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Abstract

Unsupervised pretraining methods for object detection aim to learn object discrim-
ination and localization ability from large amounts of images. Typically, recent
works design pretext tasks that supervise the detector to predict the defined object
priors. They normally leverage heuristic methods to produce object priors, e.g.,
selective search, which separates the prior generation and detector learning and
leads to sub-optimal solutions. In this work, we propose a novel object detection
pretraining framework that could generate object priors and learn detectors jointly
by generating accurate object priors from the model itself. Specifically, region
priors are extracted by attention maps from the encoder, which highlights fore-
grounds. Instance priors are the selected high-quality output bounding boxes of
the detection decoder. By assuming objects as instances in the foreground, we can
generate object priors with both region and instance priors. Moreover, our object
priors are jointly refined along with the detector optimization. With better object
priors as supervision, the model could achieve better detection capability, which in
turn promotes the object priors generation. Our method improves the competitive
approaches by +1.3 AP, +1.7 AP in 1% and 10% COCO low-data regimes object
detection.

1 Introduction

Object detection is a fundamental task in computer vision, whose goal is to predict a set of bounding
boxes and category labels for all objects of interest in the images. The success of modern detectors [4,
35, 22, 14, 27, 29, 31, 32, 41, 42] relies on the large-scale datasets with precious annotations which are
very costly and even infeasible for enormous images available in the Internet. Therefore, unsupervised
pretraining methods [12, 3] for object detection are proposed to ease the burden of these human
annotations, which enable the detectors to be fast deployed in the real world by finetuning the
pretrained model with only a few annotated images.

While various unsupervised pretraining methods, e.g., SwAW [5], BYOL [18], DetCo [51], have
been shown to learn good backbones for object detection [28, 52, 46, 37], only a few methods
are able to pretrain the detection head, which is also a key component of a complete detection
architecture [24, 20, 25]. To enable the localization of the pretrained detection head, a few recent
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Figure 1: (a) JoinDet extracts supervision from the knowledge learned by the model itself. The
self-attention highlights foregrounds and the detector outputs instance predictions. (b) During training,
object prior generation and detector optimization can mutually guide each other, leading to better
region priors and better instance priors.

methods use hand-craft methods [58, 45, 11, 1] to generate object priors on unlabeled images to
construct the pretext tasks. Specifically, UP-DETR [12] and DETReg [3] generate object priors by
randomly cropping patches and selective search [45], respectively. Then, both of them require the
detection model to learn to detect those object priors for pretraining. Although these methods bring
possibilities of pretraining detection heads, we argue that they suffer from two main drawbacks:
(1) Both random cropping and selective search can only provide limited object-related supervision.
For random cropping, it does not explicitly focus on objects. Selective search, as a hand-crafted
and heuristic box generation method, relies on low-level features of input images to generate object
priors, which is an extra time-consuming non-deep-learning process. (2) The supervision can not
be progressively refined during training. For example, the object priors of selective search are fixed
through the pretraining process, which limits the upper bound of the methods.

In this paper, we propose a novel unsupervised object detection pretraining method that can generate
object priors and learn the detector jointly. In our method, we mine the supervision (object priors)
based on the model itself, and show that the generated object priors can be jointly refined with
detection optimization. Inspired by DINO [6], the self-attention maps can generate region prior
bounding boxes, as they highlight the foreground regions (see Fig. 1(a)). Meanwhile, the output
bounding boxes of the detector can generate instance prior bounding boxes, although may be located
in the backgrounds (see Fig. 1(a)). By combining knowledge in region priors and instance priors
together, we can generate reliable object priors only from the detector model. Furthermore, the object
prior generation and detector optimization can be mutually evolved (see Fig. 1(b)). Supervised by
reliable object priors, the model can gradually learn better object localization information, producing
better region and instance priors for better object priors.

Given the object priors generated along with detector optimization, the supervision signal for the
detector learning shifts quickly at the beginning, which leads to undesirable learning instabilities.
In order to stabilize the pretraining process, both preceding and current object priors should be
considered, and the update should be implemented in a slowly progressing way. To this end, we
accomplish this regularization by designing a momentum box update strategy. Specifically, we match
the current object priors to their neighboring and proceeding priors, and implement the update as a
momentum-based average of their object prior locations.

Our contributions are three-fold. (1) We propose to mine supervision from the knowledge of the model
to be learned itself for unsupervised object detection pretraining, which can generate supervision
signals. (2) We design an unsupervised object detection pretraining method with Joint region
priors generation and Detector learning (JoinDet) which jointly generates reliable object priors and
learns object detection in a progressive way. (3) We propose a Box Smooth Module to stabilize
the pretraining process on JoinDet. Our method outperforms state-of-the-arts on low data-regime
object detection on MS COCO, and full-data finetuning on PASCAL VOC. Detailed related works
are provided in supplementary materials.
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Figure 2: JoinDet generates region priors from the transformer encoder and instance priors from the
transformer decoder. Reliable object priors can be achieved by concatenating region and instance
priors. The Box Smooth Module then smooths object priors refinement in a momentum manner to
preserve previous more accurate supervision and stabilize the pretraining process.

2 Methodology

Our goal is to mine effective supervision from the knowledge learned by the model itself for pre-
training without annotations. To this effect, we propose an unsupervised object detection pretraining
method with joint object priors generation and detector learning (JoinDet) which dynamically gener-
ates reliable object priors and learns object detection. Specifically, we first extract the eigen attention
map from the transformer to highlight foregrounds. We then generate region priors from the eigen
attention map using the Region Generation Module and choose reliable predictions as instance priors
using the Instance Generation Module. By combining region and instance priors, reliable object priors
are generated and set as the pseudo-labels for the object detection pretraining process. To stabilize
the optimization process, we further propose a Box Smooth Module to smooth the refinement of
object priors during pretraining.

During pretraining, the supervision is alternated between two steps: (1) generating reliable object
priors by combining region priors and instance priors, including Step 1-3 below. (2) optimizing the
detection model with reliable object priors (Step 4). Specifically,

Step1: Generate region priors (Sec. 2.1). At n-th epoch, given an image x, the output patch features
F of the transformer encoder E can be computed by F = E(G(x)), where G is the backbone network.
To better highlight foregrounds, we generate the eigen attention mapM withM = K(F), which is
detailed later. The region priors Pr can then be generated by the Region Generation Module.

Step2: Generate instance priors (Sec. 2.2). With the DETR-based detection frameworks, object
queries q and patch features F are fed into a transformer decoder D together to generate foreground
prediction boxes, i.e., Pn = D(F ,q). Guided by the eigen attention mapM, instance priors can be
generated by the Instance Generation Module denoted as IG, i.e., Pi

n = IG(Pn,M).

Step3: Smooth object priors refinement by the Box Smooth Module (Sec. 2.3). Reliable object priors
Rn can be generated by combining region priors Pr

n and instance priors Pi
n with Rn = Pr

n ⊕ Pi
n.

GivenRn and the last object priorsRn−1, the momentum averaged object priors are computed by
Rn ← BS(Rn,Rn−1), where BS represents the Box Smooth Module. TheR0 is initialized with
the region priors Pr

0 before pretraining the detector.

Step4: Train the model with updated supervision using set prediction loss (Sec. 2.4). Given model
predictions and updated supervision Rn, we train the transformer parameters using set prediction
loss.

2.1 Region priors generation

There are two steps of region priors generation. First, compute the eigen attention map on patch
features from the transformer encoder. Second, extract the foreground bounding boxes as region
priors.
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Generate the eigen attention map. Our main motivation follows [47, 39] is that the eigen attention
maps in the vision transformer can well highlight salient foreground objects. Specifically, given an
input image x and DETR with a backbone G, a transformer encoder E , the eigen attention mapM is
extracted from the transformer encoder by

M = K(F) = K(E(G(x))), (1)

where K represents the computation method of the eigen attention map mentioned in [47], and
F ∈ Rh×w represents output patch features from transformer encoder. The details of the eigen
attention map computation method K are elaborated in supplementary materials.

Extract region priors. As foregrounds are highlighted in the eigen attention map, the bounding
boxes of foreground regions can be extracted as region priors using Region Generation Module
RG. Concretely,M is firstly partitioned into background parts (denoted by 0) and foreground parts
(denoted by 1) by a bi-partition mask m:

mij =

{
1, ifMij > α,

0, otherwise,
(2)

where i, j represent the position index, α = 1
hw

∑h
i=1

∑w
j=1Mij is the average score ofM. Region

priors Pr are then generated by computing the minimum bounding rectangles of all connected
foreground regions.

In addition, at the beginning of pretraining, to generate the initial supervisionR0, we compute Pr
0

using the unsupervised pretrained backbone G by

R0 = Pr
0 = RG(K(G(x))). (3)

Although region priors represent highlighted foregrounds in the eigen attention map, they do not
divide foregrounds into foreground instances, and therefore instance priors should be mined.

2.2 Instance priors generation

The foreground predictions from the box prediction branch of DETR provide instance information.
With object queries q and output patch features F passing to transformer decoderD, DETR generates
a set of box predictions P by

P = D(F ,q)
= {Pj = (b̂j , p̂j)}Nj=1,

(4)

where N denotes the number of output predictions and b̂j , p̂j denotes the predicted bounding box, and
logits in foreground-background predictions, respectively. The prediction score ŝj can be computed
by ŝj = Softmax(p̂j). As the model only predicts background (class label 0) and foreground (class
label 1), we only reserve foreground predictions Pf .

Pf = {(b̂j , ŝj)| argmax p̂j = 1}Nj=1. (5)

Although foreground predictions can define instances, some of them might correspond to the back-
ground, which should be removed by the Instance Generation Module to improve reliability.

Instance Generation Module IG, in which foreground predictions Pf and the eigen attention map
M interact together to eliminate background predictions and generate instance priors Pi. Specifically,
boxes with low prediction scores in Pf are removed with

Pi = IG(Pf ,M) = {Pf
j |P

f
j ∈ P

f , j ∈ [1, N ], Nf/Nt ≥ t}, (6)

where Pf
j is the element in Pf , N is the number of elements in the Pf , Nf is the number of

foreground pixels in the eigen attention mapM bounded by Pf
j , Nt is the number of total pixels

inM bounded by Pf
j . Here, t is a threshold set to 0.5. Guided by highlighted foregrounds inM,

background predictions in Pf can be removed. The remaining predictions are treated as reliable
instance priors Pi.
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2.3 Box Smooth Module

Given generated region priors Pr and instance priors Pi, reliable object priorsR can therefore be
generated by

R = Pr ⊕ Pi, (7)
where ⊕ denotes the concatenation operation. We use reliable object priors R to supervise the
pretraining process.

As region priors Pr and instance priors Pi are dynamically updated along with network optimization,
the fast evolution of reliable object priors R may lead to the instability of the training process.
Motivated by Weight Box Fusion [40], we propose a Box Smooth Module to overcome these problems,
which preserves accurate object priors from previous supervision and reduces the perturbation using
a momentum update strategy. Specifically, given current object priors Rn, together with previous
supervisionRn−1, we cluster all boxes inRn andRn−1 using IoU metric to generate K box clusters.
We recompute the box coordinates and scores using all boxes in the k-th cluster to generate a new
box bk. The supervisionRn = {(bk, sk)}Kk=1 is then updated in a momentum strategy by

bk =

∑T
i=1,bi∈B mssibi +

∑U
j=1,bj∈R (1−ms)sjbj∑T

i=1 m
ssi +

∑U
j=1 (1−ms)sj

, sk =

∑T
i=1 si +

∑U
i=1 sj

T + U
, (8)

where k-th cluster contains T boxes in Rn−1 and U boxes in Rn, and ms ∈ [0, 1] represents the
momentum coefficient to adjust the influence of previous supervisionRn−1 and current object priors
Rn. ms is empirically set as 0.45. When ms is set to 1, the supervision will not be updated. When
ms is set to 0, the supervision will be directly changed to current object priorsRn. When initializing
the pretraining (n = 0), we setR0 = Pr

0 as the initial supervision. With such a design, we smooth
the refinement of object priors to stabilize the training process.

Discussion. As no labels are used to supervise the model, generated region priors and instance priors
have relatively large variations between training epochs. The Box Smooth Module is a critical design
in the framework, which suppresses inaccurate previous supervision and slows down the shifting
speed of supervision to guarantee stable optimization of the model. Note that Weighted Box Smooth
is just a simple implementation to refine the supervision in a momentum update strategy, which is
different from its original use to ensemble boxes from different object detection models.

2.4 Objective function

Here, we describe the objective function of JoinDet during pretraining. Following DETReg [3],
JoinDet has three prediction heads: fcls which predicts the class (foreground or background), fbox
which predicts bounding boxes, and femb which reconstructs features of the predicted regions.
Assume K boxes {(bk)}Kk=1 left after the Box Smooth Module, use a pretrained SWAV [5] model
to extract features Z = {zk}Kk=1 of box regions, assign class label ck = 1, and let targets y =
{yk = (ck,bk, zk)}Kk=1. Let {vj}Nj=1 denote N query embedding outputted by transformer decoder,
the JoinDet outputs can be denoted as: p̂j = fcls(vj), b̂j = fbox(vj), ẑj = femb(vj). The model
predictions can be defined as ŷ = {ŷj = (p̂j , b̂j , ẑj)}Nj=1.

Following DETR [4], we use Hungarian bipartite matching algorithm [26] to match yj and ŷj by
finding the permutation σ that minimizes the optimal matching cost between yj and ŷj :

σ = argmin
σ∈

∑
N

N∑
j

Lmatch(yj , ŷσ(j)), (9)

where Lmatch is the pairwise matching cost matrix. After finding the optimal σ, the set prediction
loss is defined as:

LHungarian(yj , ŷj) =

N∑
j=1

[λcLcls(cj , p̂σ̂(j)) + 1ci ̸=∅λbLbox(bj , b̂σ̂(j)) + λeLemb(zj , ẑσ̂(j))],

(10)
whereLcls is the classification loss which can be implemented via the cross-entropy loss or Focal Loss,
Lbox is based on L1 loss and GIoU Loss [36]. Following DETReg, we set Lemb as Lemb(zj , ẑσ̂(j)) =
∥zj − ẑσ̂(j)∥1.
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Table 1: Low-Data regimes object detection results. Finetuning using 1% and 10% of the labels data
on COCO. Following DETReg [3], all models are pretrained for 50 epochs on COCO without labels
and finetuned using 1% and 10% labeled data. Results on val2017 are reported.

Pretraining COCO 1% COCO 10%

Supervised 11.31±0.3 26.34±0.1
SwAV [5] 11.79±0.3 27.79±0.2
ReSim [50] 11.07±0.4 26.56±0.3
DETReg [3] 14.58±0.3 29.12±0.2
JoinDet 15.89±0.2 30.87±0.1

3 Experiment

3.1 Implementation details

Architecture. We choose Deformable-DETR [57] as the baseline model for its high accuracy and fast
convergence. Following DETReg [3], in prediction heads, fbox and femb are multi-layer perceptrons
(MLPs) with 2 hidden layers of size 256 followed by a ReLU [34] layer. The output dimensions of
fbox and femb are 4 and 256, respectively. We use a single fully-connect layer with output dimension
2 as fcls.

Datasets. For a fair comparison, we pretrain our JoinDet on ImageNet-1K [13], ImageNet-100
and MS COCO [30] without labels, and evaluate our method on MS COCO and PASCAL VOC.
ImageNet-1K contains 1.28M object-centric images with 1000 class categories. Similar to other
works [38, 21, 56], we use a subset of ImageNet-1K that contains 125K images and 100 classes as
ImageNet-100. MS COCO is a popular object detection dataset that contains 121K scene images
with 80 object categories labeled with bounding boxes. PASCAL VOC contains 20K images with 21
object categories.

Training. Following DETReg, we initialize the ResNet50 [23] backbone of JoinDet with SwAV [5],
which is fixed throughout the training stage. We pretrain JoinDet for 5 and 50 epochs on ImageNet-1K
and MS COCO, respectively, where the pretraining schedules are set the same as DETReg. We update
object priors every 1 and 10 epochs for ImagNet-1K and MS COCO, respectively. As our method
relies on the self-attention map in the transformer encoder, most generated object priors focus on
big objects, so we use large-scale jittering mentioned in [17] to alleviate the imbalance problem.
More implementation details and experimental results are provided in supplementary materials. All
experiments are implemented on 16 NVIDIA V100 GPUs.

3.2 Comparison with State-of-the-art methods

Low-Data regimes object detection. To evaluate the effectiveness of JoinDet, we conduct exper-
iments in a low-data regimes object detection setting on COCO, where only 1% or 10% amounts
of COCO labeled data are used during finetuning. The experimental results are presented in Tab. 1.
Firstly, our method outperforms existing backbone pretraining methods, with a significant perfor-
mance gain of 4.68 AP, and 4.53 AP over the supervised pretraining baseline on 1% and 10% COCO
data, respectively. Second, when compared with DETReg, which also fully pretrains the model, our
method remains 1.31 AP, and 1.75 AP performance gain on 1% and 10% COCO data, respectively,
showing the effectiveness of progressively refined object priors.

Full-data finetuning. To further evaluate JoinDet, we finetune it on two datasets: MS COCO and
PASCAL VOC. On MS COCO, following previous works [57, 3], we finetune JoinDet using a similar
training schedule on MS COCO train2017 and evaluate on val2017. On PASCAL VOC, we finetune
on trainval07 + 12 and evaluate on test07. Comparison with state-of-the art methods is presented
in Tab. 2 and Tab. 3. Tab. 2 shows that JoinDet achieves higher performance on VOC. Concretely,
JoinDet outperforms DETReg with +0.2 AP and +1.0 AP when pretraining on ImageNet-1K and
COCO, respectively. When using COCO as the pretraining dataset, JoinDet shows considerable
performance gain. We suggest that, as JoinDet is based on mining object priors on the pretraining
dataset, more diverse objects contained in COCO provide more diverse supervision on JoinDet, which
further boosts its performance when transferred to downstream datasets. Second, JoinDet achieves
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Table 2: Object detection results when finetuned on
PASCAL VOC. All models are based on Deformable
DETR [57].

Pretraining Pretrain dataset Epochs AP AP50 AP75

Supervised ImageNet-1K 100 59.5 82.6 65.6
SwAV [5] ImageNet-1K 100 61.0 83.0 68.1
DETReg [3] ImageNet-1K 100 63.5 83.3 70.3
JoinDet ImageNet-1K 100 63.7 83.8 70.7
DETReg [3] COCO 100 63.4 83.7 70.8
JoinDet COCO 100 64.4 84.0 71.3

Table 3: Object detection results when fine-
tuned on MS COCO. All models are based
on Deformable DETR [57].

Pretraining Epochs AP AP50 AP75

Supervised 50 44.5 63.6 48.7
SwAV [3] 50 45.2 64.0 49.5
UP-DETR [12] 50 44.7 63.7 48.6
DETReg [3] 50 45.5 64.1 49.9
JoinDet 50 45.6 64.3 49.8
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Figure 3: AP50 (COCO style) learning curves
with DETReg and JoinDet on VOC when finetun-
ing with small epochs.

10 20 30 40
Epochs

48

52

56

60

64

  A
P5

0 
on

 C
OC

O 
va

l2
01

7 DETReg
JoinDet

Figure 4: AP50 (COCO style) learning curves
with DETReg and JoinDet on COCO when fine-
tuning with small epochs.

+0.4 AP performance gain on SwAV and comparable performance with DETReg on full-data COCO
finetuning. Second, as shown in Fig. 3 and Fig. 4, JoinDet is finetuning-efficient, which shows
considerable improvement when finetuning with small epochs.

Class agnostic object proposal evaluation. To demonstrate that JoinDet learns better to detect
objects without labels, following DETReg, we examine the class agnostic performance of JoinDet
on Tab. 4. First, JoinDet outperforms other pretraining approaches, indicating that using progres-
sive region priors improves the localization ability. Second, pretraining on COCO shows a larger
performance gain of +1.7 AP, which shows our method benefits more on scene images with various
foreground objects.

4 Ablation

Default Settings. We implement ablations on single-scale deformable DETR. JoinDet is unsupervised
pretrained on COCO for 50 epochs with a learning rate drop at epoch 40. The supervision mined
from the model outputs is updated every 10 epochs. The results in this section are evaluated by
full-data finetuning on PASCAL VOC with 25 epochs. We train 3 different models with different
random seeds and report the mean result of AP.

Select effective object priors. To assess the effectiveness of joint usage of region priors and
instance priors, we compare the performance of JoinDet variants using different object priors: (a) box
predictions P , (b) initial region priors Pr

0 , (c) region priors Pr, (d) instance priors Pi , (e) region
priors Pr + instance priors Pi. As shown in Tab. 5, using both region and instance priors (Tab. 5(e))
outperforms DETReg by +3.0 AP, +1.5 AP with 5 epochs and 25 epochs finetuning, respectively,
which verifies the effectiveness of joint usage of two priors generated by the model. Second, when
region priors or instance priors are removed, we observe a -0.6, -1.9 AP performance drop with 25
epochs finetuning, respectively, which suggests that region and instance priors can mutually benefit
each other. Third, when no region priors are used to initialize the pretraining, directly using the
box predictions of the model can only generate unreliable object priors for supervision, leading to a
significant performance drop of -13.4 AP with 25 epochs finetuning.
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Table 4: Class agnostic object proposal evaluation on MS COCO val2017. Models are pretrained on
ImagNet-100 and COCO for 50 epochs. The top 100 proposals are evaluated. Compared with other
methods, the higher Average Recall of JoinDet shows that it detects more objects without supervision
from the ground truth.

Method Pretrain AP AP50 AP75 AR@1 AR@10 AR@100

Selective Search - 0.2 0.5 0.1 0.2 1.5 10.9
UP-DETR [12] ImageNet-100 0.0 0.0 0.0 0.0 0.0 0.4
DETReg [3] ImageNet-100 1.0 3.1 0.6 0.6 3.6 12.7
JoinDet ImageNet-100 2.5 5.3 1.8 2.3 6.7 13.9
DETReg [3] COCO 1.3 3.0 1.0 0.6 3.5 11.7
JoinDet COCO 3.0 7.4 2.3 2.3 8.8 17.4

Table 5: Pretrain JoinDet with different object priors. All experiments are pretrained using single-
scale Deformable DETR on COCO for 50 epochs and finetuned on VOC.

Method Object priorsR from Pr from Update 10 epochs 25 epochs

DETReg Selective search - 46.0 53.9
(a) P - ✓ 38.4 42.1
(b) Pr

0 Backbone 46.5 53.6
(c) Pr Encoder ✓ 46.7 53.5
(d) Pi Encoder ✓ 48.1 54.8
(e) Pr ⊕ Pi Encoder ✓ 49.0 55.4

Smooth the refinement of object priors. To demonstrate the effectiveness of the proposed Box
Smooth Module, we conduct two other updating methods, including directly changing and updating
by NMS (see Fig. 5). Directly changing, which updates the supervision without considering previous
generated object priors, leads to a fast change on the supervision signal. When updating by NMS,
object priors are only updated when they have a large IoU with current object priors, making a
relatively slow updating speed. As summarized in Tab. 6, noticeable performance drops are observed
without the Box Smooth Module, especially when the updating method is altered by directly changing,
which verifies the effectiveness of the Box Smooth Module. The large performance gaps are due
to the facts the: (1) Directly changing neglects useful object priors in previous supervision, which
makes object-related object priors appear and disappear during pretraining, leading to an unstable
training process; (2) Although updating by NMS avoids the disappearance of reliable object priors
in previous supervision, it fails to refine the box coordinates in a slow and smooth way. The quick
shifting of the supervision signal leads to undesirable learning instabilities.

Augmentations during pretraining. As our method mines object priors on the self-attention map
in the transformer encoder, most generated priors focus on big objects. To assess the importance
of small object priors during pretraining, we ablate on different augmentations during pretraining.
We use the initial supervisionR0, which bounds the highlighted regions in the eigen attention map
generated by the backbone as fixed supervision. All experiments are pretrained over 50 epochs on
COCO with Deformable DETR and evaluated on PASCAL VOC with 100 epochs finetuning. It can
be observed in Tab. 7 that both scale jittering and copy & paste improve the pretraining with a large
margin, indicating the importance of adding small object priors when mining supervision from the
self-attention map.

5 Visualization

To qualitatively evaluate the generated object priors in our method, we visualize the evolution of the
eigen attention map and generated object priors during pretraining, and compare them with that in a
supervised trained Deformable DETR in Fig. 6. First, generated object priors are progressively refined
to objects in images during pretraining. Second, supervised by updating object priors, foregrounds in
the eigen attention map can be further highlighted (see Fig. 6(a)). Third, with the help of progressive
instance priors, the generated object priors can still become object-related and similar to ground truth
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Directly change
Previous reliable object priors ℛ𝑛𝑛−1 Current reliable object priors ℛ𝑛𝑛

Update by NMS Box Smooth ModuleGenerated boxes

Figure 5: Qualitative samples for different object priors updating methods. Directly changing updates
the supervision without considering previous object priors. Updating by NMS reserves previous
object priors which have small IoUs with current object priors. Box Smooth Module suppresses
inaccurate previous object priors and slows down the shifting speed of object priors.

Table 6: VOC finetuning results of different object
priors updating methods during pretraining. All meth-
ods are pretrained on COCO without labels.

Method Change 10 epochs 25 epochs

Directly change Fast 48.0 53.0
Update by NMS Mid 48.3 54.5
Box Smooth Module Slow 49.0 55.4

Table 7: VOC finetuning results of differ-
ent augmentations during pretraining. All
methods are pretrained on COCO without
labels.

Method AP

Using the initial supervisionR0 62.3
+scale jittering [17] 63.4
+copy & paste [17] with small boxes 63.5

even when it is hard for the eigen attention map to be further refined, e.g. when foreground objects
fill images (Fig. 6(b)) or objects appear in a simple background (Fig. 6(c)). In the former condition,
our method highlights all objects while the supervised method focuses on labeled people. In the latter
condition, foregrounds and backgrounds have been well divided at the beginning epochs.

6 Related Works

Unsupervised pretraining for backbone. Recent unsupervised pretraining methods, which rely on
pretext tasks to learn visual representations [9, 21, 18, 7, 10, 8, 44, 49, 33, 54, 55, 43], have shown
considerable performance on transfer learning tasks, outperforming their supervised counterparts.
However, compared with considerable performance gains on classification-related tasks, the improve-
ment on dense-prediction tasks [30, 16] is limited. To this end, a growing number of works explore
pretext tasks for object detection and instance segmentation. DenseCL [46] and PixPro [53] contrast
pixel feature on the same physical location under different views to learn pixel-level representations.
DetCo [51] exploits supervision on features from different stages of the backbone and from global
and local patches to learn consistent representations on image-level and patch-level. [2] proposes
point-level region contrast, which enables the model to learn at the point-level to help localization,
and at the region-level to help holistic object recognition. Despite the good performance, all these
works only focus on pretraining the backbone of object detectors, neglecting the detector heads.
When these methods are transferred to object detection, the detector heads are initialized from scratch
and do not benefit from pretraining, which limits their performance on object detection. In contrast,
our JoinDet, which utilizes object priors generated by the model itself as supervision, pretrains the
entire model to promote detector learning.

Unsupervised pretraining for object detector. Pretraining the backbone with a pretext task for
dense-prediction tasks leaves untrained detection heads which are also a core component when
transferring to object detection [24]. Few works attempt to remedy this problem by pretraining
the entire detector with various unsupervised pretext tasks. SoCo [48] utilizes selective search to
generate object priors and perform contrastive learning on object-level features from the detector head.
UP-DETR [12] and DETReg [3] pretrain the detection heads of DETR [4] by forcing them to predict
object priors generated by randomly cropping and selective search, respectively. However, randomly
cropping hardly provides any effective object prior, and selective search is a heuristic method that
is time-consuming, independent from the pretraining process. In contrast to these methods, our
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Figure 6: Visualization results of generated object priors and the eigen attention map of JoinDet on
COCO. In (a), we show that generated object priors and the eigen attention maps can be progressively
and mutually refined. In (b) and (c), generated object priors are still refined when it is hard for the
eigen attention maps to be further refined during the pretraining process.

proposed JoinDet jointly generates object priors and learns detection, which can gradually update the
object priors with learned and improved ones for better supervision during pretraining.

Attention in unsupervised pretraining as supervision. NNCLR [15] and DINO [6] show that the
attention maps of the visual transformer can generate semantic segmentation masks even though the
model is pretrained without labels. This suggests that self-learned attention can provide effective
supervision for dense-prediction tasks. STEGO [19] utilizes off-the-shelf pretrained DINO to extract
cross-image feature correspondence (cross-image attention) as supervision to distill segmentation
features and train an unsupervised segmentation model. Different from STEGO, our JoinDet exploits
the self-attention maps in the transformer encoder to generate multiple object priors as supervision
during training. We also show that the self-attention maps can be jointly refined during training to
generate progressive object priors for better supervision.

7 Conclusion

In this paper, we mine the information from the knowledge learned by the object detection model
itself to pretrain the model without labels. We propose an unsupervised object detection pretraining
method which can jointly generate reliable object priors and learn to detect objects. The core is
at generating region priors from the transformer encoder and instance priors from the transformer
decoder to achieve reliable object priors for supervision. With careful design, the model can gradually
learn better object localization capability, producing better object priors to optimize itself. Our
method shows considerable improvements in low-data regimes object detection and fast convergence
on full-data finetuning. However, there still exists a large gap from supervised training on class
agnostic object proposal evaluation, which calls for further studies.
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