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1 More experimental results

One key factor that contributes to the success of JoinDet is using progressively refined object priors
as supervision. We have already shown that the selection of effective object priors have a huge
impact on finetuning performance in Sec.4 of the main text. Here, we provide more experimental
results to explore the influence of hyperparameters in JoinDet and discuss the possible direction for
future works. We implement experiments on single-scale deformable DETR [11]. Unless otherwise
specified, we set the momentum coefficient in the Box Smooth Module as 0.45, and the clustering
IoU threshold in the Box Smooth Module as 0.48. The supervision generated from object priors is
updated every 10 epochs by default. JoinDet is pretrained on COCO for 50 epochs and finetune on
VOC for 25 epochs. We train 3 different models with different random seeds and report the mean
result of AP (COCO format) on VOC.

1.1 Momentum coefficient in the Box Smooth Module

The momentum coefficient ms in Box Smooth Module controls the shifting speed of supervision,
which considers both precedent object priors and current object priors. We ablate the most suitable
momentum coefficient for JoinDet in Tab. 1. Firstly, small momentum coefficients, which are smaller
than 0.45, represent a relative fast-shifting speed of supervision, showing significant performance
drops. Concretely, when ms = 0, the supervision is directly replaced with current object priors,
neglecting useful precedent object priors and leading to -2.4 AP drop. Second, when the shifting
speed is too slow (ms = 0.70), behindhand object priors are insufficient to guide the current model,
which is also harmful (55.4 AP→53.7 AP) for JoinDet.

1.2 Clustering IoU threshold in the Box Smooth Module

When precedent object priors and current object priors have large IoUs, which are bigger than the
threshold, corresponding priors (boxes) will be clustered in the same cluster. The box coordinates
and scores of all boxes in a specific cluster will be used to generate a new box for supervision.
Experimental results of using different clustering IoU thresholds are summarized in Tab. 2. First, we
find 0.48 as an optimal hyperparameter, suggesting that duplicate object priors with larger thresholds
and scarce object priors with smaller thresholds are both harmful for pretraining. Second, the
performance variation with different cluster IoU thresholds are relatively slight (at most -1.3 AP),
which indicates that our proposed method is robust to the clustering IoU thresholds.
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Table 1: Pretrain JoinDet with different momentum coefficients. When momentum coefficient
ms = 0, the supervision will be directly changed to current object priors. AP on VOC is reported.

Method ms 10 epochs 25 epochs

DETReg - 46.0 53.9

JoinDet

0.70 47.1 53.7
0.45 49.0 55.4
0.20 48.3 54.3
0.05 47.7 54.3

0 48.0 53.0

Table 2: Pretrain JoinDet with different clustering IoU thresholds. AP on VOC is reported.

Method IoU threshold 10 epochs 25 epochs

DETReg - 46.0 53.9

JoinDet

0.35 46.2 54.1
0.40 47.1 53.9
0.48 49.0 55.4
0.55 48.1 54.8
0.60 48.4 54.9
0.65 47.9 54.8

1.3 Update frequency

As generated object priors are progressively refined during pretraining, we update object priors every
10 epochs as the supervision. As shown in Tab. 3, when the momentum coefficient is fixed (0.45),
updating the supervision too frequently (every 1 epoch) leads to a significant performance drop, which
indicates that stable supervision is very important to unsupervised pretraining for object detectors.
We argue that the performance drop brought by frequent updating can be remedied with a proper
momentum coefficient as discussed in Sec.2 of the main text, which we remain for future work.

Table 3: Pretrain JoinDet with different update frequencies. AP on VOC is reported.

Method Update frequency 10 epochs 25 epochs

DETReg - 46.0 53.9

JoinDet

1 epoch 40.7 51.3
5 epochs 46.6 54.0

10 epochs 49.0 55.4
20 epochs 46.8 54.6

1.4 Comparison with supervised training

Lots of previous papers [1,2,3] in this field use supervised pretraining on ImageNet as a baseline pre-
training method and ignore the difference of pertaining epochs between supervised and unsupervised
methods. In this paper, to further explore the effectiveness of JoinDet, we add more finetuning epochs
to make the supervised method have similar training epochs (counting both pretraining epochs and
finetuning epochs) as JoinDet.

As shown in Tab. 4, we extend the training epochs to 200 epochs for the supervised pretraining
on PASCAL VOC and achieve 59.3 AP, which is still lower (-5.1AP) than our JoinDet. On the
relatively small dataset, PASCAL VOC, the supervised pretraining shows to be over-fitting with 200
epochs. We suggest that the performance gap between supervised pretraining and JoinDet verifies
the effectiveness of detection pre-training. In the special case where pretraining data and fine-tuning
are exactly the same in COCO, extending the training epochs for supervised pretraining results
in a comparable performance as JoinDet. However, we suggest that fine-tuning using less data or
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fewer epochs is a more common and valuable setting because it is closer to real needs and collecting
larger-scale unlabeled pretraining data through the Internet is easy and feasible.

Table 4: Compare with the supervised method using more full-data finetuning epochs.

Finetune dataset Methods Pretrain on COCO without labels Full-data Finetune AP

VOC
Supervised 0 100 59.5
Supervised 0 200 59.3
JoinDet 50 100 64.4

COCO
Supervised 0 50 44.5
Supervised 0 100 45.6
JoinDet 50 50 45.6

1.5 Combine Selective Search regions

There is an intuition that Selective Search can provide some meaningful regions using low-level cues,
however, simply introducing Selective Search regions leads to performance drops on downstream
tasks. As shown in Tab. 5 following the ablation setting in Sec. 4 in the main text, we add 30 selective
search boxes with originally generated object priors as supervision during pretraining and find that
additional selective search proposals lead to -2.5AP and -0.5AP performance drops with 10 epochs
and 25 epochs finetuning on VOC, respectively. We suggest that there are two reasons. (1) Low-level
cues lack semantic information and will introduce lots of non-object-related supervision, which is
harmful to detector pretraining when more accurate self-supervised information is presented (see in
Fig. 1). (2) JoinDet is already able to generate useful supervision for small objects and objects that
have clear boundaries to the background. We use large-scale jittering mentioned in [5] to provide
supervision for small objects.

Table 5: Incorporate Selective Search regions with object priors generated by JoinDet.

Method 10 epochs VOC 25 epochs VOC

JoinDet 49 55.4
JoinDet + Selective Search 46.5 54.8

2 Additional visualization

Fig. 1 visualizes more progressively refined object priors by JoinDet and fixed object priors by
selective search. For select search, we only visualize the top 15 object priors. JoinDet generates
object priors with fewer background regions than selective search.

3 The eigen attention map computation method K

According to [10], the eigen attention map in the vision transformer can highlight salient foregrounds
by partitioning all features fi ∈ Rc in output patch features F ∈ Rh×w×c into the background set Fb

and the foreground set Ff , where i ∈ [1, hw], and h, w, c denote the height, width, and dimension of
output patch features F , respectively. Following [10, 9], we fix the feature partition task by solving
a group partition problem on a self-similarity graph S = (V,U), where the nodes V represent all
features on F and the edges U are based on the cosine similarity between corresponding features,
which can be computed by

Ui,j =

{
1, if cos(fi, fj) ≥ τ

ϵ, otherwise
,

cos(fi, fj) =
⟨fi, fj⟩

∥fi∥2 · ∥fj∥2
,

(1)
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JoinDet Selective search(training epochs) 

Figure 1: Evolution of object priors generated by JoinDet and object priors generated by Selective
Search. We show that progressively refined object priors in JoinDet contain fewer background
regions. 4



where Ui,j denotes the edge between feature fi and feature fj , cos denotes the cosine similarity, τ
is a hyper-parameter and ϵ equals a small positive value to ensure that the graph is fully-connected.
To partition the graph S into two disjoint sets Ff and Fb, we simply remove edges connecting the
two parts. The optimal bi-partitioning of the graph S can be solved by minimizing the Ncut energy
E [9, 10]:

min
Ff ,Fb

E(Ff ,Fb) = min
Ff ,Fb

[
C(Ff ,Fb)

C(Ff ,V)
+

C(Ff ,Fb)

C(Fb,V)

]
, (2)

where C(Fb,Ff ) =
∑

u∈Fb,t∈Ff Uu,t measures the degree of similarity between two sets. By
reducing Eq. 2, maximizing the similarity within the sets and minimizing the dissimilarity between
two sets can be satisfied simultaneously [9].

Let 1 be an vector of all ones, and x be an dimensional indicator vector, xi = 1 if node i is is in Ff

and -1, otherwise. Indicating in [9], the optimization problem in Eq. 2, which is NP-complete, can be
equivalently substituted by

min
x

E(x) = min
y

yT (D− U)y
yTDy

, (3)

where D is a diagonal matrix with total connection from node i to all other nodes d(i) =
∑

j Ui,j on
its diagonal, y ∈ {1,−b} and b satisfies yTD1 = 0.

Eq. 3 is the Rayleigh quotient [6]. If y is relaxed to take on real values, Eq. 3 can be minimized by
solving

(D− U)y = λDy. (4)

Let z = D− 1
2y, we can rewrite Eq. 4 as

D− 1
2 (D− U)D− 1

2 z = λz. (5)

And the energy in 3 can be rewritten as

min
z

zTD− 1
2 (D− U)D− 1

2 z

zT z
. (6)

It can be easily proofed that z0 = D− 1
21 is an eigenvector of Eq. 5 with eigenvalue of 0, which

satisfied the constraint yTD1 = 0. As (D−U), called the Laplacian matrix, is positive semidefinite,
D− 1

2 (D− U)D− 1
2 is symmetric positive semidefinite [8]. Therefore z0 is the smallest eigenvector

of Eq. 5, and z1, the second smallest eigenvector of Eq. 5, is perpendicular to z0 [9]. According to
the Rayleigh quotient [6], z1, the second smallest eigenvector of Eq. 5, is the real valued solution to
minimize the energy in Eq. 6,

z1 = argmin
zT z0

zTD− 1
2 (D− U)D− 1

2 z

zT z
. (7)

Consequently, taking z = D− 1
2y,

y1 = argmin
yTD1=0

yT (D− U)y
yTDy

. (8)

Therefore, y1, the second smallest eigenvector of Eq. 4, is the real valued solution that achieves the
optimal partition with Ncut energy E in Eq. 2.

We then reshape the second smallest eigenvector y1 to the eigen attention map M ∈ Rh×w, which
has the same height and width with output patch features F .

4 Training Details

4.1 Pretraining

Following DETReg [1], we initialize the ResNet50 backbone of JoinDet with SwAV [2], which was
pretrained on ImageNet1K [3] for 800 epochs, and fix the backbone during pretraining. Furthermore,
a same SwAV encoder is used to extract features of object priors, which are cropped and resized
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to 128 × 128. JoinDet follows the default hyperparameter setting and training strategy used in
Deformable DETR [11], except that the object embedding loss with loss weight 1. On COCO [7],
models are trained for 50 epochs and the learning rate is decayed by a factor of 0.1 at epoch 40.
On ImageNet [3], following DETReg [1], we train models for 5 epochs. Following Deformable
DETR [11], we train our models using the Adam optimizer with a base learning rate of 2×10−4, β1 =
0.9, β2 = 0.999, and set the weight decay as 10−4. We use large scale jittering mentioned in [5] as
an additional augmentation to alleviate the scale imbalance problem in generated object priors.

4.2 Evaluation

We finetune JoinDet on COCO [7], VOC [4] to evaluate our method. When finetuning, the original
classification branch fcls and the object embedding branch is dropped. We initiate a new classification
branch using a single fully-connect layer with output dimension c, where c denotes the total categories
in the downstream detection datasets.

Full-data finetuning. For COCO, we finetune models for 50 epochs and the learning rate is decayed
by a factor of 0.1 at the 40-th epoch. For VOC, following DETReg [1], models are trained for 100
epochs with the learning rate decayed by a factor of 0.1 at the 70-th epoch.

Low-Data regimes object detection. Following DETReg [1], we finetune JoinDet with 1%, 10%
COCO training set data with 2000 epochs, 400 epochs, respectively. The base learning rate is set as
2× 10−4 and the learning rate is decayed by a factor of 0.1 at the 1400-th epoch, the 280-th epoch,
respectively.

5 Broader impact

We present a more effective general unsupervised object detection pretraining method that can jointly
generate object priors and learn to detect. Compared with supervised learning, our method eases
the burden of expansive and time-consuming manual labels and benefits from rapidly increasing
real-world data. Meanwhile, our method can promote the development on smart healthcare because it
can be directly used on medical images without labeling by expertise.

However, several potential issues should be taken into consideration when applied in real-world
scenarios. First, similar to other learning methods, there still remain concerns about interpretability
and robustness. Second, pretrained on manually collected datasets, the method might learn biased
features when given with biased datasets. Finally, like other unsupervised pretraining methods, our
method relies on extra epochs to pretrain the model, which is not efficient during pretraining, leading
to more electricity consumption.
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