.1 Problem formulation

We consider bandit problems derived from the testbed and evaluate the agents using Algorithm
4 for which we need to specify prior on the environment P(E ∈ ·), input distribution PX , and
the number of actions N . We choose input distribution PX = N (0, Id), where d is the input
dimension. We sweep over d ∈ {2, 10, 50} and choose the number of actions to be N = 20 d,
i.e., for input dimensions {2, 10, 50} we have {40, 200, 1000} actions respectively. We use
the same prior distribution of environments as in Appendix B with a fixed temperature of
0.1. For each setting, we run for 50, 000 time steps (T = 50, 000) and with 20 random seeds
(J = 20).

E.2 Agent definition

In Appendix C, we described benchmark agents in our testbed. Among these agents, we use
mlp, ensemble, dropout, bbb, ensemble+, and hypermodel agents for sequential decision
problems. For all the agents we use the hyper parameters specified by default, in the
source code, at the path /agents/factories/. The default hyperparameters of each agent
correspond to be the ones that minimize the aggregated KL score dagg

KL = d1
KL + d10

KL/10. As
the agent interacts with the environment, the amount of data the agent has observed keeps
growing. Due to this we tune the regularization term based on the number of time steps
agent has interacted with the environment. For mlp, ensemble, ensemble+, and hypermodel

agents we use an L2 weight decay of λ
2
√

β

t , where β is the temperature, t is the number of
the time steps the agent has interacted with the environment, and λ is the default weight
scale of the agent. For dropout we choose the L2 weight decay as 2

√
βl

t , where l is the
default length scale used in the dropout agent. For bbb we scale the prior term by 1

t . As
described above, all hyperparmeters are chosen to be the ones which minimize the aggregated
KL score dagg

KL = d1
KL + 1

10 d10
KL.

E.3 Results

Figures 8 and 9 shows the correlation between performance on testbed performance and
sequential decision problems with an input dimension of 50. Different points of an agent in
these figures corresponds to different random seeds for the testbed and sequential problems.
We can see that performance on sequential decision problems is strongly correlated with
testbed joint performance τ = 10 and not correlated with the testbed marginal performance.
In Figures 16 and 17 we show a similar correlation plots between testbed performance
and sequential decision problems across different input dimensions for sequential decision
problems. We can see that performance on sequential decision problems has clear correlation
with testbed joint performance τ = 10, and no correlation with testbed marginal performance
τ = 1, across all the input dimensions considered.
These results offer empirical evidence that practical deep learning approaches separated
by the quality of their joint predictions, but not their marginals, can lead to differing
performance in downstream tasks. In addition, we show that our simple 2D testbed can
provide insights that scale to much higher dimension problems.

19

/bandit/
/agents/factories/

Algorithm 4 Evaluation on Bandit Problem
Require: Evaluation on bandit problem requires the following inputs

1. Distribution over the environment P(E ∈ ·), input distribution PX , and the
number of actions N .

2. Agent fθ

3. Number of time steps T
4. Number of sampled problems J

for j = 1, 2, . . . , J do
Step 1: Sample environment and action set

1. Sample environment E ∼ P(E ∈ ·)
2. Sample a set X of N actions x1, x2, . . . , xN i.i.d. from PX

3. Obtain the mean rewards corresponding to actions in X conditioned on the
environment

Rx = P(Yt+1 = 1|E , Xt = x), ∀x ∈ X

4. Compute the optimal expected reward R∗ = maxx∈X Rx

Step 2: Agent interaction with the environment
Initialize the data buffer D0 = {}
for t = 1, 2, . . . , T do

1. Update agent fθt
belief distribution based on the data in the buffer Dt−1

2. TS action selection scheme:
i. Sample Êt from the agent belief distribution

Êt ∼ P
(

Ê ∈ ·|θt

)
ii. Act greedily based on Êt

Xt ∈ arg max
x∈X

P(Ŷt+1 = 1|Êt, Xt = x)

iii. Generate observation Yt+1 based on action Xt

Yt+1 ∼ P (Yt+1 ∈ ·|E , Xt = Xt)

3. Update the buffer Dt = D0 ∪ (Xt, Yt+1)
end for
Compute the total regret incurred in T time steps

Regretj(T) =
T∑

t=1

(
R∗ − RXt

)
end for
return 1

J

∑J
j=1 Regretj(T)

20

0
0.2
0.4
0.6

KL
 e

st
im

at
e

on
 ta

u=
1

temperature = 0.01 temperature = 0.1 temperature = 0.5

ensem
ble+

0
0.2
0.4
0.6

hyperm
odel

0
0.2
0.4
0.6 ensem

ble

0
0.2
0.4
0.6 dropout

0
0.2
0.4
0.6 sgm

cm
c

0
0.2
0.4
0.6

bbb

0
0.2
0.4
0.6

deep_kernel

0
0.2
0.4
0.6

knn

0
0.2
0.4
0.6

random
_forest

0
0.2
0.4
0.6

logistic_regression

1 10 100 1000
0

0.2
0.4
0.6

1 10 100 1000 1 10 100 1000
Number of training points

prior

Figure 13: Performance of benchmark agents on the Testbed evaluated on τ = 1, compared
against the MLP baseline.

21

0
2
4
6

KL
 e

st
im

at
e

on
 ta

u=
10

temperature = 0.01 temperature = 0.1 temperature = 0.5

ensem
ble+

0
2
4
6 hyperm

odel

0
2
4
6 ensem

ble

0
2
4
6 dropout

0
2
4
6 sgm

cm
c

0
2
4
6

bbb

0
2
4
6 deep_kernel

0
2
4
6

knn

0
2
4
6

random
_forest

0
2
4
6

logistic_regression

1 10 100 1000
0
2
4
6

1 10 100 1000 1 10 100 1000
Number of training points

prior

Figure 14: Performance of benchmark agents on the Testbed evaluated on τ = 10, compared
against the MLP baseline.

22

1 3 10 30
Average training time (x MLP training time)

0.7

0.8

0.9

1

No
rm

al
ize

d
KL

 e
st

im
at

e

agent
bbb

dropout

ensemble

ensemble+

hypermodel

mlp

sgmcmc

Figure 15: Normalized d10
KL vs training time of different agents

0.11 0.12 0.13 0.14
10

100

1000

to
ta

l r
eg

re
t

input dimension: 2
correlation: 0.01 (-0.16, 0.17)

agent
mlp
ensemble
bbb
dropout
ensemble+
hypermodel

0.11 0.12 0.13 0.14

input dimension: 10
correlation: -0.21 (-0.36, -0.04)

0.11 0.12 0.13 0.14
marginal KL loss (= 1)

input dimension: 50
correlation: -0.12 (-0.33, 0.07)

Figure 16: Testbed marginal performance d1
KL is not significantly positively correlated with

sequential decision performance. This result is robust across input dimensions 2, 10, and 50.

0.9 1 1.1 1.2 1.3 1.4 1.5
10

100

1000

to
ta

l r
eg

re
t

input dimension: 2
correlation: 0.45 (0.32, 0.59)

agent
mlp
ensemble
bbb
dropout
ensemble+
hypermodel

0.9 1 1.1 1.2 1.3 1.4 1.5

input dimension: 10
correlation: 0.72 (0.63, 0.81)

0.9 1 1.1 1.2 1.3 1.4 1.5
joint KL loss (= 10)

input dimension: 50
correlation: 0.69 (0.61, 0.77)

Figure 17: Testbed joint performance d10
KL is significantly positively correlated with

sequential decision performance. This result is robust across input dimensions 2, 10, and 50.

23

