
Learning Optimal Flows for
Non-Equilibrium Importance Sampling

Yu Cao
Courant Institute of Mathematical Sciences, New York University

yucaoyc@outlook.com

Eric Vanden-Eijnden
Courant Institute of Mathematical Sciences, New York University

eve2@cims.nyu.edu

Abstract

Many applications in computational sciences and statistical inference require the
computation of expectations with respect to complex high-dimensional distributions
with unknown normalization constants, as well as the estimation of these constants.
Here we develop a method to perform these calculations based on generating
samples from a simple base distribution, transporting them by the flow generated
by a velocity field, and performing averages along these flowlines. This non-
equilibrium importance sampling (NEIS) strategy is straightforward to implement
and can be used for calculations with arbitrary target distributions. On the theory
side, we discuss how to tailor the velocity field to the target and establish general
conditions under which the proposed estimator is a perfect estimator with zero-
variance. We also draw connections between NEIS and approaches based on
mapping a base distribution onto a target via a transport map. On the computational
side, we show how to use deep learning to represent the velocity field by a neural
network and train it towards the zero variance optimum. These results are illustrated
numerically on benchmark examples (with dimension up to 10), where after training
the velocity field, the variance of the NEIS estimator is reduced by up to 6 orders
of magnitude than that of a vanilla estimator. We also compare the performances
of NEIS with those of Neal’s annealed importance sampling (AIS).

1 Introduction

Given a potential function U1 : Ω → R on the domain Ω ⊆ Rd, the main goal of this paper is to
evaluate

Z1 :=

∫
Ω

e−U1(x) dx. (1)

The calculations of such integrals arise in many applications from several scientific fields. For instance,
Z1 is known as the partition function in statistical physics [21], where it is used to characterize the
thermodynamic properties of a system with energy U1, and as the evidence in Bayesian statistics,
where it is used for model selection [12].

When the dimension d of the domain Ω is large, standard numerical quadrature methods are inappli-
cable to (1) and the method of choice to estimate Z1 is Monte-Carlo sampling [22, 8]. This requires
expressing Z1 as an expectation, which can be done, e.g., by realizing that

Z1 = E0

[
e−U1/ρ0

]
, (2)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

where E0 denotes the expectation with respect to the probability density function ρ0 > 0. If ρ0 is
both known (i.e., we can evaluate it pointwise in Ω, normalization factor included) and simple to
sample from, we can build an estimator for Z1 by replacing the expectation on the right hand side
of (2) by the empirical average of e−U1/ρ0 over samples drawn from ρ0. Unfortunately, finding a
density ρ0 that has the two properties above is hard: unless ρ0 is well-adapted to e−U1 , the estimator
based on (2) is terrible in general, with a standard deviation that is typically much larger than its mean
or even infinite. A similar issue arises if we want to estimate the expectation E0f of some function
f : Ω → R, and the two problems are in fact connected when f > 0, since the second reduces to (2)
for U1 = − log(fρ0).

These difficulties have prompted the development of importance sampling strategies [14] whose aim
is to produce estimators with a reasonably low variance for Z1 or E0f . These include for example
umbrella sampling [43, 41], replica exchange (aka parallel tempering) [14, 23], nested sampling [37,
38], in which the estimation of Z1 is factorized into the calculation of several expectations of the
type (2), but with better properties, that can then be recombined using thermodynamic integration [17]
or Bennett acceptance ratio method [6].

Complementary to these equilibrium techniques, non-equilibrium sampling strategies have also been
introduced for the calculation of (1). For example, Neal’s annealed importance sampling (AIS) [26]
based on the Jarzynski equality [15, 16, 1] calculates Z1 using properly weighted averages over
sequences of states evolving from samples from ρ0, without requiring that the kernel used to generate
these states be in detailed-balance with respect to either ρ0, or ρ1 := e−U1/Z1, or any density
interpolating between these two. Instead, the weight factors are based on the probability distribution
of the sequence of states in the path space. Other non-equilibrium sampling strategies in this vein
include bridge and path sampling [13], and sequential Monte Carlo (SMC) sampling [24, 2].

In this paper, we analyze another non-equilibrium importance sampling (NEIS) method, originally
introduced in [33]. NEIS is based on generating samples from a simple base density ρ0, then
propagating them forward and backward in time along the flowlines of a velocity field, and computing
averages along these trajectories—the basic idea of the method is to use the flow induced by this
velocity field to sweep samples from ρ0 through regions in Ω that contribute most to the expectation.
As shown in [33] and recalled below, this procedure leads to consistent estimators for the calculation
of Z1 or E0f via a generalization of (2). One advantage of the method, which is a rare feature among
importance sampling strategies, is that it leads to estimators that always have lower variance than
the vanilla estimator based on (2) [33]. The question we investigate in this paper is how low their
variance can be made, both in theory and in practice. Our main contributions are:

• Under mild assumptions on U1 and ρ0, we show that if the NEIS velocity field is the gradient of a
potential that satisfies a Poisson equation, the NEIS estimator for Z1 has zero variance.

• Under the same assumptions, we show that this optimal flow can be used to construct a perfect
transport map from ρ0 to ρ1. This allows us to compare NEIS with importance sampling strategies
involving transport maps like normalizing flows (NF) that have recently gained popularity [32, 19,
30], and highlight some potential advantages of the former over the latter.

• On the practical side, we derive variational problems for the optimal velocity field in NEIS, and
show how to solve these problems by approximating the velocity by a neural network and optimizing
its parameters using deep learning training strategies, similar to what is done with neural ODE [9].

• We illustrate the feasibility and usefulness of this approach by testing it on numerical examples.
First we consider Gaussian mixtures in up to 10 dimensions. In this context, we show that training
the velocity used in NEIS allows to reduce the variance of a vanilla estimator using a standard
Gaussian distribution as ρ0 by up to 6 orders of magnitude. Second we study Neal’s 10-dimensional
funnel distribution [27, 2], for which the variance of the vanilla importance sampling method
is infinity; training a linear dynamics with 2 parameters in NEIS can lead to an estimator with
more accurate estimate of Z1. In these examples we also show that after training, NEIS leads to
estimators with lower variance than AIS [26].

Related works. The idea of transporting samples from ρ0 to lower the variance of the vanilla
estimator based on (2) is also at the core of importance sampling strategies using normalizing flows
(NF) [40, 39, 32, 19, 30, 46, 45, 29, 25]. The type of transport used in NF-based method is however
different in nature from the one used in NEIS. With NF, one tries to construct a map that transforms
each sample from ρ0 into a sample from the target ρ1 = e−U1/Z1. In contrast, NEIS uses samples

2

from ρ0 as initial conditions to generate trajectories, and uses the data along these entire trajectories
to build an estimator. Intuitively, this means that samples likely on ρ0 must become likely on ρ1
sometime along these trajectories rather than at a given time specified beforehand, which is easier to
enforce.

NEIS bears similarities with Neal’s AIS [26], except that in NEIS the sampling is done once from
ρ0 to generate deterministic trajectories to gather data for the estimator, whereas AIS uses random
trajectories. There are some methods based on AIS that optimize the transition kernel: for instance,
stochastic normalizing flows (SNF) proposed in [46] incorporate NF between annealing steps; and
annealed flow transport (AFT) in [2] combines NF with the sequential Monte Carlo method to
provide optimized flow transport. These approaches require learning several maps along the annealed
transition, whereas the NEIS herein only needs to learn a single flow dynamics.

A time-discrete version of NEIS, termed NEO, was proposed in [42]. The current implementation
of NEO iterates on a map that needs to be prescribed beforehand, but this map could perhaps be
optimized using a strategy similar to the one proposed here.

From a practical standpoint, the idea of optimizing the velocity field in NEIS using a neural network
approximation for this field can be viewed as an application of neural ODEs [9] that uses the variance
of the NEIS estimator as the objective function to minimize. The nature of this objective poses
specific challenges in the training procedure, which we investigate here.

Notations. For symmetry, we denote ρ0(x) = e−U0(x) with U0 = − log ρ0 : Ω → R and
Z0 =

∫
Ω
e−U0(x) dx = 1. We denote a d-dimensional vector filled with zeros as 0d and the d× d

identity matrix as Id. ⟨·, ·⟩ is the Euclidean inner product in Rd. We assume that the domain Ω is
either an open and connected subset of Rd with smooth boundary or a d-dimensional torus (without
boundary). We denote by N (µ,Σ) the multivariate Gaussian density with mean µ and covariance
matrix Σ. For two functions f, g : D → R where D is a domain of interest, the notation f ≲ g means
that there exists a constant C > 0 such that f(x) ≤ Cg(x) for any x ∈ D. Suppose T : Ω → Rd

is a map and ρ is a distribution, then the pushforward distribution of ρ by the map T is denoted as
T#ρ. The notation |·| is the usual ℓ2 norm for vectors and ∥·∥ is the matrix norm or functional norm.

2 Flow-based NEIS method

Here we recall the main ingredients of the non-equilibrium importance sampling (NEIS) method
proposed in [33]. Let b : Ω → Rd be a velocity field which we assume belongs to the vector space

B :=
{
b ∈ C∞(Ω,Rd

) ∣∣∣ b · n|∂Ω = 0, sup
x∈Ω

|∇b(x)| <∞
}
, (3)

where n is the normal vector at the boundary ∂Ω. Define the associated flow map Xt : Ω → Ω via

d

dt
Xt(x) = b (Xt(x)) , X0(x) = x, (4)

and let Jt(x) be the Jacobian of this map:

Jt(x) := |det (∇xXt(x))| ≡ exp

(∫ t

0

∇ · b (Xs(x)) ds

)
. (5)

Finally, let us denote

F (k)
t (x) := e−Uk(Xt(x))Jt(x) (6)

for k ∈ {0, 1}, x ∈ Ω and t ∈ R. NEIS is based on the following result, proven in Appendix B.1:
Proposition 2.1. If b ∈ B, then for any −∞ < t− < t+ <∞, we have

Z1 = E0At−,t+ , (7)

where

At−,t+(x) :=

∫ t+

t−

F (1)
t (x)∫ t−t−

t−t+
F (0)

s (x) ds
dt. (8)

3

Figure 1: Contour plot of V and flowlines of b = ∇V , where V solves the Poisson’s equation (11)
with D = 1, assuming that ρ0 = 1 and ρ1 is a mixture density with 3 modes; see (54). With this
b = ∇V , we have A(x) = Z1 for almost all x ∈ [0, 1]2.

In addition, if

lim
t−→ −∞
t+→∞

At−,t+(x) = A(x) :=

∫
R F (1)

t (x) dt∫
R F (0)

t (x) dt
(9)

exists for almost all x ∼ ρ0, then
Z1 = E0A. (10)

When b = 0d, or t− ↑ 0 and t+ ↓ 0, (7) reduces to (2). The aim, however, is to choose b so that the
estimator based on (7) has a lower variance than the one based (2): we will show below that this can
indeed be done. For now, note that Jensen’s inequality implies that an estimator based on (10) for
any b has lower variance than the one based (2); see [33] or Proposition H.3 below for details.

Note also that, if one allows the magnitude of the flow b to be arbitrarily large, the finite-time NEIS
(8) will behave like the infinite-time NEIS (9); such a relation will be discussed and elaborated in
Appendix B.4.

Finally, note that the estimator (10) based on (9) is invariant with respect to the parameterization of
the flowlines generated by the dynamics b, as shown by the following result proved in Appendix B.2:
Proposition 2.2 (An invariance property). Suppose b, αb ∈ B, where α ∈ C∞(Ω,R) satisfies
infx∈Ω α(x) > 0. Then the fields b and αb generate the same flowlines, and Ab = Aαb where Ab

and Aαb are the function defined in (9) using b and αb, respectively.

3 Optimal NEIS

The NEIS estimator for (10) is unbiased no matter what b is. However, its performance relies on
the choice of b. Therefore, a natural question is to find the field b that achieves the largest variance
reduction. The next result shows that an optimal b exists that leads to a zero-variance estimator:
Proposition 3.1 (Existence of zero-variance dynamics). Assume that Ω = [0, 1]d is a torus and
U0, U1 ∈ C∞(Ω,R). Let D : Ω → (0,∞) be some smooth positive function with infx∈Ω D(x) > 0,
and suppose that V ∈ C∞(Ω) solves the following Poisson’s equation on Ω

∇ · (D∇V) = ρ1 − ρ0, with
∫
Ω

V (x) dx = 0. (11)

If the solution V is a Morse function, then b = ∇V is a zero-variance velocity field: that is, if we use
it to define (9), we have∫

R
ρ0(Xs(x))Js(x) ds =

∫
R
ρ1(Xs(x))Js(x) ds, for almost all x ∼ ρ0, (12)

4

and as a result
A(x) = Z1 for almost all x ∼ ρ0. (13)

This proposition is proven in Appendix E, where we also make a connection between (11) and
Beckmann’s transportation problem. We stress that the optimal b specified in Proposition 3.1 is
not unique (see Proposition E.9): however, we show below in Proposition 4.1 that, under certain
conditions, all local minima of the variance (viewed as a functional of b) are global minima. We also
note that the assumption that the solution is a Morse function is mostly a technicality, as discussed in
Appendix E.3. Similarly, we consider the torus in Proposition 3.1 for simplicity mainly; we expect
that the proposition will hold in general when Ω has compact closure or even when Ω = Rd, see
Appendix E for examples including that of Gaussian mixture distributions.

For illustration, the contour plot of V and the flowlines of b = ∇V are shown in Figure 1 in a simple
example in a two-dimensional torus where ρ0 = 1 and ρ1 is a mixture density with 3 modes; their
explicit expressions are given in (54); in this example, we solved (11) numerically with D = 1, see
Appendix E.5 for more details. Some other examples where the zero-variance dynamics is explicit
are discussed in Appendix F.

Connection to transport maps and normalizing flows. The zero-variance dynamics provides a
transport map T from ρ0 to ρ1, as shown in:
Proposition 3.2 (Existence of a perfect generator). Suppose D = 1 for simplicity. Under the
same assumption as in Proposition 3.1, let V be the Morse function solving (11) and b = ∇V
the associated zero-variance dynamics. Then there exists a continuously differentiable function κ
(defined almost everywhere on Ω) such that∫ 0

−∞
ρ0(Xs(x))Js(x) ds =

∫ κ(x)

−∞
ρ1(Xs(x))Js(x) ds. (14)

Furthermore, the map T (x) := Xκ(x)(x) is a transport map from ρ0 to ρ1, i.e., T#ρ0 = ρ1.

The proof is given in Appendix G.1. Note that we consider again b = ∇V on the torus for technical
simplicity: the statement of the proposition should hold in general for a zero-variance dynamics
b. The solution of (14) is particularly simple in one-dimension, where we can take b(x) = 1, and
straightforwardly verify that κ(x) = T (x)− x with

T (x) = F−1
1 (F0(x)) where Fi(x) =

∫ x

−∞
ρi(y) dy, i = 0, 1. (15)

We also illustrate the statement of Proposition 3.2 via numerical examples in Appendix G.2.

To avoid confusion, we stress that we will not use the transport map T of Proposition 3.2 in the
examples below. Indeed, using this map would require identifying κ, which introduces an unnecessary
additional calculation which we can avoid using the NEIS estimator directly. In addition, the NEIS
estimator will likely have better properties than those based on transport maps, as we can think of
NEIS as using a time-parameterized family of transport maps rather than a single one. In particular,
the variance of the NEIS estimator will be small if samples likely on ρ0 become likely on ρ1 sometime
along the NEIS trajectories, rather than at the same fixed time for all samples. The former seems easier
to fulfill than the latter. For example, in one-dimension, the NEIS estimator has zero variance for any
b bounded away from zero, whereas building a transport map from ρ0 to ρ1 is already nontrivial in
that simple case since it requires solving (15).

4 Variational formulations

The Poisson equation (11) admits a variational formulation:

min
V

∫
Ω

1
2 |∇V |2D + V (ρ1 − ρ0). (16)

If D is chosen to be a probability density function (for example D = ρ0 or D = 1
2 (ρ1 + ρ0)), the

two terms in the objective in (16) are expectations which can be estimated via sampling (using, e.g.,
direct sampling for the expectation with respect to ρ0 and NEIS for the one with respect to ρ1). This

5

means that we can in principle use an MCMC estimator of (16) as empirical loss, and minimize it
over all V in some parametric class. Here however, we will follow a different strategy that allows us
to directly parametrize b instead of V (i.e., relax the requirement that b = ∇V) and simply use the
variance of the estimator as objective function.

Specifically, since we quantify the performance of the estimators based on (7) and (10) by their
variance, we can view these quantities as functionals of b that we wish to minimize. Since the
estimators are unbiased, these objectives are

Vart−,t+(b) = Mt−,t+(b)−Z2
1 , (finite-time);

Var(b) = M(b)−Z2
1 , (infinite-time),

(17)

where we defined the second moments Mt−,t+(b) := E0

[
|At−,t+ |2

]
and M(b) := E0

[
|A|2

]
. With

the finite-time objective, we know that with b = 0d, (7) reduces to (2). Therefore, minimizing
Mt−,t+(b) over b by gradient descent starting from b near 0d will necessarily produce a better
estimator: while we cannot guarantee that the variance of this optimized estimator will be zero, the
experiments conducted below indicate that it can be a several order of magnitude below that of the
vanilla estimator.

For the infinite-time objective, we know that for any b, (9) leads to an estimator with a lower variance
than the one based on (2) [33]. Minimizing Var(b) over b using gradient descent leads to a local
minimum; the next result shows that all such local minima are global:
Proposition 4.1 (Global minimum). Under some technical assumptions listed in Proposition H.1,
if b∗ ∈ B is a local minimum of Var(·) where the functional derivative of Var(b) with respect to b
vanishes, i.e., δVar(b∗)/δb = 0d on Ω, then b∗ is a global minimum and Var(b∗) = 0.

The expression of the functional derivative δVar(b∗)/δb is given in Proposition D.1. The technical
assumptions under which Proposition 4.1 holds are explained in Appendix A and the proof is given
in Appendix H.

5 Training towards the optimal b

Here we discuss how to use deep learning techniques to find the optimal b; these techniques will be
illustrated on numerical examples in Section 6. Some technical details are deferred to Appendix I.

Objective. We use the finite-time objective Mt−,t+(b) in (7) with t− ∈ [−1, 0], t+ = t− +1. Two
natural choices are t− = 0 and t− = −1/2, which will be used below in the numerical experiments.
This leads to no loss of generality a priori since in the training scheme we put no restriction on the
magnitude that b can reach, and with large b the flow line can travel a large distance even during
t ∈ [−1, 1] (the range of integration in s, t in (8)); see the discussion in Appendix B.4 for more
details. In practice, we use a time-discretized version of (8) with 2Nt discretization points, and
use the standard Runge-Kutta scheme of order 4 (RK4) to integrate the ODE (4) over t ∈ [−1, 1]
using uniform time step (∆t = 1/Nt). We note that this numerical discretization introduces a bias.
However, this bias can be systematically controlled by changing the time step or using higher order
integrators. In our experiments, we observed that the RK4 integrator led to negligible errors, see
Table 5.

Neural architecture. In our experiments, we either parameterize b by a neural network directly, or
we assume that b is a gradient field,

b = ∇V (gradient form),

and parameterize the potential V by a neural network. We always use an ℓ-layer neural network with
width m for all inner layers; therefore, from now on, we simply refer the neural network structure
by a pair (ℓ,m); see Appendix I.2 for more details. When we parametrize the potential function V
instead of b, the only difference is that the output dimension of the neural network becomes 1 instead
of d. The activation function is chosen as the softplus function (a smooth version of ReLU) that gave
better empirical results compared to the sigmoid function. At initialization the neural parameters were
randomly generated. Theoretical results about the gradient of Mt−,t+(b) with respect to parameters
are given in Appendix C and corresponding numerical implementations are explained in Appendix I.

6

Direct training method. We minimize Mt−,t+(b) with respect to the parameters in the neural
network using stochastic gradient descent (SGD) in which we evaluate the loss and its gradient
empirically using mini-batches of data drawn from ρ0 at every iteration step. For simplicity, we
choose ρ0 as the standard Gaussian in Section 6 below.

Assisted training method. When local minima of U1 are far away from the local minimum of
U0, the direct training method by sampling data from ρ0 and minimizing Mt−,t+(b) fails, because
the flowlines may not reach the importance region of ρ1 due to poor initializations of b. More
specifically, if along almost all trajectories, e−U1(Xs(x)) ≈ 0 for s ∈ [−1, 1], then with large
probability At−,t+(x) ≈ 0 where x ∼ ρ0; as a result, the empirical variance of the estimator can be
extremely small if the number of samples is small, while the true variance could be extremely large.
Such a mode collapse phenomenon is common in rare event simulations.

To get around this difficulty, recall that ideally we would like to find a dynamics b such that A is
approximately a constant function in the infinite-time case. That is, if b is a zero-variance dynamics,
then A is a constant function and Ep

[
(A − (EpA)2)

]
= 0 for any distribution p, and we are not

constrained to use the base distribution ρ0 and minimize the functional b 7→ Var(b) in (17). Motivated
by this idea, we use an assisted training scheme in which, at iteration i of SGD, the loss function is

Epi

[(
At−,t+ − Epi

At−,t+

)2]
. (18)

Here Epi
denotes expectation with respect to the probability density pi defined as

pi = (1− ci)ρ0 + ciZ#ρ0, ci = max
{
c− i

c

υL
, 0
}
, (19)

where υ ∈ (0, 1) controls the number of steps during which the training is assisted, c ∈ (0, 1),
L is the total number of training steps, and Z := Zt=1 is the time-1 map of the ODE Żt(x) =
−ς∇U1

(
Zt(x)

)
with Zt=0(x) = x and ς > 0 is a parameter. In essence, using (18) means that, for

the first υL training steps, there is a probability ci that the data x ∼ ρ0 are replaced by Z(x), so that
the training method can better explore important regions near local minima of U1. Subsequently,
the assistance is turned off so that some subtle adjustment can be made. If some samples from
ρ1 = e−U1/Z1 were available beforehand, we could equivalently replace Z#ρ0 in (19) by the
empirical distribution over these samples. We emphasize that the assisted training method is only
used to guide the training initially and the NEIS estimator for Z1 is unbiased.

6 Numerical experiments

We consider three benchmark examples to illustrate the effectiveness of NEIS assisted with training.
The first two examples involve Gaussian mixtures, for which we use NEIS with t− = 0; the third
example is Neal’s funnel distribution, for which we use NEIS with t− = −1/2. In all examples,
we compare the performance of NEIS with those of annealed importance sampling (AIS) [26]; the
number of transition steps in AIS is denoted as K and we refer to this method as AIS-K below;
for more details see Appendix I.1. For the comparison, we choose to record the query costs to U1

and ∇U1 as the measurement of computational complexity, which connects to the framework in the
theory of information complexity (see e.g., [28]). The runtime could depend on coding, machine
condition, etc., whereas query complexity more or less only depends on the computational problem
(U0, U1 and b) itself; for most examples of interest, U0 is simple whereas U1 and its derivatives will
be expensive to compute; as a remark, ∇U1 is almost always more expensive to compute than U1.

For simplicity, we always use as base density ρ0(x) = (2π)−d/2e−
1
2 |x|

2

. We remark that a better
choice of ρ0 (i.e., more adapted to ρ1) can significantly improve the sampling performance; our ρ0
is precisely used to validate the performance of NEIS in situations where ρ0 is not well chosen. It
would be interesting to study how to adapt the choice of ρ0 for easier training in NEIS, but this is left
for future investigations.

When presenting results, we rescale the estimates so that the exact value is Z1 = 1 for all examples.
More implementation details about training are deferred to Appendix I.2. All trainings and estimates
of Z1 are conducted on a laptop with CPU i7-12700H; we use 15 threads at maximum. The runtime of
training ranges approximately between 45 ∼ 76 seconds for Gaussian mixture (2D), 9.5∼12 minutes
for Gaussian mixture (10D); for the Funnel distribution (10D), the runtime is around 25 minutes

7

for a generic linear ansatz and around 2 minutes for a two-parametric ansatz. Appendix J includes
additional figures about training. When computing the gradient of the variance with respect to
parameters, we use an integration-based method when t− = −1/2 (for the convenience of numerical
implementation) and use an ODE-based method when t− = 0 (for higher accuracy); details about
these two approximation methods are given in Appendix I.3 and Appendix I.4 respectively. The
codes are accessible on https://github.com/yucaoyc/NEIS.

An asymmetric 2-mode Gaussian mixture in 2D. As a first illustration, we consider an asymmetric
2-mode Gaussian mixture

e−U1 ∝ 1

5
N (λe1, σ

2
1Id) +

4

5
N (−λe2, σ2

1Id), (20)

where e1 = [10], e2 = [01], σ1 =
√
0.1, λ = 5. With this choice of parameters, the variance of the

vanilla estimator based on (2) is approximately 1.85× 106. We use NEIS with t− = 0 and set the
time step to ∆t = 1/50 for ODE discretization during both training and estimation of Z1. We train
over L = 50 SGD steps using the loss (18) by imposing bias in the first 60% of the training period
only (i.e., with υ = 0.6). The evolution of the variance during the training is shown in Figure 7
in Appendix; the best optimized flow has a variance of about 1, as opposed to 106 for the vanilla
estimator. Since pi in (19) is quite different from ρ0 during the assisted learning period, it may happen
that the empirical variance significantly exceeds the variance of the vanilla importance sampling;
this does not contradict with Proposition H.3 below. As seen in Figure 7, at the end of the assisted
period, the variance is already quite small and in most cases, the variance continues to reduce as b
gets further optimized.

After training, we estimate Z1 using NEIS with the optimized flow and compare its performance with
AIS-10 and AIS-100. We first record the query cost for training and then set a total number of queries
to U1,∇U1 as budgets. Given the query budget, we estimate Z1 using each method 10 times, leading
to the results given in Table 5 below. When we determine the estimation cost of NEIS, we deduct the
query cost of training from the total query budget for fairer comparison. Note that NEIS uses less
queries to produce more accurate estimate of Z1: in particular, the standard deviation of estimating
Z1 by NEIS method is around 1 magnitude smaller than AIS-100. Moreover, the bias from ODE
discretization appears to be negligible. Figure 2 shows an optimized flow and also provides a visual
comparison of NEIS with AIS under fixed query budget; more comparisons using various ansatzes or
architectures can be found in Figures 11 and 12.

A symmetric 4-mode Gaussian mixture in 10D. Next we consider a symmetric 4-mode Gaussian
mixture in d = 10 dimension with

e−U1(x) ∝
4∑

i=1

N (µi,Σ), (21)

where the vector µi = [λ cos(iπ
2) λ sin(iπ

2) 0 0 ··· 0] and Σ = Diag[σ2
1 σ2

1 σ2
2 σ2

2 ··· σ2
2] is a diagonal

matrix. The parameters are d = 10, σ1 =
√
0.1, σ2 =

√
0.5 and λ = 5. With this choice of

parameters, the variance of the vanilla estimator based on (2) is approximately 2.15× 106. We use
NEIS with t− = 0 and the time step ∆t = 1/60 is used for ODE discretization during both training
and estimation of Z1. We show the training result in Figure 8. The variance reduces to about 10
after 60 SGD steps for the gradient ansatz (here we only considered this ansatz as it produces more
promising empirical results).

Similar to the last example, we compare NEIS using the optimized b with AIS, under fixed query
budgets; see Table 5. The best result from NEIS has an estimator with the standard deviation less than
1/3 of the one from AIS-100. This comparison suggests that AIS-100 needs more than 9 times more
resources than NEIS with optimized flow in order to achieve similar precision and the cost spent on
training indeed pays off if we require an accurate estimate of Z1 (meaning less fluctuation for Monte
Carlo estimates). Moreover, this table also shows that the bias from ODE discretization is negligible.

Figure 2 shows a particular optimized flow: as can be seen, the mass near the origin flows towards
four local minima of U1, as we would intuitively expect. More optimized flows and comparisons can
be found in Figure 13 in Appendix.

8

https://github.com/yucaoyc/NEIS

tr
ia

l =
 1

(a) Asymmetric Gaussian mixture (2D): gradient ansatz, ℓ = 2, m = 20

tr
ia

l =
 1

(b) Symmetric Gaussian mixture (10D): gradient ansatz, ℓ = 2, m = 30

tr
ia

l =
 3

(c) Funnel distribution (10D): generic linear ansatz

tr
ia

l =
 1

(d) Funnel distribution (10D): two-parametric ansatz

Figure 2: Selective comparison results for various models. Left panels: estimates of Z1 by AIS and
NEIS with optimized flow under the fixed query budget shown above the panels; we repeat these
calculations 10 times and show boxplots of these 10 estimates for each method. The trial number
refers to the index for randomly chosen initialization. The query numbers refer to the queries used
for each estimate of Z1 for each method; 1MB = 106. The dashed red lines show the exact value
Z1 = 1. Right panels: streamlines of optimized flows atop the contours of U1, both projected into the
x1-x2 plane for the two 10D examples. Full comparison and figures can be found in Figures 11,12,13,
and 14 in Appendix.

9

A funnel distribution in 10D. We consider the following 10D funnel distribution studied in [2, 27]:
for the state x = [x1, x2, . . . , x10] ∈ R10,

x1 ∼ N (0, 9), xi ∼ N (0, ex1), 2 ≤ i ≤ d.

For numerical stability, we consider the above funnel distribution restricted to a unit ball centered at
the origin with radius 25. Instead of heuristically parameterizing the dynamics via neural-networks,
we consider a generic linear ansatz and a two-parametric linear ansatz:

b(x) =W1x+ b1, W1 ∈ R10×10, b1 ∈ R10, (22a)
b(x) = −[β, αx2, αx3, . . . , αx10], α, β ∈ R. (22b)

The generic linear ansatz can be regarded as a neural network without inner layers. With (22a), we
drawn the entries in the matrix W1 randomly and we set b1 = 010 initially, and we use the assisted
training method; with (22b), we set α = β = 2 initially, and we use the direct training method. In
both cases, we choose the finite-NEIS scheme with t− = −1/2. We notice that the asymmetric
choice t− = 0 can also leads into more optimal dynamics, but its performance is not as competitive
as the symmetric case t− = −1/2. It is very likely that such a difference is due to the structure of
funnel distribution: each coordinate xi (1 ≤ i ≤ 10) has mean 0 and therefore, a symmetric version
can probably better weight the contribution from both forward and backward flowlines.

The training results are shown in Figures 9 and 10 in Appendix. In Figure 10, we can observe that both
error and variance are overall decreasing during the training and the parameters α, β tend to increase
with a similar speed. We use the same protocol as in the two previous examples to compare NEIS
with AIS. As can be observed in Table 5, the two-parametric ansatz (22b) gives the best estimate;
the generic linear ansatz (22a) is not as competitive as the two-parametric ansatz (probably due to
over-parameterization), but it still outperforms the AIS-100, under fixed query budget. Figure 2
shows these optimized flows; more results can be found in Figure 14 in Appendix. The apparent gap
between estimates and the ground truth in Figure 2 (or see Table 5) comes from insufficient sample
size.

7 Conclusion and outlook

In this work, we revisited the NEIS strategy proposed in [33] and analyzed its capabilities, both
from theoretical and computational standpoints. Regarding the former, we showed that NEIS leads
to a zero-variance estimator for a velocity field b = ∇V with a potential V that satisfies a certain
Poisson equation with the difference between the target and the base density as source. Moreover,
a zero-variance dynamics can be used to construct a transport map from ρ0 to ρ1. In turn, we
highlighted the connection and difference between NEIS and importance sampling strategies based
on the normalizing flows (NF).

On the computational side, we showed that the variance of the NEIS estimator can be used as
objective function to train the velocity field b. This training procedure can be performed in practice by
approximating the velocity field by a neural network, and optimizing the parameters in this network
using SGD, similar to what is done in the context of neural ODE but with a different objective. Our
numerical experiments showed that this strategy is effective and can lower the variance of a vanilla
estimator for Z1 by several orders of magnitude.

While the numerical examples we used in the present paper are somewhat academic, the results
suggest that NEIS has potential in more realistic settings. In order to explore other applications, it
would be interesting to investigate how to best parametrize b (e.g., less parameters and non-stiff
energy landscape with respect to these parameters) and how to best initiate the training procedure. It
would also be interesting to ask whether we can improve the performance of NEIS by optimizing
certain parameters in the base density ρ0 in concert with b. The answers to these questions are
probably model specific and are left for future work.

Acknowledgment

We would like to thank Jonathan Weare and Fang-Hua Lin for helpful discussions, and the anonymous
referees for their useful comments and suggestions. The work of EVE is supported by the National
Science Foundation under awards DMR-1420073, DMS-2012510, and DMS-2134216, by the Simons
Collaboration on Wave Turbulence, Grant No. 617006, and by a Vannevar Bush Faculty Fellowship.

10

References
[1] Christophe Andrieu, James Ridgway, and Nick Whiteley. Sampling normalizing constants in

high dimensions using inhomogeneous diffusions, 2018. arXiv: 1612.07583.

[2] Michael Arbel, Alex Matthews, and Arnaud Doucet. Annealed flow transport Monte Carlo. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 318–330.
PMLR, 2021.

[3] Larry Armijo. Minimization of functions having Lipschitz continuous first partial derivatives.
Pac. J. Math., 16(1):1–3, 1966.

[4] Michèle Audin and Mihai Damian. Morse Theory and Floer Homology. Springer London,
2014. doi: 10.1007/978-1-4471-5496-9.

[5] Martin Beckmann. A continuous model of transportation. Econometrica, 20(4):643–660, 1952.

[6] Charles H Bennett. Efficient estimation of free energy differences from Monte Carlo data. J.
Comput. Phys., 22(2):245–268, 1976.

[7] O. Bräunling. Fourier series on the n-dimensional torus, 2004. https://www.uni-math.
gwdg.de/schick/teach/jvnfour1.pdf.

[8] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of Markov Chain
Monte Carlo. CRC Press LLC, 2011.

[9] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

[10] Weinan E, Chao Ma, and Lei Wu. The Barron space and the flow-induced function spaces for neu-
ral network models. Constr. Approx., 55(1):369–406, 2022. doi: 10.1007/s00365-021-09549-y.

[11] Lawrence C. Evans. Partial Differential Equations. American Mathematical Society, 2010.

[12] F. Feroz and M. P. Hobson. Multimodal nested sampling: an efficient and robust alternative to
Markov Chain Monte Carlo methods for astronomical data analyses. Mon. Not. R. Astron. Soc.,
384(2):449–463, 2008. doi: 10.1111/j.1365-2966.2007.12353.x.

[13] Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: from importance
sampling to bridge sampling to path sampling. Statist. Sci., 13(2):163–185, 1998. doi: 10.1214/
ss/1028905934. Number: 2.

[14] Charles J. Geyer. Importance sampling, simulated tempering, and umbrella sampling. In Steve
Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng, editors, Handbook of Markov Chain
Monte Carlo. CRC press, 2011.

[15] C. Jarzynski. Equilibrium free-energy differences from nonequilibrium measurements: A master-
equation approach. Phys. Rev. E, 56(5):5018–5035, 1997. doi: 10.1103/PhysRevE.56.5018.

[16] C. Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78(14):
2690–2693, 1997. doi: 10.1103/PhysRevLett.78.2690.

[17] John G Kirkwood. Statistical mechanics of fluid mixtures. J. Chem. Phys., 3(5):300–313, 1935.

[18] Achim Klenke. Probability Theory: A Comprehensive Course. 2014.

[19] Ivan Kobyzev, Simon J. D. Prince, and Marcus A. Brubaker. Normalizing flows: An introduction
and review of current methods. IEEE Trans. Pattern Anal. Mach. Intell., pages 1–1, 2020. doi:
10.1109/TPAMI.2020.2992934.

[20] Peter D. Lax. Change of variables in multiple integrals II. Am. Math. Mon., 108(2):115–119,
2001. doi: 10.2307/2695524.

11

https://www.uni-math.gwdg.de/schick/teach/jvnfour1.pdf
https://www.uni-math.gwdg.de/schick/teach/jvnfour1.pdf

[21] Evgenii Mikhailovich Lifshitz and Lev Petrovich Pitaevskii. Statistical Physics: Theory of the
Condensed State, volume 9. Elsevier, 2013.

[22] Jun S Liu. Monte Carlo Strategies in Scientific Computing, volume 10. Springer, 2001.

[23] Jianfeng Lu and Eric Vanden-Eijnden. Methodological and computational aspects of parallel
tempering methods in the infinite swapping limit. J. Stat. Phys., 174(3):715–733, 2019. doi:
10.1007/s10955-018-2210-y.

[24] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. J. R.
Statist. Soc. B, 68(3):411–436, 2006. doi: 10.1111/j.1467-9868.2006.00553.x.

[25] Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural
importance sampling. ACM Trans. Graph., 38(5):145:1–145:19, 2019. doi: 10.1145/3341156.

[26] Radford M. Neal. Annealed importance sampling. Stat. Comput., 11(2):125–139, 2001. doi:
10.1023/A:1008923215028.

[27] Radford M. Neal. Slice sampling. Ann. Stat., 31(3), 2003. doi: 10.1214/aos/1056562461.

[28] Erich Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis. Lecture Notes
in Mathematics. Springer-Verlag, 1988. doi: 10.1007/BFb0079792.

[29] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling
equilibrium states of many-body systems with deep learning. Science, 365(6457), 2019. doi:
10.1126/science.aaw1147.

[30] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. J. Mach.
Learn. Res., 22(57):1–64, 2021.

[31] Philipp Petersen. Neural network theory, 2022. http://pc-petersen.eu/Neural_
Network_Theory.pdf.

[32] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
In Proceedings of the 32nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pages 1530–1538, Lille, France, 2015.

[33] Grant M. Rotskoff and Eric Vanden-Eijnden. Dynamical computation of the density of states
and Bayes factors using nonequilibrium importance sampling. Phys. Rev. Lett., 122(15):150602,
2019. doi: 10.1103/PhysRevLett.122.150602.

[34] Walter Rudin. Principles of Mathematical Analysis. 1976.

[35] Filippo Santambrogio. A dacorogna-moser approach to flow decomposition and minimal flow
problems. ESAIM: ProcS, 45:265–274, 2014. doi: 10.1051/proc/201445027.

[36] Filippo Santambrogio. Optimal Transport for Applied Mathematicians. Birkhäuser, Cham,
2015.

[37] John Skilling. Nested sampling. AIP Conf. Proc., 735(1):395–405, 2004. doi: 10.1063/1.
1835238.

[38] John Skilling. Nested sampling for general Bayesian computation. Bayesian Anal., 1(4):
833–859, 2006. doi: 10.1214/06-BA127.

[39] E. G. Tabak and Cristina V. Turner. A family of nonparametric density estimation algorithms.
Commun. Pure Appl. Math., 66(2):145–164, 2013. doi: 10.1002/cpa.21423.

[40] Esteban G. Tabak and Eric Vanden-Eijnden. Density estimation by dual ascent of the log-
likelihood. Commun. Math. Sci., 8(1):217–233, 2010.

[41] Erik H. Thiede, Brian Van Koten, Jonathan Weare, and Aaron R. Dinner. Eigenvector method
for umbrella sampling enables error analysis. J. Chem. Phys., 145(8):084115, 2016. doi:
10.1063/1.4960649.

12

http://pc-petersen.eu/Neural_Network_Theory.pdf
http://pc-petersen.eu/Neural_Network_Theory.pdf

[42] Achille Thin, Yazid Janati El Idrissi, Sylvain Le Corff, Charles Ollion, Eric Moulines, Arnaud
Doucet, Alain Durmus, and Christian X Robert. NEO: Non equilibrium sampling on the orbits
of a deterministic transform. In Advances in Neural Information Processing Systems, volume 34,
pages 17060–17071. Curran Associates, Inc., 2021.

[43] Glenn M Torrie and John P Valleau. Nonphysical sampling distributions in Monte Carlo
free-energy estimation: Umbrella sampling. J. Comput. Phys., 23(2):187–199, 1977.

[44] Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon
Lacoste-Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates.
In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

[45] Peter Wirnsberger, Andrew J. Ballard, George Papamakarios, Stuart Abercrombie, Sébastien
Racanière, Alexander Pritzel, Danilo Jimenez Rezende, and Charles Blundell. Targeted free
energy estimation via learned mappings. J. Chem. Phys., 153(14):144112, 2020. doi: 10.1063/
5.0018903.

[46] Hao Wu, Jonas Köhler, and Frank Noe. Stochastic normalizing flows. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 5933–5944, 2020.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] It can be found
in https://github.com/yucaoyc/NEIS.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Details can be found in Section 5, Section 6 or Appendix I.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We alternatively use the boxplot for multiple independent
experiments in Section 6.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] see Section 6.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] Our examples

do not involve special data and we only use standard Julia packages that are widely
available. The dependence of the code will be explained in README.md in the code
(https://github.com/yucaoyc/NEIS).

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

https://github.com/yucaoyc/NEIS
https://github.com/yucaoyc/NEIS

A The functional space for the infinite-time case

A.1 Assumptions

For simplicity, we make:
Assumption A.1. (i) The domain Ω is either

• an open and connected subset of Rd with smooth boundary,
• or a d-dimensional torus (without boundary).

(ii) U0, U1 ∈ C∞(Ω,R).

(iii) Z0 :=
∫
Ω
e−U0 = 1, Z1 <∞ and Var(max) ∈ (0,∞), where

Var(max) := Eρ0
[e−2(U1−U0)]− (Z1)

2

is the variance for the vanilla importance sampling method.

Notations

Denote the indicator function for a set A as χA(). The open ball around x with radius r is denoted as
Br(x) :=

{
y ∈ Ω

∣∣ |y − x| < r
}

. For any subset D ⊂ Ω, let τ+D (x) and τ−D (x) be the first hitting
times to the boundary ∂D in the forward and backward directions, respectively. More specifically,

τ+D (x) := inf
{
t ≥ 0 : Xt(x) ∈ ∂D

}
,

τ−D (x) := sup
{
t ≤ 0 : Xt(x) ∈ ∂D

}
.

(23)

For later convenience, let us denote

B(x) :=
∫ ∞

−∞
F (0)

t (x) dt, (24)

and thus

A(x)
(9)
=

∫∞
−∞ F (1)

t (x) dt

B(x)
.

A.2 Preliminaries

Lemma A.2. If b ∈ B in (3), then for any t, s ∈ R, x ∈ Ω and k = 0, 1,

Jt

(
Xs(x)

)
= Jt+s(x)/Js(x), F (k)

t

(
Xs(x)

)
= F (k)

t+s(x)/Js(x). (25)

This lemma can be verified easily by definition and thus the proof is omitted. A simple consequence
of (25) is the following result that we also state without proof:
Lemma A.3. For any s ∈ R and x ∈ Ω,

B
(
Xs(x)

)
=

B(x)
Js(x)

, A
(
Xs(x)

)
= A(x), (26)

provided that these terms are well-defined.

A.3 The functional space

For the infinite-time case, we consider the following family of vector fields denoted as B∞.
Definition A.4. B∞ is a set that contains all b ∈ B such that Ω\℧(b) has Lebesgue measure zero,
where ℧(b) ⊂ Ω is the collection of points x at which the functions

z 7→
∫ ∞

0

F (k)
t (z) dt, z 7→

∫ 0

−∞
F (k)

t (z) dt (27)

are continuous on a local neighborhood of x for k = 0, 1.

15

We use the notation ℧(b) because in general, such a subset depends on the choice of b. The
main reason behind the above definition is that we need functions in (27) to behave nicely almost
everywhere. The integrability of t 7→ F (k)

t (x) depends on the long-term behavior of the flow, which
is not easy to characterize in general; thus we simply include the integrability into the assumption.
However, we can indeed expect that the above conditions should hold for most interesting examples,
for instance:
Example A.5. If U0(x) =

|x|2
2 + d

2 ln(2π) and U1(x) =
|x|2
2σ2 (so that both ρ0 and ρ1 are Gaussian

densities), one optimal flow is b(x) = x (cf. Appendix F below). For this choice, we can direct
compute that when z ̸= 0d, Xt(z) = etz and hence∫ ∞

0

F (1)
t (z) dt =

1

2

(|z|2
2σ2

)−d/2
∫ ∞

|z|2
2σ2

s
d
2−1e−s ds,

∫ 0

−∞
F (1)

t (z) dt =
1

2

(|z|2
2σ2

)−d/2
∫ |z|2

2σ2

0

s
d
2−1e−s ds,

and similar expressions hold for F (0) by letting σ = 1 in above equations. Then clearly, ℧(b) =
Ω\{0d} and such a dynamics belongs to B∞. However, the constant function b = 0d /∈ B∞: we
can easily verify that e.g., for this dynamics,

∫∞
0

F (1)
t (z) dt = ∞ for any z and hence ℧(0d) = ∅;

see also Lemma A.7 below.

Here are a few immediate properties of the set ℧(b):
Lemma A.6. We have:

(i) ℧(b) is an open subset of Ω.

(ii) The set ℧(b) is closed under the evolution of the dynamics b, i.e., if x⋆ ∈ ℧(b), then
Xt(x

⋆) ∈ ℧(b) for any t ∈ R.

(iii) If x⋆ ∈ ℧(b), then Xt(x
⋆) ∈ ℧(b) for any t ∈ R, where ℧(b) is the closure of ℧(b) in Rd.

(iv) x 7→
∫∞
−∞ F (k)

t (x) dt is continuous on ℧(b).

(v) (x, t) 7→
∫∞
t

F (k)
s (x) ds is continuous on ℧(b)× R.

Proof. Part (i) follows easily from the definition of ℧(b) and part (iv) also trivially holds. For part
(ii), notice that if y = Xt(x), then∫ ∞

0

F (k)
s (y) ds =

∫ ∞

0

F (k)
s

(
Xt(x)

)
ds

(25)
=
(∫ ∞

0

F (k)
t+s(x) ds

)
/Jt(x)

=
(∫ ∞

0

F (k)
s (x) ds−

∫ t

0

F (k)
s (x) ds

)
/Jt(x)

=
(∫ ∞

0

F (k)
s

(
X−t(y)

)
ds−

∫ t

0

F (k)
s

(
X−t(y)

)
ds
)
/Jt

(
X−t(y)

)
.

Since (x, t) 7→ Xt(x), (x, t) 7→ Jt(x) are continuous by the smoothness assumption of b, it is clear
that Jt

(
X−t(y)

)
is continuous on Ω. The continuity of y 7→

∫ t

0
F (k)

s

(
X−t(y)

)
ds also trivially

holds on Ω. Next, the continuity of y 7→
∫∞
0

F (k)
s

(
X−t(y)

)
ds in a local neighborhood of Xt(x

⋆)

comes from the assumption that x⋆ ∈ ℧(b). Thus, y 7→
∫∞
0

F (k)
s (y) ds is continuous in a local

neighborhood of Xt(x
⋆), if x⋆ ∈ ℧(b). The other case for y 7→

∫ 0

−∞ F (k)
s (y) ds can be similarly

verified.

Part (iii) is an immediate consequence of part (ii). Let us prove it by contradiction. Assume that the
conclusion in part (iii) does not hold, then there exists x⋆ ∈ ℧(b) such that y⋆ := Xt(x

⋆) /∈ ℧(b)
for some t ∈ R. By part (ii), we know this x⋆ ̸∈ ℧(b) and thus x⋆ ∈ ∂℧(b) is in the boundary. As
℧(b) is closed and y⋆ /∈ ℧(b), there must exist an ϵ > 0 such that for any y ∈ Rd with |y − y⋆| < ϵ,
we have y /∈ ℧(b). By the smoothness assumption on b, we know there exists a δ > 0 such that for

16

any x ∈ Bδ(x
⋆), we have |Xt(x)− y⋆| < ϵ outside of ℧(b). Since x⋆ is in the boundary of ℧(b),

we must be able to find an x ∈ ℧(b) such that x ∈ Bδ(x
⋆) and by part (ii), Xt(x) ∈ ℧(b). Thus, we

reach a contradiction.

For part (v), ∫ ∞

t

F (k)
s (x) ds =

∫ ∞

0

F (k)
t+s(x) ds

(25)
= Jt(x)

∫ ∞

0

F (k)
s

(
Xt(x)

)
ds.

Because (x, t) 7→ Xt(x) is continuous (by the smoothness of b ∈ B) and z 7→
∫∞
0

F (k)
s (z) ds is con-

tinuous in a local neighborhood of Xt(x) ∈ ℧(b) by part (ii), it is then clear that
∫∞
0

F (k)
s

(
Xt(x)

)
ds

is continuous with respect to (x, t), and hence the conclusion follows easily.

A notable family of points that are excluded from ℧(b) are points at which
∫∞
−∞ F (k)

t (x) dt = ∞.
For instance, these include stationary points of b and periodic orbits, which we state as:
Lemma A.7. Given a vector field b ∈ B, we have x /∈ ℧(b),

(i) if x is a stationary point of b (i.e., b(x) = 0d), or

(ii) if x is on a periodic orbit.

Proof. If x is a stationary point of b, the trajectory is Xt(x) = x for all t ∈ R. Then it is obvious
that

∫∞
−∞ F (k)

t (x) dt = e−Uk(x)
∫∞
−∞ e(∇·b)(x)t dt = ∞, which establishes part (i). For part (ii), let

us assume that the period is τ . If c :=
∫ τ

0
∇ · b

(
Xs(x)

)
ds ≥ 0, then∫ ∞

0

F (k)
t (x) dt =

∫ ∞

0

e−Uk

(
Xt(x)

)
+
∫ t
0
∇·b
(
Xs(x)

)
ds dt

≥
∫ ∞

0

e
−max0≤s≤τ Uk

(
Xs(x)

)
+c⌊t/τ⌋+

∫ t−τ⌊t/τ⌋
τ⌊t/τ⌋ ∇·b

(
Xs(x)

)
ds

dt

≥ C

∫ ∞

0

ec(t/τ−1) dt = ∞,

where the constant C = e−max0≤s≤τ Uk

(
Xs(x)

)
emin0≤s≤τ

∫ s
0
∇·b
(
Xr(x)

)
dr. Therefore,∫∞

−∞ F (k)
t (x) = ∞. If c :=

∫ τ

0
∇·b

(
Xs(x)

)
ds < 0, we can similarly show that

∫ 0

−∞ F (0)
t (x) dt =

∞, and the same conclusion holds.

A.4 Perturbation of the dynamics

Next we investigate the following question: given b ∈ B∞ and δb ∈ C∞
c (Ω,Rd), can we guarantee

that b + ϵδb ∈ B∞ for small enough ϵ? Such a conclusion trivially holds for the finite-time case;
however, more underlying structures are needed for the infinite-time case, due to the fact that the
long-term behavior of the flow b can sensitively depend on the local perturbation δb. This question is
probably unavoidable in order to understand the mathematical structure of B∞.

Notation: We shall use the notation Xt(·) to represent the flow map under b, and use Xϵ
t (·) to

represent the flow map under bϵ := b+ ϵδb in this section below. Moreover, we shall use F (k,ϵ)
· (·) to

denote the function defined in (6) for the dynamics bϵ and the Jacobian of the flow J ϵ
(·)(·) is similarly

defined.
Definition A.8 (b-stability). Given b ∈ B∞:

(a) (For an open bounded set). A nonempty open bounded set D ⊂ ℧(b) is said to be b-stable
if:

(i) There exists a point x⋆ ∈ D and ζ ∈ (0, 1) such that

|b(x⋆)| > 0, |b(x)− b(x⋆)| < ζ|b(x⋆)|, ∀x ∈ D; (28)

(ii) For any x ∈ D, the trajectory t 7→ Xt(x) intersects with the boundary ∂D at exactly
two points.

17

(b) (For a point). A point x ∈ ℧(b) is said to be b-stable if there exists a neighborhood Bϵ(x)
such that the region Bϵ(x) is b-stable. Otherwise, the point x is said to be b-unstable.

The assumption in part (i) ensures that the trajectory t 7→ Xt(x) will leave this region D within a
finite amount of time; see Lemma A.9 below. Part (ii) is used to ensure that the trajectory is not
(infinitely) recurrent to D; once the trajectory leaves D, it will not return to D again.
Lemma A.9. Suppose b ∈ B and D ⊂ Ω is open and bounded. If there exists a point x⋆ ∈ D and
ζ ∈ (0, 1) such that

|b(x⋆)| > 0, |b(x)− b(x⋆)| < ζ|b(x⋆)|, ∀x ∈ D;

then for any x ∈ D, we have

τ+D (x)− τ−D (x) ≤ Diameter(D)

(1− ξ)|b(x⋆)|
<∞.

Proof. Consider the quantity ht(x) :=
〈
b(x⋆),Xt(x) − x⋆

〉
for x ∈ D. Then when t ∈(

τ−D (x), τ+D (x)
)
,

d

dt
ht(x) =

〈
b(x⋆), b(Xt(x))− b(x⋆) + b(x⋆)

〉
≥ (1− ζ)|b(x⋆)|2 > 0.

Therefore,

(1− ξ)|b(x⋆)|2
(
τ+D (x)− τ−D (x)

)
≤
∫ τ+

D(x)

τ−D (x)

d

dt
ht(x) dt

= hτ+
D(x)(x)− hτ−D (x)(x) ≤ |b(x⋆)| Diameter(D).

Then the conclusion can be immediately obtained.

We now state the main result of this section:
Proposition A.10. Suppose b ∈ B∞ and x⋆ ∈ ℧(b) is b-stable. Then there exists an open bounded
neighborhood of x⋆, denoted as D ⊂ ℧(b), such that for an arbitrary δb ∈ C∞

c (D,Rd), there exists
an ϵ0 > 0 and b+ ϵδb ∈ B∞ for any ϵ ∈ (0, ϵ0).

Proof. The main idea is that if the path t 7→ Xt(x) passes through D, then a small perturbation
within a bounded time period does not affect the long-term behavior; if the path does not pass
through D, then bϵ = b along this path and therefore,

∫∞
0

F (k,ϵ)
t (x) dt =

∫∞
0

F (k)
t (x) dt; hence, the

continuity is also preserved locally around x.

Step (I): Setup and the choice of D.

Since x⋆ ∈ ℧(b), we know |b(x⋆)| > 0 by Lemma A.7. Moreover, we can find a small b-stable
ball Bθ(x

⋆) by Definition A.8 with a parameter ζ ∈ (0, 1) in (28). Then consider the following
cross-section within Bθ(x

⋆)

S :=
{
y : |y − x⋆| < θ/2, ⟨y − x⋆, b(x⋆)⟩ = 0

}
,

and define the streamtube T passing through S as

T :=
{
Xt(y) : y ∈ S, t ∈ R

}
.

It is not hard to see that T is an open subset of ℧(b) by Lemma A.6. Then let us choose D as an
arbitrary open ball around x⋆ such that

D ⊂ T ∩Bθ/2(x
⋆).

Next let us consider an arbitrary δb ∈ C∞
c (D,Rd) and from now on, we shall fix δb. It is easy to

verify that b+ ϵδb ∈ B for any ϵ ∈ R. The non-trivial part is to check that Ω\℧(bϵ) has measure
zero for sufficiently small ϵ and hence bϵ ∈ B∞.

Step (II): Choice of ϵ0.

18

Let us pick

ϵ0 = min
{ |b(x⋆)|
1 + |δb(x⋆)|

,
(ζ⋆ − ζ)|b(x⋆)|

2∥δb∥L∞(D) + ζ⋆|δb(x⋆)|

}
> 0, (29)

for any ζ⋆ ∈ (ζ, 1). The main motivation is that we need (28) to hold for bϵ as well. Indeed, if ϵ ≤ ϵ0,

|bϵ(x⋆)| = |b(x⋆) + ϵδb(x⋆)| ≥ |b(x⋆)| − ϵ|δb(x⋆)|
(29)
≥ |b(x⋆)|

1 + |δb(x⋆)|
> 0,

and for any x ∈ Bθ(x
⋆),

|bϵ(x)− bϵ(x⋆)| ≤ |b(x)− b(x⋆)|+ ϵ|δb(x)− δb(x⋆)|
(28)
≤ ζ|b(x⋆)|+ ϵ(2∥δb∥L∞(D))

(29)
< ζ⋆|b(x⋆)| − ζ⋆ϵ|δb(x⋆)|
≤ ζ⋆|bϵ(x⋆)|.

As discussed above, this property ensures that any trajectory t 7→ Xϵ
t (x) with x ∈ Bθ(x

⋆) will pass
through the boundary ∂Bθ(x

⋆), and at the same time, since Bθ(x
⋆) is b-stable, the condition (ii) in

Definition A.8 ensures that such a trajectory only intersects with the boundary ∂Bθ(x
⋆) at exactly 2

points.

Let us denote

τ := sup
ϵ∈[0,ϵ0)

Diameter(D)

(1− ξ⋆)|bϵ(x⋆)|
≤

Diameter(D)
(
1 + |δb(x⋆)|

)
(1− ξ⋆)|b(x⋆)|

<∞.

By Lemma A.9, we know

Xϵ
t (x) /∈ Bθ(x

⋆), ∀x ∈ Bθ(x
⋆), ∀ϵ ∈ [0, ϵ0), ∀t ∈ (−∞,−τ] ∪ [τ,∞). (30)

Step (III): Prove that Ω\℧(bϵ) has measure zero for any ϵ ∈ (0, ϵ0).

We will prove that for any ϵ ∈ (0, ϵ0),

T ⊂ ℧(bϵ), ℧(b)\T ⊂ ℧(bϵ).

It could be observed that the boundary ∂T has measure zero: the boundary contains flowlines from a
hyper-surface with dimension d− 2, that is, ∂T is a set of flowlines passing through

{
y : |y − x⋆| =

θ/2, ⟨y − x⋆, b(x⋆)⟩ = 0
}
. Hence, provided that the above equation holds, we immediately know

that

Ω\℧(bϵ) ≡ ℧(bϵ)c ⊂
(
T ∪ (℧(b)\T)

)c
= Tc ∩ (℧(b) ∩ T

c
)c = Tc ∩ (℧(b)c ∪ T)

= (Tc ∩ ℧(b)c
)
∪ (Tc ∩ T) ⊂ ℧(b)c ∪ ∂T =

(
Ω\℧(b)

)
∪ ∂T

has measure zero, where the superscript c means set complement. As a remark, from now on, we
shall fix ϵ ∈ (0, ϵ0).

Proof of T ⊂ ℧(bϵ). Let us pick an arbitrary x ∈ T and we shall prove that z 7→
∫∞
0

F (k,ϵ)
t (z) dt is

continuous locally near x. Similarly, we can verify that z 7→
∫ 0

−∞ F (k,ϵ)
t (z) dt is locally continuous

near x. Therefore, x ∈ ℧(bϵ) and thus T ⊂ ℧(bϵ).

Next we return to verify that z 7→
∫∞
0

F (k,ϵ)
t (z) dt is continuous locally near x. We claim that there

exists a y ∈ S ∪D ∈ Bθ/2(x
⋆) and s ∈ R such that Xϵ

s(y) = x. To prove this, we need to discuss
two cases:

• Suppose the path t 7→ Xϵ
t (x) never enters D. Because bϵ = b on Ω\D, we know Xϵ

t (x) =
Xt(x) for any t ∈ R. By the definition of the streamtube T, there exists a y ∈ S and s ∈ R such
that y = X−s(x) = Xϵ

−s(x), which immediately gives Xϵ
s(y) = x.

• Suppose the path t 7→ Xϵ
t (x) enters D at some time. Then the above conclusion follows easily.

19

Because bϵ is smooth, for small enough δ, we can ensure that Bδ(x) ⊂ T and also Xϵ
−s(z) ∈

Bθ/2(x
⋆) for any z ∈ Bδ(x). By (30),

Xϵ
t−s(z) = Xϵ

t

(
Xϵ

−s(z)
)
/∈ Bθ(x

⋆), ∀z ∈ Bδ(x), ∀t ≥ τ. (31)

We divide the proof of continuity of z 7→
∫∞
0

F (k,ϵ)
t (z) dt into two cases:

(a) If τ ≤ s, then we already know for any point z ∈ Bδ(x), we have Xϵ
t (z) /∈ Bθ(x

⋆) for
t ≥ 0. Recall that b = bϵ outside of Bθ(x

⋆). Hence, Xϵ
t (z) = Xt(z) for any t ≥ 0 and∫ ∞

0

F (k,ϵ)
t (z) dt =

∫ ∞

0

F (k)
t (z) dt,

which is continuous on a neighbor of x by x ∈ ℧(b).

(b) If τ > s, then by (31), we know Xϵ
t (X

ϵ
τ−s(z)) /∈ Bθ(x

⋆) for any z ∈ Bδ(x) and t ≥ 0
and in particular, Xϵ

τ−s(z) /∈ Bθ(x
⋆) for any z ∈ Bδ(x). Let us rewrite∫ ∞

0

F (k,ϵ)
t (z) dt =

∫ τ−s

0

F (k,ϵ)
t (z) dt+

∫ ∞

τ−s

F (k,ϵ)
t (z) dt

=

∫ τ−s

0

F (k,ϵ)
t (z) dt+

∫ ∞

0

F (k,ϵ)
t+(τ−s)

(
z
)
dt

(25)
=

∫ τ−s

0

F (k,ϵ)
t (z) dt+ J ϵ

τ−s(z)

∫ ∞

0

F (k,ϵ)
t

(
Xϵ

τ−s(z)
)
dt.

Since bϵ is smooth, apparently z 7→
∫ τ−s

0
F (k,ϵ)

t (z) dt and z 7→ J ϵ
τ−s(z) are continuous on

Ω. The continuity of z 7→
∫∞
0

F (k,ϵ)
t

(
Xϵ

τ−s(z)
)
dt locally near x can be exactly proved in

the same way as Part (a) above for the new point Xϵ
τ−s(x).

One small technical result to verify is that Xϵ
τ−s(x) ∈ ℧(b) in order to apply the same

argument from Part (a). Note that Xϵ
τ−s(x) = Xϵ

τ (y) = Xϵ
τ−τ̃

(
Xϵ

τ̃ (y)
)

where

τ̃ := inf
{
t ≥ 0

∣∣Xϵ
t (y) ∈ ∂Bθ(x

⋆)
}
.

Since Xϵ
τ̃ (y) ∈ ∂Bθ(x

⋆), we know Xϵ
τ̃ (y) ∈ ℧(b) (e.g., by choosing a small enough θ).

Outside of Bθ(x
⋆), we know bϵ = b and thus Xϵ

τ−τ̃

(
Xϵ

τ̃ (y)
)
= Xτ−τ̃

(
Xϵ

τ̃ (y)
)
∈ ℧(b)

by Lemma A.6.

Proof of ℧(b)\T ⊂ ℧(bϵ). Let us consider an arbitrary point x ∈ ℧(b)\T. Note that bϵ = b
outside of D ⊂ T. For a local neighborhood Bδ(x) outside of T, we also know for any y ∈ Bδ(x),
Xϵ

t (y) = Xt(y) /∈ T for t ∈ R, by both the definition of T and the construction bϵ = b outside of
T. By the same argument as in Part (a) above, it could be readily shown that x ∈ ℧(bϵ) and thus
℧(b)\T ⊂ ℧(bϵ).

B Supplementary material for Section 2

B.1 Proof of Proposition 2.1

We first prove the finite-time case. As b ∈ B, we know that
∫ t+
t−

F (0)
−s (x) ds ≡∫ t+

t−
e−U0

(
X−s(x)

)
J−s(x) ds <∞ by the continuity assumption of b and Assumption A.1. Then

Z1 =

∫
Ω

e−U1(x)

∫ t+
t−

F (0)
−t (x) dt∫ t+

t−
F (0)

−s (x) ds
dx

=

∫ t+

t−

∫
Ω

e−U1(x)
F (0)

−t (x)∫ t+
t−

F (0)
−s (x) ds

dxdt.

20

By the change of variables x = Xt(x̃), we have

Z1 =

∫ t+

t−

∫
Ω

e−U1

(
Xt(x̃)

) F (0)
−t (Xt(x̃))∫ t+

t−
F (0)

−s (Xt(x̃)) ds
Jt(x̃) dx̃dt

(25)
=

∫ t+

t−

∫
Ω

e−U1

(
Xt(x̃)

) F (0)
0 (x̃)∫ t+

t−
F (0)

t−s(x̃) ds
Jt(x̃) dx̃dt

=

∫ t+

t−

∫
Ω

e−U1

(
Xt(x̃)

)
Jt(x̃)

ρ0(x̃)∫ t+
t−

F (0)
t−s(x̃) ds

dx̃dt

=E0

[∫ t+

t−

F (1)
t (·)∫ t−t−

t−t+
F (0)

s (·) ds
dt
]
≡ E0

[
At−,t+

]
.

(32)

Note that as the integrand is non-negative, switching the order of time integration and space integration
is justified by Fubini–Tonelli theorem.

The proof of Proposition 2.1 for the infinite-time case is essentially the same as the finite-time case,
except the followings:

• We need to replace the domain Ω in (32) by ℧(b) defined in Definition A.4.

• We need the continuity of x 7→
∫∞
−∞ F (0)

t (x) dt in order to use Theorem 2 in [20] to get the
first line in (32). A generalization with discontinuity should be possible, e.g., by considering
piecewise continuous b. However, we shall not explore this further in this work. As a remark,
the map x 7→ Xt(x) being bijective (due to the nature of ODE flows) on ℧(b) was proved in
Lemma A.6 (iii), when applying [20, Theorem 2].

B.2 Proof of Proposition 2.2

Consider

d

dt
Xt(x) = b

(
Xt(x)

)
, X0(x) = x;

d

dt
Zt(x) = α

(
Zt(x)

)
b
(
Zt(x)

)
, Z0(x) = x.

To prove the first conclusion, we need to verify that the trajectory
{
Xt(x)

}
t∈R =

{
Zt(x)

}
t∈R.

From now on, let us fix x and introduce a scalar-valued function θ by θt :=
∫ t

0
α
(
Zs(x)

)
ds (i.e.,

d
dtθt = α

(
Zt(x)

)
. By taking the time derivative, it is not hard to verify that Zt(x) = Xθt

(
x
)

as
both satisfy the same ODE. Of course, θ also depends on x but we shall not explicitly specify this
dependence for simplicity of notations. Thus, the trajectory t 7→ Zt(x) is the same as t 7→ Xt(x)
under time rescaling specified by θ.

Next we shall prove the following lemma, which immediately leads into the second result in Proposi-
tion 2.2.

Lemma B.1. Suppose g : Ω → R is a non-negative continuous function. For any x ∈ Ω,∫ ∞

−∞
g
(
Zt(x)

)
exp

(∫ t

0

∇ · (αb)
(
Zs(x)

)
ds
)
dt

=
1

α(x)

∫ ∞

−∞
g
(
Xt(x)

)
exp

(∫ t

0

(
∇ · b)

(
Xs(x)

)
ds
)
dt.

Proof. Because α is strictly positive, θ· : R → R is bijective, and by the inverse function theorem

d

dt
θ−1
t =

1

α
(
Zθ−1

t
(x)
) =

1

α
(
Xt(x)

) .
21

Then by the change of variables t̃ = θt and s̃ = θs,∫ ∞

−∞
g
(
Zt(x)

)
exp

(∫ t

0

∇ · (αb)
(
Zs(x)

)
ds
)
dt

=

∫ ∞

−∞
g
(
Xθt(x)

)
exp

(∫ t

0

∇ · (αb)
(
Xθs(x)

)
ds
)
dt

=

∫ ∞

−∞
g
(
Xt̃(x)

) 1

α
(
Xt̃(x)

) exp(∫ t̃

0

∇ · (αb)
(
Xs̃(x)

) 1

α
(
Xs̃(x)

) ds̃)dt̃.
It is then sufficient to show that ψ1(t) = ψ2(t) for any t ∈ R, where

ψ1(t) :=
1

α
(
Xt(x)

) exp(∫ t

0

∇ · (αb)
(
Xs(x)

) 1

α
(
Xs(x)

) ds),
ψ2(t) :=

1

α(x)
exp

(∫ t

0

(∇ · b)
(
Xs(x)

)
ds
)
.

It is easy to observe that ψ1(0) = ψ2(0). Let us consider the time derivative of ψ1

d

dt
ψ1(t) = ψ1(t)

(
− 1

α(Xt(x))

〈
∇α(Xt(x)), b(Xt(x))

〉
+∇ · (αb)

(
Xt(x)

) 1

α
(
Xt(x)

))
= ψ1(t)

(
∇ · b)

(
Xt(x)

)
.

It is clear that ψ2(t) satisfies the same ODE and thus ψ1 = ψ2.

B.3 Remarks on the discrete-time analogy of (7)

Let us briefly explain how (7) connects to the method in [42] by time discretization. Suppose
N− = t−/h and N+ = t+/h, where h ≪ 1 is the time step size; for simplicity of notation, let us
assume that N− and N+ are simply integers. By discretizing the time integration for the finite-time
NEIS scheme in (7),

Ex∼ρ0

[∫ t+

t−

F (1)
t (x)∫ t−T−

t−T+
F (0)

s (x) ds
dt
]
≈ Ex∼ρ0

[N+∑
k=N−

e−U1

(
Xkh(x)

)
Jkh(x)∑k−N−

j=k−N+
e−U0

(
Xjh(x)

)
Jjh(x)

]

= Ex∼ρ0

[N+∑
k=N−

e−(U1−U0)
(
T−k(x)

)
ρ0
(
T−k(x)

)
JT−k(x)∑k−N−

j=k−N+
ρ0
(
T−j(x)

)
JT−j (x)

]
,

where we denote T (·) := X−h(·), and JT−j (x) :=
∣∣∣det(∇T−j(x)

)∣∣∣ is the Jacobian for the map

T−j . Then by choosing N− = −K and N+ = 0, we have

Ex∼ρ0

[K∑
k=0

e−(U1−U0)
(
T k(x)

)
wk(x)

]
, wk(x) =

ρ0
(
T k(x)

)
JT k(x)∑−k+K

j=−k ρ0
(
T−j(x)

)
JT−j (x)

,

which are Eqs. (8) and (10) in arXiv v1 of [42].

B.4 Remark on the relation between finite-time and infinite-time NEIS

In what follows, we briefly elaborate on the relation between the finite-time and infinite-time NEIS
schemes. Suppose we fix −∞ < t− < 0 < t+ < ∞ and consider a fixed valid flow b for the
infinite-time NEIS, i.e.,

Ab(x) ≡
∫
R exp

(
− U1(Xt(x)) +

∫ t

0
∇ · b(Xr(x)) dr

)
dt∫

R exp
(
− U0(Xt(x)) +

∫ t

0
∇ · b(Xr(x)) dr

)
dt

is well-defined for almost all x ∈ Ω, where the state Xt(x) solves the ODE d
dtXt(x) = b(Xt(x))

for any x ∈ Ω. The superscript in Ab is used to emphasize that it is the estimator for this particular
flow b and similar notations are used below.

22

Next we consider a family of rescaled flow bα parameterized by α > 0, defined as

bα(x) = αb(x), ∀x ∈ Ω.

Let us study its estimator for the finite-time NEIS:

Abα

t−,t+(x)
(8)
=

∫ t+

t−

exp
(
− U1(Zt(x)) +

∫ t

0
∇ · bα(Zr(x)) dr

)∫ t−t−
t−t+

exp
(
− U0(Zs(x)) +

∫ s

0
∇ · bα(Zr(x)) dr

)
ds

dt, (33)

where Zt(x) solves the ODE d
dtZt(x) = bα(Zt(x)) for any x ∈ Ω. From Appendix B.2, we already

know that Zt(x) = Xαt(x) for any x ∈ Ω and t ∈ R. By change of time variables t = t̃/α, s = s̃/α
and r = r̃/α, we have

Abα

t−,t+(x) =

∫ αt+

αt−

exp
(
− U1(Xt̃(x)) +

∫ t̃

0
∇ · b(Xr̃(x)) dr̃

)∫ t̃−αt−

t̃−αt+
exp

(
− U0(Xs̃(x)) +

∫ s̃

0
∇ · b(Xr̃(x)) dr̃

)
ds̃

dt̃

=

∫
R

χ[αt−,αt+](t̃) exp
(
− U1(Xt̃(x)) +

∫ t̃

0
∇ · b(Xr̃(x)) dr̃

)∫ t̃−αt−

t̃−αt+
exp

(
− U0(Xs̃(x)) +

∫ s̃

0
∇ · b(Xr̃(x)) dr̃

)
ds̃

dt̃.

For any t̃ ∈ R, as α→ ∞, the integrand in the last equation converges pointwise to

exp
(
− U1(Xt̃(x)) +

∫ t̃

0
∇ · b(Xr̃(x)) dr̃

)∫
R exp

(
− U0(Xs̃(x)) +

∫ s̃

0
∇ · b(Xr̃(x)) dr̃

)
ds̃
.

If we heuristically swap the order of taking the limit α→ ∞ and the integral with respect to t̃ (which
should generally hold for most examples), we end up with an identity:

lim
α→∞

Abα

t−,t+(x) =

∫
R

exp
(
− U1(Xt̃(x)) +

∫ t̃

0
∇ · b(Xr̃(x)) dr̃

)∫
R exp

(
− U0(Xs̃(x)) +

∫ s̃

0
∇ · b(Xr̃(x)) dr̃

)
ds̃

dt̃ ≡ Ab(x).

The above relation heuristically justifies that due to the space-time rescaling, in the limit of large
magnitude of the flow (i.e., α → ∞ above), it does not matter how t−, t+ are chosen as long as
t− < 0 < t+. In particular, if the flow b is a zero-variance dynamics, i.e., Ab(x) = Z1 for x ∈ Ω
almost surely, then in the finite-time NEIS, the flow bα = αb (with α≫ 1) should be approximately
a zero-variance dynamics for the finite-time scheme. The finite-time NEIS scheme may not have
explicit analytical results about zero-variance dynamics in the same way as the infinite-time NEIS
scheme; however, due to the above discussed relation, the finite-time version still possesses the ability
to handle and learn an approximately zero-variance dynamics, which is good enough in practice, e.g.,
during training the optimal flow in Section 5.

C The first-order perturbation of the variance for the finite-time scheme

Here we study how the variance (or equivalently, the second moment) of the estimator depends on b,
since the performance of the finite-time NEIS scheme (7) largely depends on this choice. More
specifically, in the following proposition, we study how the second moment changes under a small
perturbation of b. The expression (34) below will be useful for training optimal dynamics in Section 5
(see also Appendix I for details).
Proposition C.1. Suppose b ∈ B and for any perturbation δb ∈ C∞

c (Ω,Rd), denote bϵ := b+ ϵδb.
Then,

d

dϵ
Mt−,t+(b+ ϵδb)

∣∣∣
ϵ=0

= 2Ex∼ρ0

[
At−,t+(x)

(∫ t+

t−

G(1)
t (x)

∫ t−t−
t−t+

F (0)
s (x) ds−F (1)

t (x)
∫ t−t−
t−t+

G(0)
s (x) ds(∫ t−t−

t−t+
F (0)

s (x) ds
)2 dt

)]
,

(34)

23

where for k ∈ {0, 1}, we define

G(k)
t (x) := F (k)

t (x)

〈
−∇Uk

(
Xt(x)

)
,Yt(x)

〉
+

∫ t

0

〈
∇(∇ · b)

(
Xs(x)

)
,Ys(x)

〉
ds

+

∫ t

0

(∇ · δb)
(
Xs(x)

)
ds

 , (35)

and Yt(x) is the solution of the following ODE:

d

dt
Yt(x) = ∇b

(
Xt(x)

)
Yt(x) + δb

(
Xt(x)

)
, Y0(x) = 0. (36)

The expression of the functional derivative
δMt−,t+

(b)

δb (not presented in this work) for the finite-time
case can be derived in the same way as Lemma D.8 below for the infinite-time case. However, it
appears that the expression of

δMt−,t+
(b)

δb is too complicated to provide useful analytical results.

Proof. Let us perturb b by ϵδb where ϵ≪ 1. Let us consider

d

dt
Xt(x) = b

(
Xt(x)

)
,

d

dt
Xϵ

t (x) = bϵ
(
Xϵ

t (x)
)
≡ (b+ ϵδb)

(
Xϵ

t (x)
)
,

with a fixed initial condition X0(x) = Xϵ
0(x) = x. For a small ϵ, we can expect that Xt(x) ≈ Xϵ

t (x)

and also we know X0
t (x) ≡ Xt(x). Define F (k,ϵ)

t (x) for the dynamics bϵ in the same way as in (6),
namely,

F (k,ϵ)
t (x) := exp

(
− Uk

(
Xϵ

t (x)
)
+

∫ t

0

(∇ · bϵ)
(
Xϵ

s(x)
)
ds
)
.

By these notations,

Mt−,t+(b
ϵ) = Ex∼ρ0

[(∫ t+

t−

F (1,ϵ)
t (x)∫ t−t−

t−t+
F (0,ϵ)

s (x) ds
dt
)2]

.

Then we take the derivative of Mt−,t+(b
ϵ) with respect to ϵ:

d

dϵ
Mt−,t+(b

ϵ)

= 2Ex∼ρ0

(∫ t+

t−

F (1,ϵ)
t (x)∫ t−t−

t−t+
F (0,ϵ)

s (x) ds
dt
)

×
(∫ t+

t−

d
dϵF

(1,ϵ)
t (x)

∫ t−t−
t−t+

F (0,ϵ)
s (x) ds−F (1,ϵ)

t (x)
∫ t−t−
t−t+

d
dϵF

(0,ϵ)
s (x) ds(∫ t−t−

t−t+
F (0,ϵ)

s (x) ds
)2 dt

)
 .

Next, we need to compute d
dϵF

(k,ϵ)
t (x). Let us first consider the perturbation to the trajectory. Let

Y ϵ
t (x) :=

d
dϵ

(
Xϵ

t (x)
)

and then

d

dt
Y ϵ
t (x) =

d

dϵ

((
b+ ϵδb)

(
Xϵ

t (x)
))

= ∇b
(
Xϵ

t (x)
)
Y ϵ
t (x) + δb

(
Xϵ

t (x)
)
+ ϵ
(
∇δb

(
Xϵ

t (x)
))

Y ϵ
t (x),

Y ϵ
0 (x) = 0.

When ϵ = 0, Y 0
t (x) is the solution to

d

dt
Y 0
t (x) = ∇b

(
Xt(x)

)
Y 0
t (x) + δb

(
Xt(x)

)
, Y 0

0 (x) = 0.

24

Now we are ready to explicitly write down d
dϵF

(k,ϵ)
t (x). It is straightforward to derive that

d

dϵ
F (k,ϵ)

t (x)

= F (k,ϵ)
t (x)

d

dϵ

(
− Uk

(
Xϵ

t (x)
)
+

∫ t

0

∇ · (b+ ϵδb)
(
Xϵ

s(x)
)
ds
)

= F (k,ϵ)
t (x)

〈
−∇Uk

(
Xϵ

t (x)
)
,Y ϵ

t (x)
〉

+

∫ t

0

〈
∇(∇ · b)

(
Xϵ

s(x)
)
,Y ϵ

s (x)
〉
+ (∇ · δb)

(
Xϵ

s(x)
)
ds

+ ϵ

∫ t

0

〈
∇(∇ · δb)

(
Xϵ

s(x)
)
,Y ϵ

s (x)
〉
ds

 .

When we let ϵ = 0, we have

G(k)
t (x) :=

d

dϵ
F (k,ϵ)

t (x)
∣∣∣
ϵ=0

= F (k)
t (x)

〈
−∇Uk

(
Xt(x)

)
,Y 0

t (x)
〉

+

∫ t

0

〈
∇(∇ · b)

(
Xs(x)

)
,Y 0

s (x)
〉
+ (∇ · δb)

(
Xs(x)

)
ds

 .

Finally, we arrive at the conclusion by combining previous results and dropping the superscript in
Y 0
t (x) for simplicity.

D The first-order perturbation of the variance for the infinite-time scheme

The goal of this section is to derive the functional derivative of M(b) with respect to b, denoted as
δM(b)

δb , defined as follows: for any δb ∈ C∞
c (Ω,Rd) such that b+ ϵδb ∈ B∞ for small enough ϵ,

we have
d

dϵ
M(b+ ϵδb)

∣∣∣
ϵ=0

=

∫
Ω

〈δM(b)

δb
, δb
〉
. (37)

Since M and Var only differ by a constant (which is independent of b), it is apparent that δVar(b)
δb ≡

δM(b)
δb .

Proposition D.1. The functional derivative δM(b)
δb : Ω → Rd has the following form

δVar(b)
δb

(x) ≡ δM(b)

δb
(x)

=
2∇A(x)

B(x)

(∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt−
∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt

)
.

(38)

Remark D.2. The proof of the last formula is slightly formal: for instance, conditions on b to ensure
the existence of ∇A are not discussed.

Recall the expression of B from (24). The proof of Proposition D.1 is given in Appendix D.2: it
relies on a few explicit formulas, that we state first.

D.1 Some explicit formulas

We need some explicit formulas for Yt(x) (36) and G(k)
t (x) (35). We notice that G(k) depends on

Y·(·) and δb linearly, and Yt(x) also depends on δb linearly. Therefore, the first step is to rewrite the
expression of Yt(x) more explicitly in terms of δb.

Lemma D.3. Suppose the dynamics b ∈ B and δb ∈ C∞
c (Ω,Rd). Then we have

Yt(x) =

∫ t

0

Ct,s(x) δb
(
Xs(x)

)
ds, ∀x ∈ Ω. (39)

25

The kernel Ct,s(x) ∈ Rd×d has the following form

Ct,s(x) =

expT←

(∫ t

s

∇b
(
Xr(x)

)
dr
)
, if t ≥ s ≥ 0,(

expT←

(∫ s

t

∇b
(
Xr(x)

)
dr
))−1

, if t ≤ s ≤ 0,

(40)

where expT← is the chronological time-ordered operator exponential.

Proof. By plugging the ansatz (39) into (36), we immediately know that Cs,s(x) = Id for all s ∈ R
and

∂tCt,s(x) = ∇b
(
Xt(x)

)
Ct,s(x). (41)

This linear ODE has an explicit solution as in (40), by introducing the time-ordered operator expo-
nential.

Next, we shall rewrite G(k)
t (x).

Lemma D.4. We can rewrite G(k)
t (x) as follows

G(k)
t (x) = F (k)

t (x)
(∫ t

0

〈
V

(k)
t,s (x), δb

(
Xs(x)

)〉
+ (∇ · δb)

(
Xs(x)

)
ds
)
, (42)

where V
(k)
t,s (x) is defined as

V
(k)
t,s (x) := −Ct,s(x)

T∇Uk

(
Xt(x)

)
+

∫ t

s

Cr,s(x)
T∇(∇ · b)

(
Xr(x)

)
dr. (43)

Proof. Recall the expression of G(k)
t (x) from (35). After plugging (39), we have

G(k)
t (x)

(35)
= F (k)

t (x)

〈
−∇Uk

(
Xt(x)

)
,Yt(x)

〉
+

∫ t

0

〈
∇(∇ · b)

(
Xs(x)

)
,Ys(x)

〉
ds

+

∫ t

0

(∇ · δb)
(
Xs(x)

)
ds

(39)
= F (k)

t (x)

−
∫ t

0

〈
Ct,s(x)

T∇Uk

(
Xt(x)

)
, δb
(
Xs(x)

)〉
ds+

∫ t

0

(∇ · δb)
(
Xs(x)

)
ds

+

∫ t

0

∫ s

0

〈
Cs,r(x)

T∇(∇ · b)
(
Xs(x)

)
, δb
(
Xr(x)

)〉
dr ds

= F (k)
t (x)

−
∫ t

0

〈
Ct,s(x)

T∇Uk

(
Xt(x)

)
, δb
(
Xs(x)

)〉
ds+

∫ t

0

(∇ · δb)
(
Xs(x)

)
ds

+

∫ t

0

〈∫ t

s

Cr,s(x)
T∇(∇ · b)

(
Xr(x)

)
dr, δb

(
Xs(x)

)〉
ds

= F (k)

t (x)
(∫ t

0

〈
V

(k)
t,s (x), δb

(
Xs(x)

)〉
+ (∇ · δb)

(
Xs(x)

)
ds
)
.

Then we present a few properties, which will be useful when computing the functional derivative
δM(b)

δb . The following lemma shows how Ct,−s(·) and V
(k)
t,−s(·) change under the dynamical evolution

Xs(·).
Lemma D.5. When t ≤ −s ≤ 0 or t ≥ −s ≥ 0,

Ct,−s

(
Xs(x)

)
= Ct+s,0(x), V

(k)
t,−s

(
Xs(x)

)
= V

(k)
t+s,0(x). (44)

26

Proof. We first consider the term Ct,−s

(
Xs(x)

)
. When t ≥ −s ≥ 0,

Ct,−s

(
Xs(x)

)
=expT←

(∫ t

−s

∇b
(
Xr

(
Xs(x)

))
dr
)

=expT←

(∫ t+s

0

∇b(Xr(x)) dr
)
= Ct+s,0(x).

The case for t ≤ −s ≤ 0 can be similarly verified.

Recall from (43) that

V
(k)
t,−s

(
Xs(x)

)
(43)
=−Ct,−s

(
Xs(x)

)T∇Uk

(
Xt

(
Xs(x)

))
+

∫ t

−s

Cr,−s

(
Xs(x)

)T∇(∇ · b)
(
Xr

(
Xs(x)

))
dr

=−Ct+s,0(x)
T∇Uk

(
Xt+s(x)

)
+

∫ t+s

0

Cr,0(x)
T∇(∇ · b)

(
Xr(x)

)
dr

(43)
= V

(k)
t+s,0(x),

where to get the third line, we use the above formula (44) about Ct,−s

(
Xs(x)

)
.

The following lemma connects Ct,0 and V
(k)
t,0 with gradients.

Lemma D.6. For any x ∈ Ω and t ∈ R, we have

∇xXt(x) :=
[
∂(Xt(x))i

∂xj

]
i,j

= Ct,0(x), (45)

F (k)
t (x)V

(k)
t,0 (x) = ∇xF (k)

t (x), for k ∈ {0, 1}. (46)

As a consequence, det
(
Ct,0(x)

)
= Jt(x).

Proof. We fix an index 1 ≤ j ≤ d and consider the dynamics d
dtX̃

ϵ
t (x) = b

(
X̃ϵ

t (x)
)
, X̃ϵ

0(x) =

x+ ϵej where ej is a vector with the jth element to be one, and all other elements to be zero. Clearly,
X̃0

t (x) = Xt(x).

Let Ỹ ϵ
t (x) :=

d
dϵX̃

ϵ
t (x). Then

d

dt
Ỹ ϵ
t (x) =

d

dϵ
b
(
X̃ϵ

t (x)
)
= ∇b

(
X̃ϵ

t (x)
)
Ỹ ϵ
t (x), Ỹ ϵ

0 (x) = ej .

Moreover, when ϵ = 0, we have

d

dt
Ỹ 0
t (x) = ∇b

(
Xt(x)

)
Ỹ 0
t (x), Ỹ 0

0 (x) = ej ,

whose solution is simply the jth column of Ct,0(x). Besides, the jth column of ∇xXt(x) is given by

lim
ϵ→0

Xt(x+ ϵej)−Xt(x)

ϵ
= lim

ϵ→0

X̃ϵ
t (x)− X̃0

t (x)

ϵ
=

d

dϵ
X̃ϵ

t (x)
∣∣∣
ϵ=0

= Ỹ 0
t (x).

By combining above results, we easily know that ∇xXt(x) = Ct,0(x).

Next, for k ∈ {0, 1} and any x ∈ Ω,

∇F (k)
t (x) = F (k)

t (x)
(
−
(
∇xXt(x)

)T∇Uk

(
Xt(x)

)
+

∫ t

0

(
∇xXs(x)

)T∇(∇ · b)
(
Xs(x)

)
ds
)

= F (k)
t (x)

(
−Ct,0(x)

T∇Uk

(
Xt(x)

)
+

∫ t

0

Cs,0(x)
T∇(∇ · b)

(
Xs(x)

)
ds
)

(43)
= F (k)

t (x)V
(k)
t,0 (x).

27

D.2 Proof of Proposition D.1

We list without proof the following result for the infinite-time case, which can be derived in the same
way as Proposition C.1.
Lemma D.7. Let bϵ := b+ ϵδb. Suppose that for small enough ϵ, we have bϵ ∈ B∞. Then

d

dϵ
M(b+ ϵδb)

∣∣∣
ϵ=0

= 2Ex∼ρ0

[
A(x)

B(x)

(∫ ∞

−∞
G(1)
t (x) dt−A(x)

∫ ∞

−∞
G(0)
t (x) dt

)]
,

where G(k)
t (x) is defined in (35) for k = 0, 1.

Lemma D.8. The functional derivative of the second moment for the infinite-time case is

δM(b)

δb
(x) = 2

(∫ ∞

−∞
F (0)

s (x)S∞
−s

(
Xs(x)

)
−∇x

(
F (0)

s (x)G∞
−s

(
Xs(x)

))
ds

)
, (47)

where

S∞
s (x) :=

A(x)

B(x)

∫ ∞

s

F (1)
t (x)V

(1)
t,s (x) dt−

(
A(x)

)2
B(x)

∫ ∞

s

F (0)
t (x)V

(0)
t,s (x) dt, if s > 0;

−A(x)

B(x)

∫ s

−∞
F (1)

t (x)V
(1)
t,s (x) dt+

(
A(x)

)2
B(x)

∫ s

−∞
F (0)

t (x)V
(0)
t,s (x) dt, if s < 0.

G∞
s (x) :=

A(x)

B(x)

∫ ∞

s

F (1)
t (x) dt−

(
A(x)

)2
B(x)

∫ ∞

s

F (0)
t (x) dt, if s > 0;

−A(x)

B(x)

∫ s

−∞
F (1)

t (x) dt+

(
A(x)

)2
B(x)

∫ s

−∞
F (0)

t (x) dt, if s < 0.

When s = 0, S∞
0 (·),G∞

0 (·) are not specified above, because they will not affect the functional
derivative δM(b)

δb by changing values at a single point.

Proof. In Lemma D.7, we need to simplify the term
∫∞
−∞ G(k)

t (x) dt. By plugging the formula of
G(k) from (42), we have∫ ∞

−∞
G(k)
t (x) dt

(42)
=

∫ ∞

−∞
F (k)

t (x)
(∫ t

0

〈
V

(k)
t,s (x), δb

(
Xs(x)

)〉
+ (∇ · δb)

(
Xs(x)

)
ds
)
dt

=

∫ ∞

0

∫ ∞

s

F (k)
t (x)

〈
V

(k)
t,s (x), δb

(
Xs(x)

)〉
+ F (k)

t (x)(∇ · δb)
(
Xs(x)

)
dtds

−
∫ 0

−∞

∫ s

−∞
F (k)

t (x)
〈
V

(k)
t,s (x), δb

(
Xs(x)

)〉
+ F (k)

t (x)(∇ · δb)
(
Xs(x)

)
dtds.

By plugging the last equation into Lemma D.7 and with straightforward simplification, we can verify
that

d

dϵ
M(b+ ϵδb)

∣∣∣
ϵ=0

= 2Ex∼ρ0

[∫ ∞

−∞

〈
S∞

s (x), δb
(
Xs(x)

)〉
ds+

∫ ∞

−∞
G∞
s (x)(∇ · δb)

(
Xs(x)

)
ds
]

= 2

∫ ∞

−∞

∫
Ω

ρ0(x)
(〈

S∞
s (x), δb

(
Xs(x)

)〉
+ G∞

s (x)(∇ · δb)
(
Xs(x)

))
dxds

x̃ = Xs(x)
= 2

∫ ∞

−∞

∫
Ω

(
ρ0
(
X−s(x̃)

)〈
S∞

s

(
X−s(x̃)

)
, δb(x̃)

〉
J−s(x̃)

+ ρ0
(
X−s(x̃)

)
G∞
s

(
X−s(x̃)

)
(∇ · δb)(x̃)J−s(x̃)

)
dx̃ds

28

(6)
= 2

∫ ∞

−∞

∫
Ω

F (0)
−s (x)

〈
S∞

s

(
X−s(x)

)
, δb(x)

〉
−
〈
∇
(
F (0)

−s (x)G∞
s

(
X−s(x)

))
, δb(x)

〉
dxds.

The integration by parts in the last line is valid because δb vanishes at the boundary ∂Ω. By comparing
the last equation with (37), we can immediately obtain (47) after straightforward simplifications.

Then we need to simplify S∞
−s

(
Xs(x)

)
and G∞

−s

(
Xs(x)

)
.

Lemma D.9. S∞
−s

(
Xs(x)

)
and G∞

−s

(
Xs(x)

)
have the following form

S∞
−s

(
Xs(x)

)
=

−A(x)

B(x)

∫ 0

−∞
∇F (1)

t (x) dt+

(
A(x)

)2
B(x)

∫ 0

−∞
∇F (0)

t (x) dt, if s > 0,

A(x)

B(x)

∫ ∞

0

∇F (1)
t (x) dt−

(
A(x)

)2
B(x)

∫ ∞

0

∇F (0)
t (x) dt, if s < 0.

G∞
−s

(
Xs(x)

)
=

−A(x)

B(x)

∫ 0

−∞
F (1)

t (x) dt+

(
A(x)

)2
B(x)

∫ 0

−∞
F (0)

t (x) dt, if s > 0,

A(x)

B(x)

∫ ∞

0

F (1)
t (x) dt−

(
A(x)

)2
B(x)

∫ ∞

0

F (0)
t (x) dt, if s < 0.

Proof. When s > 0,

S∞
−s

(
Xs(x)

)
= −

A
(
Xs(x)

)
B
(
Xs(x)

) ∫ −s

−∞
F (1)

t

(
Xs(x)

)
V

(1)
t,−s

(
Xs(x)

)
dt

+

(
A
(
Xs(x)

))2
B
(
Xs(x)

) ∫ −s

−∞
F (0)

t

(
Xs(x)

)
V

(0)
t,−s

(
Xs(x)

)
dt

(25),(26),(44)
= − A(x)

B(x)

∫ −s

−∞
F (1)

t+s(x)V
(1)
t+s,0(x) dt+

(
A(x)

)2
B(x)

∫ −s

−∞
F (0)

t+s(x)V
(0)
t+s,0(x) dt

= − A(x)

B(x)

∫ 0

−∞
F (1)

t (x)V
(1)
t,0 (x) dt+

(
A(x)

)2
B(x)

∫ 0

−∞
F (0)

t (x)V
(0)
t,0 (x) dt

(46)
= − A(x)

B(x)

∫ 0

−∞
∇F (1)

t (x) dt+

(
A(x)

)2
B(x)

∫ 0

−∞
∇F (0)

t (x) dt,

which is clearly independent of s from this expression. Similarly, when s < 0,

S∞
−s

(
Xs(x)

)
=

A
(
Xs(x)

)
B
(
Xs(x)

) ∫ ∞

−s

F (1)
t

(
Xs(x)

)
V

(1)
t,−s

(
Xs(x)

)
dt

−

(
A
(
Xs(x)

))2
B
(
Xs(x)

) ∫ ∞

−s

F (0)
t

(
Xs(x)

)
V

(0)
t,−s

(
Xs(x)

)
dt

=
A(x)

B(x)

∫ ∞

−s

F (1)
t+s(x)V

(1)
t+s,0(x) dt−

(
A(x)

)2
B(x)

∫ ∞

−s

F (0)
t+s(x)V

(0)
t+s,0(x) dt

=
A(x)

B(x)

∫ ∞

0

F (1)
t (x)V

(1)
t,0 (x) dt−

(
A(x)

)2
B(x)

∫ ∞

0

F (0)
t (x)V

(0)
t,0 (x) dt

=
A(x)

B(x)

∫ ∞

0

∇F (1)
t (x) dt−

(
A(x)

)2
B(x)

∫ ∞

0

∇F (0)
t (x) dt,

which is again independent of s. We can similarly simplify G∞
−s

(
Xs(x)

)
.

29

By plugging the formula in Lemma D.9 into (47),∫ ∞

−∞
F (0)

s (x)G∞
−s

(
Xs(x)

)
ds

=

∫ ∞

0

F (0)
s (x) ds

(
− A(x)

B(x)

∫ 0

−∞
F (1)

t (x) dt+

(
A(x)

)2
B(x)

∫ 0

−∞
F (0)

t (x) dt
)

+

∫ 0

−∞
F (0)

s (x) ds
(A(x)

B(x)

∫ ∞

0

F (1)
t (x) dt−

(
A(x)

)2
B(x)

∫ ∞

0

F (0)
t (x) dt

)
=
A(x)

B(x)

(∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt−

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt
)
.

Besides,∫ ∞

−∞
F (0)

s (x)S∞
−s

(
Xs(x)

)
ds

=− A(x)

B(x)

∫ ∞

0

F (0)
s (x) ds

∫ 0

−∞
∇F (1)

t (x) dt+

(
A(x)

)2
B(x)

∫ ∞

0

F (0)
s (x) ds

∫ 0

−∞
∇F (0)

t (x) dt

+
A(x)

B(x)

∫ 0

−∞
F (0)

s (x) ds

∫ ∞

0

∇F (1)
t (x) dt−

(
A(x)

)2
B(x)

∫ 0

−∞
F (0)

s (x) ds

∫ ∞

0

∇F (0)
t (x) dt.

By combining previous results,

1

2
× δM(b)

δb
(x)

(47)
=

∫ ∞

−∞
F (0)

s (x)S∞
−s

(
Xs(x)

)
ds−∇

(∫ ∞

−∞
F (0)

s (x)G∞
−s

(
Xs(x)

)
ds
)

= −A(x)

B(x)

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
∇F (1)

t (x) dt+

(
A(x)

)2
B(x)

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
∇F (0)

t (x) dt

+
A(x)

B(x)

∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

∇F (1)
t (x) dt−

(
A(x)

)2
B(x)

∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

∇F (0)
t (x) dt

−∇
(A(x)

B(x)

)(∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt−

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt
)

− A(x)

B(x)
∇
(∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt−

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt
)

=

(
A(x)

)2
B(x)

(∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
∇F (0)

t (x) dt−
∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

∇F (0)
t (x) dt

)
−∇

(A(x)

B(x)

)(∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt−

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt
)

+
A(x)

B(x)

(∫ ∞

0

∇F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt−
∫ 0

−∞
∇F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt

)
.

It can be directly verify that

∇
(A
B
)
(x) =

A(x)

B(x)

(∫∞
−∞ ∇F (1)

t (x) dt∫∞
−∞ F (1)

t (x) dt
− 2

∫∞
−∞ ∇F (0)

t (x) dt∫∞
−∞ F (0)

t (x) dt

)
.

By plugging this into the expression of the functional derivative and dividing both sides by A
B ,

B(x)
2A(x)

× δM(b)

δb
(x)

30

=

∫∞
−∞ F (1)

t (x) dt

B(x)

(∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
∇F (0)

t (x) dt−
∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

∇F (0)
t (x) dt

)
−
∫∞
−∞ ∇F (1)

t (x) dt∫∞
−∞ F (1)

t (x) dt

(∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt−

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t dt
)

+ 2

∫∞
−∞ ∇F (0)

t (x) dt∫∞
−∞ F (0)

t (x) dt

(∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt−

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt
)

+
(∫ ∞

0

∇F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt−
∫ 0

−∞
∇F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt

)
.

We keep the terms involving
∫
∇F (1)

t (x) dt untouched and we only try to simplify terms involving∫
∇F (0)

t (x) dt. The coefficient for
∫∞
0

∇F (0)
t (x) dt is

1

B(x)

−
∫ ∞

−∞
F (1)

t (x) dt

∫ 0

−∞
F (0)

t (x) dt+ 2

∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt

− 2

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt+

∫ ∞

−∞
F (0)

t (x) dt

∫ 0

−∞
F (1)

t (x) dt

=

1

B(x)

(∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt−

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt
)
.

Similarly, the coefficient for
∫ 0

−∞ ∇F (0)
t (x) dt is

1

B(x)

∫ ∞

−∞
F (1)

t (x) dt

∫ ∞

0

F (0)
t (x) dt+ 2

∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt

− 2

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt−
∫ ∞

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt

=

1

B(x)

(∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt−

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt
)
.

Hence,

B(x)
2A(x)

× δM(b)

δb
(x)

=
(∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt−

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt
)
×

(∫∞
−∞ ∇F (0)

t (x) dt∫∞
−∞ F (0)

t (x) dt
−
∫∞
−∞ ∇F (1)

t (x) dt∫∞
−∞ F (1)

t (x) dt

)
=
(∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt−

∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt
)(

−∇ ln(A)(x)
)
.

After straightforward simplification, we obtain (38). □

E Proof of Proposition 3.1 and discussion about its assumptions and
implications

In this section, we prove Proposition 3.1, and discuss its assumptions (in particular the Morse function
condition) as well as some of its implications (including the settings that go beyond the ones in the
proposition). In particular, we solve the Poisson equation (11) when ρ0 is the standard Gaussian
density in Rd and ρ1 is the density of a Gaussian mixture distribution.

31

E.1 Proof of Proposition 3.1 when D = 1

We proceed in three steps:

Step 1: We shall first establish the limiting behavior of the dynamics.

More specifically, the trajectory t 7→ Xt(x) will converge to a local maximum of V in the forward
direction and converge to a local minimum in the backward direction, except at a set of points with
measure zero.
Lemma E.1. For any x ∈ Ω, we have lim|t|→∞ |b(Xt(x))| = 0.

Proof. We only need to show one direction t→ ∞ and the other case follows similarly. Assume that
the conclusion does not hold, then there exists ϵ > 0 and a monotone increasing sequence {tk}∞k=1

such that
∣∣b(Xtk(x)

)∣∣ ≥ ϵ and limk→∞ tk = ∞. Consider

d

dt

∣∣b(Xt(x)
)∣∣2 =

d

dt

∣∣∇V (Xt(x)
)∣∣2

= 2
〈
∇V

(
Xt(x)

)
,∇2V

(
Xt(x)

)
∇V

(
Xt(x)

)〉
≥ −2C

∣∣b(Xt(x)
)∣∣2,

where C := supx∈Ω

∥∥∇2V (x)
∥∥ <∞. By Grönwall’s inequality,∣∣b(Xt(x)

)∣∣ ≥ ∣∣b(Xs(x)
)∣∣e−C(t−s),

for all t ≥ s ≥ 0. Without loss of generality, we can ensure that tk − tk−1 ≥ 1. Hence,

V
(
Xt(x)

)
− V

(
X0(x)

)
=

∫ t

0

∣∣b(Xs(x)
)∣∣2 ds ≥ ∞∑

k=1

χ[0,t](tk+1)

∫ tk+1

tk

ϵe−C(t−tk) dt

= sup{k : tk+1 ≤ t}
ϵ
(
1− e−C

)
C

,

which will diverge to infinity as t → ∞. This contradicts with the boundedness of V and thus the
assumption does not hold.

Lemma E.2. Suppose x is not in the stable nor unstable manifold of a saddle point of V . Then the
trajectory t 7→ Xt(x) must converge to a local maximum of V in the forward direction and a local
minimum of V in the backward direction.

Proof. Since the torus Ω = [0, 1]d is bounded, the trajectory {Xt(x)}t≥0 must be bounded and there
exists an increasing sequence {tk}∞k=1 such that

{
Xtk(x)

}∞
k=1

is convergent by Bolzano-Weierstrass
theorem and let us denote the limit as x⋆. By Lemma E.1, we know b(x⋆) = 0d and thus x⋆ is a
critical point. By the assumption, x⋆ is not a saddle point nor a local minimum, that is, x⋆ must be
a local maximum of V . By the assumption that V is a Morse function, the critical point x⋆ has a
non-degenerate Hessian. After the trajectory enters its basin of attraction (containing an open ball
around x⋆), the trajectory t 7→ Xt(x) will eventually converge to x⋆. The backward direction can be
proved in a similar way.

Lemma E.3. Under the same assumption as in Lemma E.2, we know
∫∞
0

F (k)
t (x) dt < ∞ and∫ 0

−∞ F (k)
t (x) dt <∞. In particular, lim|t|→∞ F (k)

t (x) = 0 and lim|t|→∞ Jt(x) = 0.

Proof. Without loss of generality, we only consider the forward branch. Since V is assumed to be a
Morse function, the Hessian ∇2V (x⋆) < 0 is non-degenerate and 0 > tr

(
∇2V (x⋆)

)
= ∆V (x⋆).

Therefore,

lim
t→∞

∇ · b
(
Xt(x)

)
= ∇ · b(x⋆) = ∆V (x⋆) < 0. (48)

Since ρk = e−Uk/Zk is bounded on the torus, we know∫ ∞

0

F (k)
t (x) dt =

∫ ∞

0

e−Uk

(
Xt(x)

)
Jt(x) dt ≤ C

∫ ∞

0

Jt(x) dt = C

∫ ∞

0

e
∫ t
0
∇·b
(
Xs(x)

)
ds dt,

32

where C := supx∈Ω max{e−U0(x), e−U1(x)} <∞ herein. From (48), there exists β > 0 and τ > 0
such that ∇ · b(Xs(x)) ≤ −β for all s ≥ τ . Then if t ≥ τ ,∫ t

0

∇ · b
(
Xs(x)

)
ds ≤

∫ τ

0

∇ · b
(
Xs(x)

)
ds− β(t− τ),

and therefore,∫ ∞

0

F (k)
t (x) dt ≤ C

(∫ τ

0

e
∫ t
0
∇·b
(
Xs(x)

)
dt+

∫ ∞

τ

e
∫ τ
0

∇·b
(
Xs(x)

)
dse−β(t−τ) dt

)
<∞.

In particular, when t ≥ τ ,

Jt(x) ≤ e
∫ τ
0

∇·b
(
Xs(x)

)
dse−β(t−τ),

which converges to zero exponentially fast as t → ∞. The same conclusion holds for F (k)
t (x) ≡

e−Uk

(
Xt(x)

)
Jt(x) when t→ ∞.

Step 2: We verify that b = ∇V is a zero-variance dynamics.

We need to show that
∫∞
−∞(ρ1 − ρ0)

(
Xt(x)

)
Jt(x) dt = 0 almost everywhere on Ω.

Under the same assumption as Lemma E.2, let us consider∫ ∞

−∞
(ρ1 − ρ0)

(
Xt(x)

)
Jt(x) dt =

∫ ∞

−∞
∆V

(
Xt(x)

)
e
∫ t
0
∆V
(
Xs(x)

)
ds dt

=

∫ ∞

−∞

d

dt
Jt(x) dt

= lim
t→∞

Jt(x)− lim
t→−∞

Jt(x) = 0.

The last line comes from Lemma E.3. The validity of the above equation almost everywhere on Ω
will be explained in Step 3.

Step 3: We prove that b = ∇V ∈ B∞ in the sense of Definition A.4, i.e., such a gradient ascent
dynamics is a valid one for the infinite-time NEIS scheme.

If we can find two open subsets D1, D2 such that x 7→
∫∞
0

F (k)
t (x) dt is continuous on D1, x 7→∫ 0

−∞ F (k)
t (x) dt is continuous on D2, and both Ω\D1 and Ω\D2 have Lebesgue measure zero, then

clearly ℧(b) ⊃ D1 ∩D2 and b ∈ B∞.

Due to the symmetric role of forward and backward branches of trajectories, it is then sufficient to
prove the following lemma.

Lemma E.4. There exists an open subset D ⊂ Ω such that x 7→
∫∞
0

F (k)
t (x) is continuous and

Ω\D has measure zero.

Proof. Let us denote the local maxima of V as X1,X2, · · · ,Xr. The index r < ∞ because V
is a Morse function and Ω is compact. Since ∇2V (Xi) < 0 for 1 ≤ i ≤ r, there exists a local
neighborhood Bδi(Xi) such that limt→∞ Xt(z) = Xi if z ∈ Bδi(Xi). Hence, it is not hard to
characterize the basin of attraction of Xi

Oi =
{
Xt(x) : x ∈ Bδi(Xi), t ≤ 0

}
which is open. Then define an open subset D := ∪r

i=1Oi. By Lemma E.2, we know Ω\D has
Lebesgue measure zero, since there is only a finite number of critical points and the stable/unstable
manifold of saddle points has measure zero. Next, we still need to verify z 7→

∫∞
0

F (k)
t (z) dt is

continuous at an arbitrary point x ∈ D. Since D = ∪r
i=1Oi and Oi are open and disjoint, it is

sufficient to verify this conclusion for x ∈ Oi for an arbitrary index i.

By the smoothness of V , there exists a local neighborhood Oδ :=
{
z ∈ Oi : V (Xi)− δ < V (z) ≤

V (Xi)
}

such that (∇·b)(z)
(∇·b)(Xi)

∈ (12 ,
3
2) for every z ∈ Oδ. Let M = sup

{
max{e−U1(x), e−U0(x)} :

33

x ∈ Ω
}

. We know M < ∞ because Ω is compact and U0, U1 are smooth. Define τ := inf{t ≥
1 : Xt(x) ∈ Oδ}. Due to the smoothness of b, for any integer j ≥ 2, we can choose a small
neighborhood Bδj (x) such that Xt(z) ∈ Oδ for all t ≥ jτ and for all z ∈ Bδj (x) (note that Oδ is
automatically a trapping region of b by construction). Then when z ∈ Bδj (x),∫ ∞

jτ

F (k)
t (z) dt ≤

∫ ∞

jτ

MJt(z) dt

≤
∫ ∞

jτ

MJjτ (z)e
(∇·b)(Xi)

1
2 (t−jτ) dt

≤ 2MJjτ (z)
1

−(∇ · b)(Xi)

=
2M

−(∇ · b)(Xi)

(
Jjτ (z)− Jjτ (x) + Jjτ (x)

)
.

For an arbitrary ϵ > 0, by Lemma E.3, we can pick j large enough such that Jjτ (x) <
−(∇·b)(Xi)

2M
ϵ
6 .

Next we can accordingly pick δj small enough such that Jjτ (z) − Jjτ (x) <
−(∇·b)(Xi)

2M
ϵ
6 for all

z ∈ Bδj (x). In this way, we can ensure that∫ ∞

jτ

F (k)
t (z) ≤ ϵ

6
+
ϵ

6
=
ϵ

3
, ∀z ∈ Bδj (x). (49)

Furthermore, due to the smoothness of b, we can choose δj (possibly even smaller) so that∣∣∣ ∫ jτ

0

F (k)
t (z) dt−

∫ jτ

0

F (k)
t (x) dt

∣∣∣ ≤ ϵ

3
, ∀z ∈ Bδj (x). (50)

The continuity of z 7→
∫ jτ

0
F (k)

t (z) dt can be easily established due to the differentiability of
z 7→ F (k)

t (z). By combining previous results, for each ϵ > 0, we can find a δj such that for any
z ∈ Bδj (x), ∣∣∣ ∫ ∞

0

F (k)
t (z) dt−

∫ ∞

0

F (k)
t (x) dt

∣∣∣
≤
∣∣∣ ∫ jτ

0

F (k)
t (z) dt−

∫ jτ

0

F (k)
t (x) dt

∣∣∣+ ∫ ∞

jτ

F (k)
t (z) dt+

∫ ∞

jτ

F (k)
t (x) dt

(49),(50)
≤ ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ.

This proves the continuity of z 7→
∫∞
0

F (k)
t (z) dt at the point x.

E.2 A remark about the general case

By Proposition 2.2, to prove that ∇V is a zero-variance dynamics, it is equivalent to prove that
b = D∇V is a zero-variance dynamics where V solves (11).

Notice that Jt(x) = e
∫ t
0
∇·(DV)

(
Xs(x)

)
ds and∫ ∞

−∞

(
ρ1(Xt(x))− ρ0(Xt(x))

)
Jt(x) dt =

∫ ∞

−∞
∇ · (D∇V)(Xt(x))Jt(x) dt

=

∫ ∞

−∞

d

dt
Jt(x) dt = lim

t→∞
Jt(x)− lim

t→−∞
Jt(x).

As long as Jt(x) vanishes when |t| → ∞, such a dynamics b = D∇V is indeed a zero-variance
dynamics.

For a point x ∈ Ω, suppose the gradient ascent trajectory under ∇V will converge to a (non-
degenerate) local maximum of V , denoted as x⋆; by Proposition 2.2, the trajectory initiated from
x under b = D∇V is the same and Xt(x) → x⋆ as t → ∞ under the flow b. Since D is strictly

34

positive, it also does not change the concavity of local extreme points: when x⋆ is a local maximum
of V (with ∇V (x⋆) = 0d and ∇2V (x⋆) < 0), then

∇b(x⋆) = ∇V (x⋆)∇D(x⋆)T +D(x⋆)∇2V (x⋆) = D(x⋆)∇2V (x⋆) < 0,

which implies that as t→ ∞,

∇ · b
(
Xt(x)

)
→ ∇ · b(x⋆) = tr

(
∇b(x⋆)

)
< 0.

By the same argument as in the case D = 1 (i.e., Lemma E.3), we can establish the validity that
Jt(x) → 0 as |t| → ∞.

E.3 A remark about the existence of Morse function

In Poisson’s equation (11), a Morse function V does not always exist for an arbitrary smooth density
function ρ1, e.g., when ρ1 = ρ0, D = 1, we know V = 0 is the solution of (11) but V = 0 is not
a Morse function. However, since Morse functions are dense in C∞(Ω,R) [4], we can always find
a Morse function such that the dynamics b = ∇V behaves almost like a zero-variance dynamics,
which is summarized in the next proposition.

Proposition E.5. Suppose Ω = [0, 1]d is a torus and U0, U1 ∈ C∞(Ω,R). Without loss of generality,
assume Z0 = Z1 = 1. For any ϵ ∈ (0, 1), there exists a Morse function V such that the dynamics
b = ∇V provides an estimator 1− ϵ ≤ A(x) ≤ 1 + ϵ for almost all x ∈ Ω in the infinite-time NEIS
method. Consequently, the variance Var(b) ≤ ϵ2.

Proof. Denote θ := inf{ρ0(x) : x ∈ Ω} ≡ e− sup{U0(x): x∈Ω} > 0 since U0 is smooth and Ω
is compact. Since both ρk = e−Uk are smooth for k = 0, 1, one could approximate ρ1 − ρ0 by
trigonometric polynomials TN (x) =

∑
|µ|∞≤N,µ̸=0d

aµe
i2π⟨µ,x⟩ such that

∥(ρ1 − ρ0)− TN∥C0(Ω) <
ϵθ

2
,

where aµ =
∫
Ω
e−i2π⟨µ,x⟩(ρ1 − ρ0)(x) dx ∈ C are Fourier coefficients, µ ∈ Zd and N ∈ N; see [7,

Theorem 16]. Let ΨN (x) =
∑

|µ|∞≤N,µ̸=0d

aµ

−4π2|µ|2 e
i2π⟨µ,x⟩ ∈ C∞(Ω,R). It is clear that ∆ΨN =

TN . As Morse functions are dense, we can find a Morse function V such that ∥V −ΨN∥C2(Ω) <
ϵθ
2

[4, Proposition 1.2.4], and in particular, ∥∆V −∆ΨN∥C0(Ω) <
ϵθ
2 . Therefore,

∥∆V − (ρ1 − ρ0)∥C0(Ω) ≤ ∥∆V −∆ΨN∥C0(Ω) + ∥∆ΨN − (ρ1 − ρ0)∥C0(Ω) ≤ ϵθ. (51)

By Proposition 3.1, we know that b = ∇V is a zero-variance dynamics for ρ̃1 := ρ0 +∆V . The
Proposition 3.1 is proved under the assumption that densities are positive smooth functions for
convenience and it is straightforward to verify that it also holds if ρ1 is an arbitrary smooth function
in Proposition 3.1. In particular, using the same argument in Appendix E.1 Step 2, we have for almost
all x ∼ ρ0,∫

R ρ̃1(Xt(x))Jt(x) dt∫
R ρ0(Xt(x))Jt(x) dt

= 1 +

∫
R ∆V (Xt(x))Jt(x) dt∫
R ρ0(Xt(x))Jt(x) dt

= 1 +
Jt(x)|t=∞

t=−∞∫
R ρ0(Xt(x))Jt(x) dt

= 1. (52)

Hence,

|A(x)− 1| (9)
=

∣∣∣∣
∫
R ρ1(Xt(x))Jt(x) dt∫
R ρ0(Xt(x))Jt(x) dt

− 1

∣∣∣∣
=

∣∣∣∣
∫
R ρ̃1(Xt(x))Jt(x) dt∫
R ρ0(Xt(x))Jt(x) dt

+

∫
R(ρ1 − ρ̃1)(Xt(x))Jt(x) dt∫

R ρ0(Xt(x))Jt(x) dt
− 1

∣∣∣∣
(52)
=

∣∣∣∣
∫
R(ρ1 − ρ̃1)(Xt(x))Jt(x) dt∫

R ρ0(Xt(x))Jt(x) dt

∣∣∣∣
≤
∫
R |(ρ1 − ρ̃1)(Xt(x))|Jt(x) dt∫

R ρ0(Xt(x))Jt(x) dt

35

(51)
≤
∫
R ϵθJt(x) dt∫
R θJt(x) dt

= ϵ.

Since we assumed Z1 = 1,

Var(b) = E0[|A|2]−
(
Z1

)2
= E0|A − Z1|2 ≤ ϵ2.

E.4 Solution of Poisson’s equation (11) for Gaussian mixtures

Lemma E.6. One solution of the Poisson’s equation ∆V = Ce−
|x−µ|2

2σ2 with d ≥ 2 on Ω = Rd is
V (x) = f(|x− µ|), where the function f : R+ → R has the derivative

f ′(r) = C2d/2−1σdr1−d

∫ r2

2σ2

0

td/2−1e−t dt ≡ C2d/2−1σdr1−dΓ
(
d/2,

r2

2σ2

)
,

where Γ
(
a, x
)
:=
∫ x

0
ta−1e−t dt is the lower incomplete gamma function.

Proof. Without loss of generality, let µ = 0d. Then a natural radial solution is given as V (x) = f(|x|)
for some scalar-valued function f . The above Poisson’s equation becomes

f ′′(|x|) + f ′(|x|)d− 1

|x|
= Ce−

|x|2

2σ2 .

By some straightforward computation,

f ′(r) = Cr−(d−1)

∫ r

0

sd−1e−s2/(2σ2) ds = C2d/2−1σdr1−d

∫ r2

2σ2

0

td/2−1e−t dt︸ ︷︷ ︸
≡Γ
(
d/2,

|r|2
2σ2

) .

Proposition E.7. Suppose V solves the following Poisson’s equation on Ω = Rd

∆V = ρ1 − ρ0

where

ρ0(x) =
1

√
2π

d
exp

(
− |x|2

2

)
,

ρ1(x) =

n∑
i=1

ωi
1√

2πσ2
i

d
exp

(
− |x− µi|2

2σ2
i

)
, n ∈ N, µi ∈ Rd, σi ∈ R+, ∀1 ≤ i ≤ n,

and µi ̸= µj if i ̸= j. Then one solution for the gradient flow dynamics b = ∇V is given as

b(x) = 2−1π−d/2

(n∑
i=1

ωi|x− µi|−d
Γ
(
d/2,

|x− µi|2

2σ2
i

)
(x− µi)− |x|−d

Γ
(
d/2,

|x|2

2

)
x

)
. (53)

Proof. We just need to apply the last lemma and the formula ∇V (x) = f ′(|x|)
|x| x if V (x) = f(|x|).

Proposition E.8. Suppose b is given in (53). Then
lim(

maxn
i=1 σi

)
→0

b(x)

=

2−1π−d/2

(∑
i ̸=j

ωi|x− µi|−d
Γ(d/2)(x− µi)− |x|−d

Γ
(
d/2,

|x|2

2

)
x

)
, if x = µj ,

2−1π−d/2

(∑
i

ωi|x− µi|−d
Γ(d/2)(x− µi)− |x|−d

Γ
(
d/2,

|x|2

2

)
x

)
, otherwise.

The limiting dynamics x 7→ lim(
maxn

i=1 σi

)
→0

b(x) is continuous on the region Rd\{µi}ni=1.

36

Proof. If x = µj , then

b(x) =
1

2πd/2

(∑
i ̸=j

ωi|x− µi|−d
Γ
(
d/2,

|x− µi|2

2σ2
i

)
(x− µi)− |x|−d

Γ
(
d/2,

|x|2

2

)
x

)
.

When σi → 0 for all i,we know Γ
(
d/2,

|µj−µi|2
2σ2

i

)
→ Γ(d/2) when i ̸= j and hence we have the

above result. Similarly, we can obtain the expression when x ̸= µj for any j.

E.5 Example: Poisson’s equation yields a zero-variance dynamics

The example for Figure 1 is

ρ0(x) = e−U0(x) = 1,

ρ1(x) ∝ e−U1(x) =
ϕ
(
x− [0.30.3]

)
+ ϕ

(
x− [0.70.3]

)
+ ϕ(x− [0.30.7]

)
3

,

ϕ(x) = e2 cos(2πx1)+2 cos(2πx2).

(54)

The periodic boundary condition in Proposition 3.1 helps to ease the technicalities in proving that the
gradient dynamics b = ∇V from solving the Poisson’s equation (11) is a zero-variance dynamics, by
removing the effect from the boundary ∂Ω. The same conclusion, however, should hold if V solves
the Poisson’s equation with Neumann boundary condition:

∆V = ρ1 − ρ0, ∇V · n = 0 on ∂Ω, (55)

where n is the normal vector of the boundary ∂Ω. We consider the same model (54) and Ω = (0, 1)2.
The potential V and flowlines of b = ∇V are visualized in Figure 3 and we can numerically verify
that A(x) = Z1 for almost all x ∈ Ω.

Figure 3: Contour plot of V and flowlines of b = ∇V for the model (54) on the domain Ω = (0, 1)2

with Neumann boundary condition.

E.6 Non-uniqueness of zero-variance dynamics

Recall from Proposition 2.2 that there are certain degrees of freedom to choose the dynamics: for
a given b1, if we choose b2 = αb1 where α ∈ C∞(Ω,R) is strictly positive, then this function α
can be absorbed into the time rescaling and it does not affect the variance of the sampling scheme.
However, even if we remove this parameterization redundancy, zero-variance dynamics may still not
be unique, e.g., due to the geometric rotational symmetry.

Proposition E.9 (Non-uniqueness). For given ρ0 and ρ1, there might exist more than one zero-
variance dynamics (let us say b1, b2) but there is no scalar-valued function α such that b2 = αb1.

37

Proof. We construct an example to prove the non-uniqueness: let d = 2, U0(x) = |x|2/2+ ln(2π)
and U1 be given by

exp
(
− U1(x)

)
= exp

(
− U0(x)

)
+

1

2π
x1x2 exp

(
− x41 − x42

)
.

We can easily verify that |x|e−x4

< 3
4e

−x2/2 for any x ∈ R. Then we know 7
16e

−U0(x) < e−U1(x) <
25
16e

−U0(x). Therefore, U1 is clearly well-defined and Z1 = 1. For the dynamics b(x) = [v1v2] with
v21 + v22 > 0, we have Jt(x) = 1 for any x ∈ Ω, t ∈ R, and∫ ∞

−∞
e−U1

(
Xt(x)

)
Jt(x) dt

=

∫ ∞

−∞
e−U0

(
Xt(x)

)
Jt(x) dt

+
1

2π

∫ ∞

−∞
(x1 + v1t)(x2 + v2t) exp

(
− (x1 + v1t)

4 − (x2 + v2t)
4
)
dt.

When either v1 = 0 or v2 = 0, we can easily verify that∫∞
−∞ e−U1

(
Xt(x)

)
Jt(x) dt∫∞

−∞ e−U0

(
Xt(x)

)
Jt(x) dt

= 1, ∀x ∈ R2.

Therefore, the variance is zero for two dynamics with orthogonal directions b = [10] and b = [01]. It
is clear that there is no scalar-valued function α such that b2 = αb1, and thus the non-uniqueness is
established.

E.7 Connection to the Beckmann’s problem.

The Poisson’s equation (11) with D = 1 is the Euler-Lagrange equation associated with

min

∫
Ω

|b(x)|p dx subject to ∇ · b = ρ1 − ρ0, (56)

when p = 2. The variational problem in (56) is known as Beckman’s problem of continuous
transportation [5]; when p = 1, it is also related to optimal transport in W1 Wasserstein distance
[35, 36].

F Explicitly solvable zero-variance dynamics

In this section, we provide some examples with explicitly solvable zero-variance dynamics. Through-
out this section, we consider Ω = Rd.

Table 1: Examples with explicitly solvable zero-variance dynamics for the infinite-time case with the
domain Ω = Rd. By Proposition 2.2, given a zero-variance dynamics b, any dynamics of the form
αb for some scalar-valued positive function α is also a zero-variance dynamics. In this table, we have
removed such a degree of freedom.

Dimension U0 and U1 b Details
d = 1 arbitrary b(x) = 1 Appendix F.2
general d U0(x) = |x|2/2+d

2 ln(2π)

U1(x) = (x − ϖ)TΣ−1(x −
ϖ)/2

b(x) = Λx+ v with
Λ = ln

(
Σ−1/2

)
,

v = −
(
Id−Σ1/2

)−1
ln
(
Σ−1/2

)
ϖ.

Appendix F.3

general d ρ0 and ρ1 have the same
marginal distribution on the or-
thogonal subspace of {cv : c ∈
R}

b(x) = v Appendix F.4

38

F.1 Some general properties

Given a b ∈ B and a distribution ρ0, we study the family of U1 such that b is a zero-variance
dynamics. Given an ODE flow map Xτ (·) based on the dynamics b, let us introduce

Uτ (x) := U0

(
X−τ (x)

)
− log

(
J−τ (x)

)
. (57)

Then ρ ∝ e−Uτ

is the push-forward distribution of the flow map Xτ (·), i.e., ρ =
(
Xτ (·)

)
#ρ0. The

family of distributions that can be written as a linear combination of such pushforward distributions
can be characterized by

F :=
{
U : e−U ∈ Span

{
e−Uτ}

τ∈R

}
.

We have:
Proposition F.1. For every U1 ∈ F, the variance Var(b) (if well-defined) is exactly zero, i.e., if the
distribution ρ1 ∝ e−U1 is a linear combination of push-forward distributions by the ODE flows maps,
then Z1 can be estimated with zero-variance by the infinite-time NEIS scheme.

This proposition is proven in Appendix F.5 below. In words it says that, if we can learn a perfect
neural ODE such that ρ1 = Xτ (·)#ρ0 for some τ , then such a dynamics is also the optimal one (i.e.,
zero-variance dynamics) for the infinite-time NEIS scheme. Conversely, if U /∈ F, then is it still
possible that Var(b) = 0? The answer is positive:
Proposition F.2. The exists a dynamics b ∈ B and a ρ1 ∝ e−U1 such that Z1 can be computed with
zero-variance but ρ1 does not need to be a linear combination of

{
Xτ (·)#ρ0

}
τ∈R (namely, U1 /∈ F).

This proposition is proven in Appendix F.6 below.

F.2 Flows for the 1D case

Let us consider b = 1. Then we can compute Z1 via the infinite-time NEIS scheme with zero-variance
for arbitrary potentials U0 and U1. This could be verified via direct computation: Jt(x) = 1 and
Xt(x) = x+ t for any t, x ∈ R, and thus for an arbitrary x,

A(x) =

∫∞
−∞ e−U1

(
Xt(x)

)
Jt(x) dt∫∞

−∞ e−U0

(
Xt(x)

)
Jt(x) dt

=

∫∞
−∞ e−U1(x+t) dt∫∞
−∞ e−U0(x+t) dt

= Z1.

Therefore, the variance is exactly zero.

Another perspective to understand this comes from Proposition F.1. For b = 1, we know e−Uτ (x) =
e−U0(x−τ) in (57). By Proposition F.1, if the potential U1 can be expressed as follows

e−U1 =

∫ ∞

−∞
f(τ)e−Uτ

dτ = (e−U0 ∗ f),

then Z1 can be computed with zero-variance, where f is a tempered distribution and ∗ means the
convolution. Then it is sufficient to show the existence of such a f for a generic U1.

For a given potential U1, we can solve the above equation for f using Fourier transform; more
specifically,

f = F−1
(
F (e−U1)/F (e−U0)

)
,

where F (−1) are (inverse) Fourier transform.

F.3 Linear flows for Gaussian distributions

Proposition F.3. Suppose U0(x) = |x|2/2+d
2 ln(2π) and U1(x) = (x−ϖ)TΣ−1(x−ϖ)/2, where

the covariance matrix Σ is non-degenerate. A zero-variance linear dynamics is b(x) = Λx+ v with

Λ = ln
(
Σ−1/2

)
, v = −

(
Id − Σ1/2

)−1

ln
(
Σ−1/2

)
ϖ. (58)

39

Before presenting detailed proofs, let us make a few remarks about zero-variance dynamics in (58):

• If we further let Σ = (1− ϵ)Id where ϵ≪ 1 is an asymptotic parameter, then the above choice
(58) can be approximated as follows:

d

dt
Xt(x) = ΛXt(x) + v ≈ ϵ

2
Xt(x)−

(
1 +

ϵ

4

)
ϖ +O(ϵ2).

The leading order dynamics d
dtXt(x) ≈ −ϖ is consistent with the parallel velocity case below

in Appendix F.4.
• For the above Gaussian case, the dynamics (58) can be regarded as the gradient flow dynamics

of the following quadratic potential

V (x) =
1

2

(
x−

(
Id − Σ1/2

)−1
ϖ
)T

ln
(
Σ−1/2

)(
x−

(
Id − Σ1/2

)−1
ϖ
)
.

Indeed, it is not hard to guess that the optimal dynamics might have a linear form in order to
transport Gaussian distributions. It is natural to guess that b = −∇U1 or b = −∇(U1 − U0)
might be zero-variance dynamics, but it could be verified that neither of them are zero-variance
dynamics.

Proof of Proposition F.3. Suppose we consider a family of linear dynamics
d

dt
Xt(x) = ΛXt(x) + v, X0(x) = x.

Then Xt(x) = eΛtx+Λ−1
(
eΛt − Id

)
v and (∇ · b)(x) = tr(Λ). Therefore, U−τ defined in (57) has

the following form for any τ ∈ R,

U−τ (x) = U0

(
eΛτx+ Λ−1(eΛτ − Id)v

)
− tr(Λ)τ.

By Proposition F.1, the variance is zero if
U1(x) = U−1(x) + C,

where C is some constant. This condition can be simplified as

(x−ϖ)TΣ−1(x−ϖ)/2 = U0

(
eΛx+ Λ−1(eΛ − Id)v

)
− tr(Λ) + C.

Thus, we just need to ensure

−Λ−1(Id − e−Λ)v = ϖ, eΛ
T

eΛ = Σ−1,

by matching the order of x and, more specifically, we can choose Λ and v as in (58).

F.4 Flows with parallel velocity

As we have mentioned, in the 1D case, the choice b = 1 gives a zero-variance estimator for the
infinite-time NEIS scheme. A straightforward generalization is to consider the following parallel
velocity case

b(x) = α(x)v,

where v ∈ Rd and α is a positive scalar-valued function. Due to Proposition 2.2, it suffices to consider
b(x) = v. As we can always rotate the coordinate without affecting partition functions, without loss
of generality, let us assume v = e1 for simplicity, where e1 is a vector with the first element to be 1
and zeros otherwise. For an arbitrary initial proposal x, only the first coordinate x1 is changing under
the dynamics b = e1. The estimator essentially works like the 1D case above:

A(x) =

∫∞
−∞ e−U1

(
Xt(x)

)
Jt(x) dt∫∞

−∞ e−U0

(
Xt(x)

)
Jt(x) dt

=

∫∞
−∞ e−U1(q,x2,x3,··· ,xd) dq∫∞
−∞ e−U0(q,x2,x3,··· ,xd) dq

= Z1 ×
ρ̃1(x2, x3, · · · , xd)
ρ̃0(x2, x3, · · · , xd)

,

where ρ̃k is the marginal distribution of ρk for the subspace Rd−1 by tracing out the first coordinate.
Therefore, the dynamics b = e1 is a zero-variance dynamics iff ρ̃0 = ρ̃1.
Proposition F.4. Suppose b(x) = α(x)v where α ∈ C∞(Rd,R) with infx∈Ω α(x) > 0 and v ∈ Rd.
Such a dynamics b gives a zero-variance estimator iff ρ0 and ρ1 have the same marginal distribution
in the orthogonal space of

{
cv : c ∈ R

}
.

40

F.5 Proof of Proposition F.1

Lemma F.5. Fix the potential U0 and a dynamics b ∈ B. If
∫∞
−∞ e

−Uk

(
Xt(x)

)
Jt(x) dt∫∞

−∞ e
−U0

(
Xt(x)

)
Jt(x) dt

= Ck is a

constant function for k ∈ {2, 3}, then any mixture of U2 and U3, given below, also ensures that∫∞
−∞ e

−U

(
Xt(x)

)
Jt(x) dt∫∞

−∞ e
−U0

(
Xt(x)

)
Jt(x) dt

is a constant function, as long as U is a valid potential function:

U = − log
(
ω2e

−U2 + ω3e
−U3

)
, ω2, ω3 ∈ R.

Proof. We can easily observe that∫ ∞

−∞
e−U

(
Xt(x)

)
Jt(x) dt =

∫ ∞

−∞
ω2e

−U2(Xt(x))Jt(x) + ω3e
−U3(Xt(x))Jt(x) dt

= (C2ω2 + C3ω3)

∫ ∞

−∞
e−U0(Xt(x))Jt(x) dt.

Lemma F.6. For the distribution ρ1 ∝ e−Uτ+C , the partition function Z1 can be computed with
zero-variance.

Proof. We only need to verify the case C = 0. Then∫ ∞

−∞
e−Uτ

(
Xt(x)

)
Jt(x) dt =

∫ ∞

−∞
e−U0

(
Xt−τ (x)

)
J−τ

(
Xt(x)

)
Jt(x) dt

(25)
=

∫ ∞

−∞
e−U0

(
Xt−τ (x)

)Jt−τ (x)

Jt(x)
Jt(x) dt

=

∫ ∞

−∞
e−U0

(
Xt−τ (x)

)
Jt−τ (x) dt

=

∫ ∞

−∞
e−U0

(
Xt(x)

)
Jt(x) dt.

This means that b is a zero-variance dynamics for the distribution ρ1.

Proof of Proposition F.1. Combine the above two lemmas.

F.6 Proof of Proposition F.2

Consider a 2D example with U0(x) =
|x|2
2 + ln(2π) and b = [10]. Then Jt(x) = 1, and Uτ (x) =

(x1−τ)2+x2
2

2 + ln(2π) where x = [x1
x2

]. Let us consider

e−U1(x) := e−U1(x) + ϵx1e
−x4

1−x4
2 ,

where ϵ := 1
2π

(
2 supy∈R |y|e−y4+(y−1)2/2 supy∈R e

−y4+y2/2
)−1

> 0. It could be straightforwardly
verified that U1 is a well-defined potential and∫ ∞

−∞
e−U1

(
Xt(x)

)
Jt(x) dt =

∫ ∞

−∞
e−U1

(
Xt(x)

)
Jt(x) dt+ ϵ

∫ ∞

−∞
(x1 + t)e−(x1+t)4−x4

2 dt

=

∫ ∞

−∞
e−U1

(
Xt(x)

)
Jt(x) dt

=

∫ ∞

−∞
e−U0

(
Xt(x)

)
Jt(x) dt.

The last equality holds by Lemma F.6. Therefore, b is a zero-variance dynamics for ρ0 and ρ1.
However, U1 /∈ F because

∫∞
−∞ f(τ)e−Uτ (x) dτ must be a separable function, whereas U1 is not.

41

G Proof of Proposition 3.2 and more discussions

G.1 Proof of Proposition 3.2

We proceed in three steps:

Step 1: Let us first assume the existence of κ ∈ C1(D,R) satisfying (14), where D is an open subset
of Ω and Ω\D has measure zero. We shall verify that T#ρ0 = ρ1 almost everywhere.

From (14), let us replace x by Xϵ(x),

0
(25)
=

1

Jϵ(x)

(∫ 0

−∞
ρ0(Xs+ϵ(x))Js+ϵ(x) ds−

∫ κ(Xϵ(x))

−∞
ρ1(Xs+ϵ(x))Js+ϵ(x) ds

)
.

By straightforward simplification,

0 =

∫ 0+ϵ

−∞
ρ0(Xs(x))Js(x) ds−

∫ κ(Xϵ(x))+ϵ

−∞
ρ1(Xs(x))Js(x) ds.

By taking the derivative with respect to ϵ at ϵ = 0,

ρ0(x) = ρ1(Xκ(x)(x))Jκ(x)(x)
(
1 + ⟨∇κ(x), b(x)⟩

)
= ρ1(T (x))Jκ(x)(x)

(
1 + ⟨∇κ(x), b(x)⟩

)
.

To show that T#ρ0 = ρ1, we need to verify that ρ0(x) = ρ1(T (x))JT (x) where JT (x) =∣∣det (∇xXκ(x)(x)
)∣∣. Therefore, it remains to prove that

det
(
∇xXκ(x)(x)

)
= Jκ(x)(x)

(
1 +

〈
∇κ(x), b(x)

〉)
. (59)

By direct computation,

∇xXκ(x)(x)
(45)
= Cκ(x),0(x) + b

(
Xκ(x)(x)

)(
∇κ(x)

)T
.

By the matrix determinant lemma,

det
(
∇xXκ(x)(x)

)
=
(
1 +

〈
∇κ(x),

(
Cκ(x),0(x)

)−1
b
(
Xκ(x)(x)

)〉)
det
(
Cκ(x),0(x)

)
=
(
1 +

〈
∇κ(x), b(x)

〉)
Jκ(x)(x),

where we used (40) and Lemma D.6 to get the second line. The last equation verifies (59) and
therefore, T#ρ0 = ρ1 almost everywhere.

Step 2: We shall explain D and establish the existence of κ ∈ C1(D,R).
Suppose we denote the local minima of V as X1,X2, · · · ,Xa, and local maxima of V as
Y1,Y2, · · · ,Yb, where a, b ∈ N. Then in the proof of Proposition 3.1, we have already mentioned
that

D :=
{
x ∈ Ω

∣∣∣ lim
t→−∞

Xt(x) = Xi, lim
t→∞

Xt(x) = Yj , for some i, j
}

is an open subset of ℧(b) and Ω\D has measure zero, due to the assumption that V is a Morse
function.

Consider the following function L(x, t) : D × R → R, defined as

L(x, t) :=

∫ 0

−∞
ρ0(Xs(x))Js(x) ds−

∫ t

−∞
ρ1(Xs(x))Js(x) ds.

We can observe that

• limt→−∞ L(x, t) =
∫ 0

−∞ ρ0(Xs(x))Js(x) ds > 0.

42

• Besides,

lim
t→∞

L(x, t) =

∫ 0

−∞
ρ0(Xs(x))Js(x) ds−

∫ ∞

−∞
ρ1(Xs(x))Js(x) ds

= −
∫ ∞

0

ρ0(Xs(x))Js(x) ds < 0,

where the second equality comes from the fact that b = ∇V is a zero-variance dynamics; see
(12).

• With fixed x, the function t 7→ L(x, t) is continuously differentiable and is strictly monotonically
decreasing.

These imply that for each x ∈ D, there exists a unique κ(x) such that L
(
x,κ(x)

)
= 0 by the

intermediate value theorem. Therefore, κ is well-defined via (14).

Next, we need to prove that such a function κ ∈ C1(D,R), which can be immediately obtained
by the implicit function theorem [34], provided that we can prove L ∈ C1(D × R,R). Due to the
smoothness assumption on ρ0 and ρ1, it is clear that ∂tL(x, t) = −ρ1(Xt(x))Jt(x) < 0 exists and is
continuous. Therefore, the task becomes to prove that ∇xL(x, t) exists and is continuous. Since it is
clear that

∫ t

0
ρ1(Xs(x))Js(x) ds is continuously differentiable with respect to x, it is then sufficient

to prove that

Gk(x) :=

∫ 0

−∞
ρk(Xs(x))Js(x) ds

is continuously differentiable for k ∈ {0, 1}.

Step 3: Prove that Gk ∈ C1(D,R).

In Appendix E.1, we have proved that Gk is continuous; see Lemma E.4 in particular. Next, we first
verify that Gk is differentiable and then verify that ∇Gk is also continuous.

Part 1: Gk is differentiable.

We want to verify that Gk is differentiable and in particular

∇xGk(x) =

∫ 0

−∞
∇x

(
ρk(Xs(x))Js(x)

)
ds. (60)

Let us consider an arbitrary x ∈ D. Without loss of generality, suppose its limit in the back-
ward branch is X1 = limt→−∞ Xt(x). Let us focus on a local neighborhood Bδ(x) such that
limt→−∞ Xt(z) = X1 for all z ∈ Bδ(x). Such a small δ exists because X1 is a strict local mini-
mum and b = ∇V is smooth from the assumption that V is a Morse function. In order to verify that
Gk is differentiable (i.e., (60)), by the Leibniz rule (see e.g., [18, Theorem 6.28]), it is sufficient to
prove that there exists an integrable function Q : (−∞, 0] → R such that∣∣∇z

(
ρk(Xs(z))Js(z)

)∣∣ ≤ Q(s), ∀s ∈ (−∞, 0], ∀z ∈ Bδ(x). (61)

By direct computation,

∇z

(
ρk(Xs(z))Js(z)

)
=ρk(Xs(z))Js(z)

(
− (∇Xs(z))

T∇Uk(Xs(z)) +

∫ s

0

(
∇Xr(z)

)T∇(∇ · b)(Xr(z)) dr
)

(45)
=ρk(Xs(z))Js(z)

(
− (Cs,0(z))

T∇Uk(Xs(z)) +

∫ s

0

(
Cr,0(z)

)T∇(∇ · b)(Xr(z)) dr
)
.

(62)

Since the domain Ω is assumed to be a torus, we know ρk, ∇Uk and ∇(∇·b) are uniformly bounded
on the domain Ω. Therefore,∣∣∇z

(
ρk(Xs(z))Js(z)

)∣∣ ≲ Js(z)
(
∥Cs,0(z)∥+

∫ 0

s

∥Cr,0(z)∥ dr
)
. (63)

43

Recall from (5) and (40) that

∂sJs(z) = (∇ · b)(Xs(z))Js(z), J0(z) = 1;

∂sCs,0(z) = ∇b(Xs(z))Cs,0(z), C0,0(z) = Id.

Recall that Xs(z) → X1 as s → −∞; the value ∇ · b(X1) and the hessian matrix ∇b(X1) are
both strictly positive, which imply that Js(x) and ∥Cs,0(z)∥ are both decaying as s→ −∞.

Let us denote υ > 0 as the smallest eigenvalue of ∇b(X1). For a given ϵ with 0 < ϵ < min
{
∇ ·

b(X1), υ
}

, let us define

E =
{
z ∈ Ω : ∇ · b(z) > ∇ · b(X1)− ϵ, ∇b(z) > (υ − ϵ)Id

}
,

which is an open neighborhood of X1. We can find a subset of E , denoted as Etrap, such that Etrap is
a trapping region of the dynamics b for the backward branch. Thus, we can find a negative time τ
(which possibly depends on ϵ) such that Xs(x) ∈ Etrap for all s ≤ τ . If we choose a δ small enough,
then we can even ensure that

Xs(z) ∈ Etrap, ∀s ≤ τ,∀z ∈ Bδ(x), (64)

due to the smoothness of b and the construction that E1 is a trapping region. Therefore, when s ≤ τ ,
Js(z) decays to zero exponentially fast as s→ −∞ with a rate at least ∇ · b(X1)− ϵ; similarly, the
matrix norm ∥Cs,0(z)∥ also decays to zero exponentially fast as s→ −∞ with a rate at least υ − ϵ.
On the region (−∞, 0]×Bδ(x), we can readily obtain

Js(z) ≲ e

(
∇·b(X1)−ϵ

)
s, ∥Cs,0(z)∥ ≲ e

(
υ−ϵ
)
s. (65)

By plugging the above estimates into (63), we know that∣∣∇z

(
ρk(Xs(z))Js(z)

)∣∣ ≲ Js(z) ≲ e

(
∇·b(X1)−ϵ

)
s. (66)

The function e
(
∇·b(X1)−ϵ

)
s is integrable on (−∞, 0] and this serves as the function Q needed in

(61) with some multiplicative constant.

Part 2: ∇Gk is continuous.

Let us denote H(z, s) := ∇z

(
ρk(Xs(z))Js(z)

)
. From (62), we can observe that ∇zH(z, s) is

continuous with respect to z with

∇zH(z, s) =
H(z, s)

(
H(z, s)

)T
ρk(Xs(z))Js(z)

+

ρk(Xs(z))Js(z)∇z

(
− (Cs,0(z))

T∇Uk(Xs(z))
)
+

ρk(Xs(z))Js(z)

∫ s

0

∇z

((
Cr,0(z)

)T∇(∇ · b)(Xr(z))
)
dr.

Lemma G.1. For a given smooth vector field W ∈ C∞(Ω,Rd), there exists a constant C such that
for any z ∈ Bδ(x) and s ∈ (−∞, 0], we have∥∥∇z

(
Cs,0(z)

TW (Xs(z))
∥∥ ≤ Ce(υ−ϵ)s.

By this lemma and the estimates in (66),

∥∇zH(z, s)∥ ≲
∥∥∥H(z, s)

(
H(z, s)

)T
ρk(Xs(z))Js(z)

∥∥∥+ Js(z)e
(υ−ϵ)s + Js(z)

∫ 0

s

e(υ−ϵ)r dr

≲ Js(z) ≲ e

(
∇·b(X1)−ϵ

)
s,

which readily leads into the continuity of ∇Gk based on (60).

Part 3: Proof of Lemma G.1

44

By direct computation

∇zj

(
Cs,0(z)

TW (Xs(z)
)
i

=
∑
l

∇zj

((
Cs,0(z)

)
l,i
Wl(Xs(z))

)
(45)
=
∑
l

(
∇zj

(
Cs,0(z)

)
l,i

)
Wl(Xs(z)) +

∑
l,m

(
Cs,0(z)

)
l,i

(
∇W (Xs(z))

)
l,m

(
Cs,0(z))m,j .

Since W is assumed to be smooth on the torus Ω, we know W and ∇W are uniformly bounded.

Previously, we know that ∥Cs,0(z)∥ ≲ e

(
υ−ϵ
)
s. Therefore, we only need to prove that for any

1 ≤ ℓ ≤ d,

∥∂zℓCs,0(z)∥ ≲ e(υ−ϵ)s. (67)

From (41), we have

∂s
(
∂zℓCs,0(z)

)
= ∇b(Xs(z))

(
∂zℓCs,0(z)

)
+ S(s, z),

(
∂zℓC0,0(z)

)
= 0d×d,(

S(s, z)
)
i,j

=
∑
n,m

(∂zi,zn,zmV)(Xs(z))
(
Cs,0(z)

)
m,ℓ

(
Cs,0(z)

)
n,j
. (68)

Since ∥Cs,0(z)∥ ≲ e(υ−ϵ)s from (65), the source term ∥S(s, z)∥ also decays exponentially fast with
rate 2(υ − ϵ) as s→ −∞, namely,

∥S(s, z)∥ ≲ e2(ν−ϵ)s, ∀s ∈ (−∞, 0], z ∈ Bδ(x). (69)

By rewriting (68) in the integral form and by (40), we have(
∂zℓCs,0(z)

)
= −

∫ 0

s

Cs,0(z)
(
Cr,0(z)

)−1
S(r, z) dr = −

∫ 0

s

Cs,r(z)S(r, z) dr.

To prove Lemma G.1, we only need to consider the case s≪ 0. Suppose we consider s ≤ τ only;
recall the role of τ in (64). Then we could obtain that when s ≤ r ≤ τ

∥Cs,r(z)∥ =

∥∥∥∥expT→ (− ∫ r

s

∇b(Xu(z)) du
)∥∥∥∥ (64)

≤ e−(ν−ϵ)(r−s), (70)

where expT→ is the anti-chronological time-ordered operator exponential. We can separate the above
integral form using τ and obtain the following estimates: when s ≤ τ ,

∥∂zℓCs,0(z)∥ ≤
∥∥∥∥∫ τ

s

Cs,r(z)S(r, z) dr

∥∥∥∥+ ∥∥∥∥∫ 0

τ

Cs,r(z)S(r, z) dr

∥∥∥∥
≤
∫ τ

s

∥Cs,r(z)S(r, z)∥ dr +

∫ 0

τ

∥∥∥Cs,0(z)
(
Cr,0(z)

)−1
S(r, z)

∥∥∥ dr
≤
∫ τ

s

∥Cs,r(z)∥︸ ︷︷ ︸
use (70)

∥S(r, z)∥︸ ︷︷ ︸
use (69)

dr + ∥Cs,0(z)∥︸ ︷︷ ︸
use (65)

∫ 0

τ

∥∥∥(Cr,0(z)
)−1
∥∥∥︸ ︷︷ ︸

=O(1)

· ∥S(r, z)∥︸ ︷︷ ︸
use (69)

dr

≲
∫ τ

s

e−(υ−ϵ)(r−s)e2(υ−ϵ)rdr + e(υ−ϵ)s

∫ 0

τ

e2(υ−ϵ)rdr︸ ︷︷ ︸
=O(1)

≲ e(υ−ϵ)s + e(υ−ϵ)s ≲ e(υ−ϵ)s.

This verifies (67) for any z ∈ Bδ(x) and s ≤ τ . When s ∈ [−τ, 0], we can simply choose the
prefactor large enough so that (67) holds, as τ is a finite value. Hence, Lemma G.1 is verified.

G.2 Examples

We elaborate on Proposition 3.2 by concrete examples. For these examples, we estimate κ from (14)
either analytically or numerically, and then we validate Proposition 3.2 by comparing ρ1 and the
empirical distribution of Xκ(x)(x) where x ∼ ρ0.

45

G.2.1 Gaussian examples in 1D

For the case U0(x) =
|x|2
2 + 1

2 ln(2π) and U1(x) =
|x−ω|2
2σ2 with σ < 1, from Table 1, we already

know that a zero-variance dynamics is b(x) = x− ω
1−σ . Then Xt(x) = etx− (et − 1) ω

1−σ for any
t, x ∈ R and Jt(x) = et for any t ∈ R. By direct computation∫ θ

−∞ ρ1(Xs(x))Js(x)ds∫ 0

−∞ ρ0(Xs(x))Js(x)ds
= −

erf(ω√
2(1−σ)

) + erf
(−eθ(ω+x(σ−1)+ωσ)√

2σ(σ−1)

)
erf(x√

2
) + erf

(
ω√

2(σ−1)

) .

By solving κ in (14) using the last equation, we have

κ(x) = log(σ), ∀x ̸= ω

1− σ
,

which is independent of the state x.

Figure 4: This figure shows the histogram of sample points of Xκ(x)(x) (blue) and the distribution
ρ1 (black) for the 1D Gaussian example in Appendix G.2.1 with ω = 1 and σ = 0.5.

G.2.2 Three-mode mixture on a 2D torus

We consider the model (54) on the torus Ω = [0, 1]2 and recall that the zero-variance dynamics has
been shown in Figure 1. Then the contour plot of κ is visualized in Figure 5. Moreover, in the
same figure, the empirical distributions of Xκ(x)(x) and contour plots of ρ1 are provided, which
numerically verifies Proposition 3.2.

G.2.3 An example on (0, 1)2 with Neumann boundary condition

We consider the model
V (x) = γ cos(2πx1) cos(2πx2), ρ0(x) = 1, ρ1(x) = ρ0(x) + ∆V (x),

x = [x1
x2

], γ =
0.45

4π2
,

(71)

on the domain Ω = (0, 1)2 and the potential V automatically solves the Poisson’s equation with
Neumann boundary condition (see (55)) by the above construction. Apart from verifying that b = ∇V
is a zero-variance dynamics numerically, we can also observe that Proposition 3.2 holds in this case;
see Figure 6.

H Proof of Proposition 4.1

Below is the full version of Proposition 4.1.
Proposition H.1 (Local minimum). Assume that

46

(a) κ

(b) histogram of samples of Xκ(x)(x) where x ∼ ρ0 (c) ρ1

Figure 5: The figure shows the time map κ defined via (14) and it also numerically verifies that ρ1 is
the distribution of Xκ(x)(x) with x ∼ ρ0, for the model (54) on the torus Ω = [0, 1]2 (with periodic
boundary condition).

(i) (Local minimum). b ∈ B∞ is a (non-trivial) local minimum of Var, namely, Var(b) <
Var(max) and if there is a perturbation δb ∈ C∞

c (Ω,Rd) such that b + ϵδb ∈ B∞ for
sufficiently small ϵ, then Var(b+ ϵδb) ≥ Var(b).

(ii) (Continuity assumption). The functional derivative δVar(b)
δb is continuous and δVar(b)

δb = 0d

on Ω. In particular, ∇A exists and is continuous on Ω.

(iii) (Technical assumptions). ℧(b) = Ω (see Definition A.4) and the set of b-unstable points (see
Definition A.8) has Lebesgue measure zero. Moreover, the set

{
x ∈ Ω : ∇(U1 − U0)(x) =

0d

}
has Lebesgue measure zero.

Then b is a zero-variance dynamics for the infinite-time NEIS scheme, i.e., Var(b) = 0.

Recall the formula of δVar(b)
δb from (38):

δVar(b)
δb

(x) =
2∇A(x)

B(x)

(∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt−
∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt

)
.

Here is a sketch of the main idea behind the proof. If ∇A = 0d on the domain Ω, then A is a constant
function. Hence, b provides a zero-variance estimator for the infinite-time NEIS scheme and it must
be a global minimum of the functional Var as well. If the other term

∫∞
0

F (0)
t (x) dt

∫ 0

−∞ F (1)
t (x) dt−

47

(a) V and trajectories (b) ρ1

(c) κ in symlog scale (d) histogram of samples of Xκ(x)(x) where x ∼ ρ0

Figure 6: This figure visualizes the model (71) on the domain Ω = (0, 1)2 (with Neumann boundary
condition). In the panel (a), we show the potential V and sample trajectories under the dynamics
b = ∇V ; in the panel (b), we show the distribution ρ1. In the panel (c), we present the time map
φ ◦ κ where κ is defined via (14) and the rescaling function φ(z) := sign(z) log(1 + |z|) is the
symlog function. In the panel (d), we show a histogram of samples of Xκ(x)(x) where x ∼ ρ0. The
panel (d) resembles the panel (b), which numerically verifies that ρ1 is the distribution of Xκ(x)(x)
with x ∼ ρ0.

∫ 0

−∞ F (0)
t (x) dt

∫∞
0

F (1)
t (x) dt = 0 locally on an open subset, then it could be shown that this is

equivalent to ⟨∇(U1 − U0)(x), b(x)⟩ = 0 (see Lemma H.4 and Lemma H.5). Such a dynamics b
should not be optimal, because b is perpendicular to the gradient of the potential difference and such
a b does not explore the local structure (cf. Proposition H.3). This intuition leads into the following
idea: if b is a local minimum of Var, then we should only have ∇A = 0d almost everywhere on Ω;
otherwise, we should be able to perturb b so that the dynamics b can better explore the landscapes of
U0 and U1 and the variance can be further reduced; see Proposition H.6.
Remark H.2. As we work on the domain Ω only, we shall consider the topological space for the
domain Ω instead of Rd from now on.

H.1 A characterization of the global maximum

Proposition H.3. If the dynamics b ∈ B∞, then

Var(b) ≤ Var(max). (72)

48

The equality can be achieved iff〈
b(x),∇(U1 − U0)(x)

〉
= 0, ∀x ∈ Ω. (73)

Proof. We only need to prove that M(b) ≤ Eρ0 [e
−2(U1−U0)] and the equality is achieved iff (73)

holds.

By Jensen’s inequality,(∫∞
−∞ F (1)

t (x) dt∫∞
−∞ F (0)

t (x) dt

)2
=
(∫∞

−∞ e−U1

(
Xt(x)

)
+U0

(
Xt(x)

)
F (0)

t (x) dt∫∞
−∞ F (0)

t (x) dt

)2

≤
∫∞
−∞ e−2(U1−U0)

(
Xt(x)

)
F (0)

t (x) dt∫∞
−∞ F (0)

t (x) dt
.

By taking the expectation Ex∼ρ0

[
·
]

for both sides and by (10) for new potentials Ũ1 = 2U1 − U0

and Ũ0 = U0, we immediately have the inequality:

M(b) = Ex∼ρ0

[(∫∞
−∞ F (1)

t (x) dt∫∞
−∞ F (0)

t (x) dt

)2]

≤ Ex∼ρ0

[∫∞
−∞ e−2(U1−U0)

(
Xt(x)

)
F (0)

t (x) dt∫∞
−∞ F (0)

t (x) dt

]
(10)
=

∫
Ω
e−2U1+U0∫
Ω
e−U0

= Ex∼ρ0

[
e−2(U1−U0)

]
.

This is essentially the inequality (72).

Next in order to achieve the equality in (72), we need the equality to hold in the above Jensen’s
inequality:

t 7→ e−
(
U1−U0

)(
Xt(x)

)
is a constant function.

By taking derivative with respect to t, we immediately know that〈
∇(U1 − U0)(x), b(x)

〉
= 0, ρ0-almost surely.

By the continuity assumption on U1, U0 and b, we obtain (73).

Conversely, when (73) holds,

d

dt
(U1 − U0)

(
Xt(x)

)
=
〈
∇(U1 − U0)(Xt(x)), b

(
Xt(x)

)〉
= 0.

Hence, U1

(
Xt(x)

)
− U0

(
Xt(x)

)
= U1(x)− U0(x) for any t ∈ R. Then∫∞

−∞ F (1)
t (x) dt∫∞

−∞ F (0)
t (x) dt

= e−U1(x)+U0(x)

∫∞
−∞ e−U0(Xt(x))Jt(x) dt∫∞
−∞ e−U0(Xt(x))Jt(x) dt

= e−U1(x)+U0(x).

Hence, the equality in (72) holds under the condition (73).

H.2 Some observations about the functional derivative

We need some simplified understanding of the condition
∫∞
0

F (0)
t (x) dt

∫ 0

−∞ F (1)
t (x) dt =∫ 0

−∞ F (0)
t (x) dt

∫∞
0

F (1)
t (x) dt arising from δVar(b)

δb = 0d, which are presented in the following
two lemmas.
Lemma H.4.

∫∞
0

F (0)
t (x) dt

∫ 0

−∞ F (1)
t (x) dt =

∫ 0

−∞ F (0)
t (x) dt

∫∞
0

F (1)
t (x) dt is equivalent to∫∞

0
F (1)

t (x) dt∫∞
0

F (0)
t (x) dt

= A(x). (74)

49

Proof. ∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt =

∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt

⇐⇒
∫ 0

−∞ F (0)
t (x) dt∫∞

0
F (0)

t (x) dt
=

∫ 0

−∞ F (1)
t (x) dt∫∞

0
F (1)

t (x) dt
(add 1 to both sides)

⇐⇒
∫∞
−∞ F (0)

t (x) dt∫∞
0

F (0)
t (x) dt

=

∫∞
−∞ F (1)

t (x) dt∫∞
0

F (1)
t (x) dt

⇐⇒
∫∞
0

F (1)
t (x) dt∫∞

0
F (0)

t (x) dt
= A(x).

The following result provides a simplified characterization of the equality (74).

Lemma H.5.

(i) Suppose the condition in (74) holds for any x in an open set D. Then

⟨∇(U1 − U0)(x), b(x)⟩ = 0, ∀x ∈ D. (75)

(ii) Conversely, if (75) holds for D = Ω, then b is a global maximum of M (as well as Var).

Proof. Part (ii) immediately follows from Proposition H.3. Next we prove part (i). From previous
results, the condition is that ∫∞

0
F (1)

t (x) dt∫∞
0

F (0)
t (x) dt

= A(x), ∀x ∈ D.

After replacing x by Xs(x) ∈ D in the above equation and by (25), we have

A(x)
(26)
= A

(
Xs(x)

)
=

∫∞
0

F (1)
t

(
Xs(x)

)
dt∫∞

0
F (0)

t

(
Xs(x)

)
dt

=

∫∞
s

F (1)
t (x) dt∫∞

s
F (0)

t (x) dt
, ∀ x ∈ D, s ∈

(
τ−D (x), τ+D (x)

)
,

where τ+D (x) and τ−D (x) defined in (23) are hitting times for the forward and backward branches
to the boundary of D. Note that the right hand side of the last equation depends on s, whereas
the left hand side does not. Let us take the derivative with respect to s and with straightforward
simplifications, we obtain

F (1)
s (x)/F (0)

s (x) = A(x), ∀ x ∈ D, s ∈
(
τ−D (x), τ+D (x)

)
.

By (6), we know exp
(
U0

(
Xs(x)

)
− U1

(
Xs(x)

))
= A(x). Again, the left hand side depends on s

whereas the right hand side does not. So we take the derivative with respect to s again and obtain〈
∇(U1 −U0)

(
Xs(x)

)
, b
(
Xs(x)

)〉
= 0 for any x ∈ D and s ∈

(
τ−D (x), τ+D (x)

)
. Then (75) follows

immediately by choosing s = 0.

H.3 A weaker version

Lemma H.5 leads into the following intuition: if there is a certain open subset D on which ⟨∇(U1 −
U0), b⟩ = 0, then such a dynamics b should not be a local minimum of Var, because such a b cannot
explored the landscape structure of U1 on D. This intuition is more rigorously formulated in the
following proposition.

Proposition H.6. Consider a dynamics b ∈ B∞. Suppose D ⊂ ℧(b) is nonempty and open. Let
K := Ω\D. Assume that

50

(i) For any x ∈ D, we have ⟨b(x),∇(U1 − U0)(x)⟩ = 0.

(ii) For any t ∈ R and x ∈ D, we have Xt(x) /∈ K◦, i.e., trajectories from D are confined
inside D.

(iii) There exists a b-stable point x⋆ ∈ D such that ∇(U1 − U0)(x
⋆) ̸= 0d.

Then such a dynamics b must not be a local minimum of the second moment M (as well as the
variance).

Proof. We proceed in two steps.

Step (I): The first goal is to find a smooth function δb ∈ C∞
c (D,Rd) and ϵ0 > 0 such that

ρ0(E) > 0 where E :=
{
x ∈ D

∣∣ 〈δb(x),∇(U1 − U0)(x)
〉
̸= 0
}
⊂ supp(δb); (76a)

b+ϵδb ∈ B∞, ∀ϵ ∈ (0, ϵ0); (76b)

dist
(
E, ∂D

)
> 0. (76c)

By the assumption (iii) of this proposition and Proposition A.10, we know there is an open ball
Bλ(x

⋆) ⊂ D such that for any δb ∈ C∞
c

(
Bλ(x

⋆),Rd
)
, b+ ϵδb ∈ B∞ for small enough ϵ and thus

(76b) is satisfied. It is clear that we can easily choose λ small enough so that (76c) holds.

Next, the task is to find a smooth function δb supported on Bλ(x
⋆) such that (76a) holds. Since

∇(U1 − U0)(x
⋆) ̸= 0d and U0, U1 are assumed to be smooth, we can choose λ small enough such

that

|∇(U1 − U0)(x)−∇(U1 − U0)(x
⋆)| ≤ 1

4
|∇(U1 − U0)(x

⋆)|, ∀x ∈ Bλ(x
⋆).

It is well-known that

φ(x) :=

{
e
− 1

1−|x|2 , if |x| < 1;

0, if |x| ≥ 1,

is a smooth function compactly supported on B1(0). Then let us consider

δb1(x) := φ
(x− x⋆

λ1

)
∇(U1 − U0)(x), where λ1 ∈ (0, λ).

It is clear that δb1 is compactly supported on Bλ1
(x⋆) ⊂ Bλ(x

⋆) and for any x ∈ Bλ1
(x⋆), we have

⟨δb1(x),∇(U1 − U0)(x)⟩ > 0 so that (76a) clearly holds. Next, we still need to further smooth out
δb1 (see e.g., Appendix C of [11]) by introducing

δb2(x) :=

∫
Rd

φε(x− y)δb1(y) dy,

where φε(x) :=
1
εd
φ(x/ε). Note that we can easily extend δb1 to Rd by letting δb1 = 0d outside of

Bλ1
(x⋆) so that δb1 can be well-defined on Rd. By choosing 0 < ε < λ− λ1, we can ensure that

the smooth function δb2 is compactly supported on Bλ(x
⋆). It is also not hard to show that (76a)

still holds for δb2: for any x ∈ Bλ1
(x⋆),〈

δb2(x),∇(U1 − U0)(x)
〉
=

∫
Rd

φε(x− y)
〈
δb1(y),∇(U1 − U0)(x)

〉
dy

=

∫
Rd

φε(x− y)φ
(y − x⋆

λ1

)〈
∇(U1 − U0)(y),∇(U1 − U0)(x)

〉
dy

≥ 7

16
|∇(U1 − U0)(x

⋆)|2
∫
Rd

φε(x− y)φ
(y − x⋆

λ1

)
dy > 0.

In summary, δb2 constructed above satisfies all requirements.

Step (II): We prove that b is not a local minimum by showing that M(b + ϵδb) < M(b) for any
ϵ ∈ (0, ϵ0), where δb satisfies all conditions in Step (I).

51

By the construction of δb, we know bϵ := b + ϵδb does not change the velocity field at ∂D, and
therefore, Xϵ

t (x) /∈ K◦ for any x ∈ D still holds for the dynamics bϵ i.e., trajectories from D do not
enter K◦. As an immediately consequence, trajectories t 7→ Xϵ

t (x) with x ∈ K◦ will not enter D
(as ODE trajectories are reversible). The slightly technical part is to consider trajectories t 7→ Xϵ

t (x)
with x ∈ ∂D ≡ ∂K, where the trajectory t 7→ Xϵ

t (x) evolves under the dynamics bϵ. Let us consider
two disjoint sets:

D̃ :=
{
x ∈ D ∪ ∂D ≡ Ω\K◦ ∣∣Xϵ

t (x) /∈ K◦, ∀t ∈ R
}
⊃ D, K̃ := Ω\D̃ ⊂ K.

By such a construction, we can observe that for any trajectory t 7→ Xϵ
t (x) with x ∈ K̃ (or x ∈ D̃), it

must remain inside K̃ (or D̃). In other words, the flows within D̃ and K̃ are completely separated
from each other. Moreover, because δb is only supported on E ⊂ D which is completely inside D by
(76c), we know the above definitions of these two sets D̃ and K̃ are independent of ϵ ∈ [0, ϵ0).

Let us use A to denote the function defined in (24) corresponding to the dynamics b and use Aϵ

to denote the one corresponding to the perturbed dynamics bϵ. Recall the assumption (i) that
⟨b(x),∇(U1 − U0)(x)⟩ = 0 for all x ∈ D. By the fact that ∂D = ∂K, and by the continuity of b,
∇U0, and ∇U1, we know〈

b(x),∇(U1 − U0)(x)
〉
= 0, ∀x ∈ ∂D ∪D ≡ Ω\K◦.

For any trajectory t 7→ Xt(x) with x ∈ D̃, we can easily show that e−(U1−U0)
(
Xt(x)

)
=

e−(U1−U0)(x) for all t ∈ R, and thus we have A(x) = e−(U1−U0)(x) for any x ∈ D̃ (the same
calculation, in fact, has been shown in the proof of Proposition H.3). Hence,

M(b) = Eρ0

[
χK̃(·)

(
A(·)

)2]
+ Eρ0

[
χD̃(·)

(
A(·)

)2]
= Eρ0

[
χK̃(·)

(
A(·)

)2]
+ Eρ0

[
χD̃(·)e−2(U1−U0)(·)

]
,

where χA(·) is an indicator function for a set A.

Next we consider the trajectory t 7→ Xϵ
t (x) with x ∈ K̃. Since such a trajectory never enters D̃ ⊃ D

and bϵ = b on Ω\D, we know Xϵ
t (x) = Xt(x) for any t ∈ R and x ∈ K̃, and thus A = Aϵ on K̃

for any ϵ ∈ [0, ϵ0). Hence, Eρ0

[
χK̃(·)

(
A(·)

)2]
= Eρ0

[
χK̃(·)

(
Aϵ(·)

)2]
. By the same argument as

in Proposition H.3 (by treating D̃ as the domain),

M(bϵ)−M(b) = Eρ0

[
χD̃(·)

(
Aϵ(·)

)2]− Eρ0

[
χD̃(·)e−2(U1−U0)(·)

]
≤ 0,

where the equality is achieved only if ⟨bϵ,∇(U1 − U0)⟩ = 0 on D̃. Note that on D̃,

⟨bϵ,∇(U1 − U0)⟩ = ⟨b+ ϵδb,∇(U1 − U0)⟩ = ϵ⟨δb,∇(U1 − U0)⟩.

However, due to the fact that ⟨δb,∇(U1 − U0)⟩ ≠ 0 for some open subset of D with strictly positive
ρ0-measure (as constructed in Step (I)), the equality M(bϵ) = M(b) cannot be achieved and thus

M(bϵ) <M(b).

Since we can find a local perturbation δb such that M(bϵ) <M(b) for any ϵ ∈ (0, ϵ0), then b must
not be a local minimum of M.

H.4 Proof of Proposition H.1

By Proposition D.1, we know either

∇A(x) = 0d, or
∫ ∞

0

F (0)
t (x) dt

∫ 0

−∞
F (1)

t (x) dt−
∫ 0

−∞
F (0)

t (x) dt

∫ ∞

0

F (1)
t (x) dt = 0.

Define

K :=
{
x ∈ Ω : ∇A(x) = 0d

}
,

which is a closed subset of Ω by the continuity assumption on ∇A.

52

Hence, D := Ω\K is open and by Lemma H.5 (i), we know ⟨b,∇(U1 − U0)⟩ = 0 on D. Here are a
few cases to discuss.

Case (I): K◦ = ∅.

If K◦ = ∅, then we claim that b must be a global maximum and this contradicts with the assumption
that Var(b) < Var(max). It is not hard to observe that K◦ = ∅ implies that D = Ω. By continuity, we
know ⟨b,∇(U1 − U0)⟩ = 0 on D = Ω. Then by Lemma H.5 part (ii), b must be a global maximum.

Case (II): D = ∅.

IfD = ∅ (i.e., K = Ω), then it is clear that A is a constant function, and thus the variance Var(b) = 0.
This means b is a zero-variance dynamics.

Case (III): K◦ ̸= ∅ and D ̸= ∅

In order to use Proposition H.6, we need to deal with the case that some trajectories t 7→ Xt(x) for
x ∈ D might enter K◦. Let us introduce

S =
{
x ∈ D :

{
Xt(x)

}
t∈R ∩K◦ ̸= ∅

}
, (77)

which essentially contains all points in D whose trajectories enter K◦ at some time. We can easily
show that S is open: because b is assumed to be smooth, the trajectories are continuous under a small
perturbation for initial states. Then the new disjoint sub-regions to consider are K̃ := K◦ ∪ S and
D̃ := Ω\K̃. We collect some facts for clarity:

• K̃◦ = K◦ ∪ S ̸= ∅;

• D̃ ⊂ D, which immediately implies that ⟨b,∇(U1 − U0)⟩ = 0 on D̃.

• If x ∈ D̃, then Xt(x) must not enter K̃◦. Indeed, if not, then we have either t 7→ Xt(x) entering
K◦ (which contradicts with x /∈ S), or Xt(x) entering S (which still means Xt(x) will enter
K◦ due to the reversibility of deterministic trajectories).

We need to discuss two cases:

(a) Firstly, let us consider D̃ = ∅, i.e., K̃ = Ω and thus K̃◦ = Ω by the assumption that Ω is
open in the topology of the space Rd. The connectivity granted by the definition of S in
(77) implies that we can divide K̃◦ into a countable number of sub-regions on which the
function A is a constant. More specifically, for x ∈ Ω, define

Rx :=
{
y ∈ Ω : ∃γ· ∈ C([0, 1],Rd), γ0 = x, γ1 = y, A(γt) = A(x), ∀t ∈ [0, 1]

}
.

Obviously, x ∈ Rx. By the invariance of A under the dynamical flow (see (26)) and the
definition of S (77), we have ∪x∈K◦Rx ⊃ K̃◦ = Ω, which implies that ∪x∈K◦Rx = Ω.

• Suppose x, y ∈ K◦ and Rx ∩ Ry ̸= ∅, then there exists a z ∈ Rx ∩ Ry such that z
connects to both x and y via a continuous path and thus A(x) = A(z) = A(y). It
is then clear that Rx = Ry via treating z as a bridge. Therefore, ∪x∈K◦Rx can be
simplified as ∪x∈ERx where {Rx}x∈E are disjoint and E ⊂ K◦.

• Next, we can show that E is countable. Since K◦ is open and ∇A(x) = 0d on K, we
can easily verify that for each x ∈ K◦, there exists a local neighbor Bδ(x) ⊂ Rx and
due to the fact that Qd is dense and countable, E is at most countable.

To summarize, we have ⋃
x∈E

Rx = Ω,

where {Rx}x∈E are disjoint and E is countable.
As A is a constant function on Rx by the definition of R(·), A is a step function on Ω. By
the continuity of A from the assumption and Ω is a connected open domain, we readily
know A must be a constant function on Ω instead, and such a b must be a zero-variance
dynamics.

53

(b) Next, let us consider the case D̃ ̸= ∅. By the assumption that ∇(U1−U0) = 0d only on a set
with Lebesgue measure zero, we know there must exist y ∈ D̃ such that ∇(U1 − U0)(y) ̸=
0d. By the assumption that b-unstable points has Lebesgue measure zero, there must exist a
b-stable point x⋆ (around y) such that ∇(U1 − U1)(x

⋆) ̸= 0d. Then Proposition H.6 tells
us that b must not be a local minimum, which contradicts with the assumption.

I Supplementary material for numerical experiments

I.1 Details about AIS.

For AIS method, we use the equally-spaced temperature distribution, i.e., πk ∝ ρ1−βk

0 ρβk

1 , where
βk = k/K for 0 ≤ k ≤ K; for each transition step, we use Metropolis-adjusted Langevin algorithm
with time step 0.1 to generate the chain.

More specifically, suppose Mj(·, ·) is a transition kernel which leaves πj invariant, then

Z1 = E
[
e−

∑K
j=1(βj−βj−1)

(
U1(xj−1)−U0(xj−1)

)]
, (78)

where xj ∼ Mj(xj−1, ·) and x0 ∼ ρ0 [26, 2]. To implement such a transition kernel, we use
Metropolis-adjusted Langevin algorithm: suppose τ (which is chosen as 0.1 as a prescribed parameter)
is the time step, then let x̃j := xj−1 + τ∇ log πj(xj−1) +

√
2τξj , where ξj are i.i.d. d-dimensional

standard normal random variables; the state x̃j is accepted with a rate

min
{
1,

πj(x̃j)q(xj−1 | x̃j)
πj(xj−1)q(x̃j | xj−1)

}
,

where q(x′ | x) = exp
(
− 1

4τ |x
′ − x− τ∇ log πj(x)|2

)
coming from the transition probability for

the Langevin step.

For each j, inside the Metropolis-Hasting correction term, we need 2 queries to ∇U1 (i.e., ∇U1(xj−1)
and ∇U1(x̃j) hidden inside the computation of ∇ log πj for the acceptance rate), and we need two
queries to U1 when computing U1(xj−1) (inside (78) and πj(xj−1)) and U1(x̃j) (inside πj(x̃j)).
However, since the queries to ∇U1(xj−1) and U1(xj−1) can be borrowed from the step j − 1 (if one
saves these information), the total number of queries for each AIS trajectory is, in fact, K + 1 for
both ∇U1 and U1.

I.2 More implementation details

Neural network architecture. We use the following ℓ-layer neural network [10, 31] to parameterize
the dynamics b : Ω → Rd during training:

x 7→Wℓ

(
fℓ−1 ◦ · · · f2 ◦ f1(x)

)
+ bℓ,

where ℓ is the layer depth (one output layer and ℓ − 1 hidden layers), fj(·) = η(Wj(·) + bj) for
j = 1, 2, · · · , ℓ− 1, η is the activation function, Wj ∈ Rnj ×Rnj+1 , bj ∈ Rnj+1 for j = 1, 2, · · · , ℓ.
When we choose nj = m for all 2 ≤ j ≤ ℓ, we refer such a neural network as (ℓ,m)-architecture
which is mentioned in Section 5.

More specifically, let us take ℓ = 2 as an example: an (ℓ,m) = (2,m) architecture for a generic
ansatz for b : Ω → Rd refers to the following parameterization

b(x) =W2η(W1x+ b1) + b2, (generic ansatz),

where weights W1 ∈ Rd × Rm, W2 ∈ Rm × Rd and bias vectors b1 ∈ Rm, b2 ∈ Rd.

For the gradient-form ansatz, as we essentially need to parameterize a potential V : Ω → R, the
(ℓ,m)-architecture for V refers to the following choice when ℓ = 2,

V (x) =W2η(W1x+ b1)

where W2 ∈ Rm × R, W1 ∈ Rd × Rm, b1 ∈ Rm. The bias vector in the output layer is chosen as
zero (i.e., b2 = 0) because b2 is a redundant parameter after taking the gradient. The dynamics b in
the gradient form refers to b = ∇V .

54

Initialization and trial repetition. When we parameterize the flow via neural networks, weights
and biases in the neural network are randomly generated. Therefore, we consider two (or three)
independent trials (associated with different random initializations of b) for the same neural network
architecture characterized by a pair (ℓ,m).

Optimization algorithm. We use the SGD algorithm to optimize parameters for b. The Armijo line
search algorithm (see e.g., [3, 44]) can used to find the learning rate; in practice, we notice that solving
ϑ̇ = − ∇ϑMt−,t+

(bϑ)

|∇ϑMt−,t+
(bϑ)| with a relatively large learning rate also works well for numerical examples

considered in Section 6, and it is used for training in Section 6; ϑ are trainable parameters and bϑ is
the flow parameterized by ϑ. The way to approximate the loss function Mt−,t+(b) ≡ E0

[
|At−,t+ |2

]
(see Section 4) and in particular its gradient with respect to parameters in b will be explained in
Appendix I.3 and I.4.

I.3 An integration-based forward propagation method to compute the estimator and its
gradient

To estimate At−,t+(x) in (8) with t+ = t−+1 and t− ∈ [−1, 0], the most straightforward approach is
to compute F (k)

t (x) at time grid points and then employ some integration scheme like the trapezoidal
quadrature method.

More specifically, we first discretize the time interval [−1, 1] by 2Nt + 1 equally-spaced points
tm := 1

Nt
m where −Nt ≤ m ≤ Nt. Then we use classical ODE integration schemes (we use

RK4) to propagate the dynamics Xt(x) both forward and backward in time to estimate the following
quantities:

Û0,m = U0

(
Xtm(x)

)
, Û1,m = U1

(
Xtm(x)

)
, D̂m = ∇ · b

(
Xtm(x)

)
.

Then

F (k)
tm (x) ≈ e−Ûk,m+ 1

Nt
sign(m)QTr(D̂0,D̂1,··· ,D̂m),

where

QTr(D̂0, D̂1, · · · , D̂m) =

m∑
j=0

D̂j −
1

2

(
D̂0 + D̂m

)
is the trapezoidal quadrature scheme. Then similarly, we can use the trapezoidal quadrature scheme
to estimate

∫ tj−t−
tj−t+

F (0)
s (x) ds given the values F (0)

tm (x) for −Nt ≤ m ≤ Nt and the time tj with

tj ∈ [t−, t+]. After we have approximated values for
F(1)

tj
(x)∫ tj−t−

tj−t+
F(0)

s (x) ds
, the trapezoidal quadrature

scheme is utilized again to approximate At−,t+(x). The computational cost is mostly dominated by
the ODE integration, e.g., propagating Xt(x) or evaluating ∇ · b(Xs(x)) in general. Therefore, this
straightforward integration-based method has linear computational cost with respect to Nt and is thus
expected to be optimal. Using the same principle, we can estimate the gradient of the second moment
with respect to parameters in the dynamics (see (34)) during the training.

I.4 An ODE-based forward propagation method to compute the estimator and its gradient
for t− = 0, t+ = 1

To simplify notations, let us introduce

Bt(x) :=

∫ t−t−

t−t+

F (0)
s (x) ds, and thus, At−,t+(x)

(8)
=

∫ t+

t−

F (1)
t (x)

Bt(x)
dt, (79)

which implicitly depends on b. Let us denote αt(x) :=
∫ t

t−

F(1)
s (x)

Bs(x)
ds.

55

I.4.1 ODE dynamics to compute the estimator

Then the estimator A0,1 is simply α1(x). To compute A0,1, we simply need to run the following
ODE:

d

dt
αt(x) = e−U1

(
Xt(x)

)
Jt(x)/Bt(x), α0(x) = 0,

d

dt
Bt(x) = e−U0

(
Xt(x)

)
Jt(x)− e−U0

(
X lag

t (x)
)
J lag
t (x), B0(x) = BR

1 (x),

d

dt
Xt(x) = b

(
Xt(x)

)
, X0(x) = x,

d

dt
X lag

t (x) = b
(
X lag

t (x)
)
, X lag

0 (x) = XR
1 (x),

d

dt
Jt(x) = ∇ · b

(
Xt(x)

)
Jt(x), J0(x) = 1,

d

dt
J lag
t (x) = ∇ · b

(
X lag

t (x)
)
J lag
t (x), J lag

0 (x) = J R
1 (x),

(80)

where X lag
t (x) := Xt−1(x) and J lag

t (x) := Jt−1(x). Moreover, in order to obtain the initial
condition, we shall run the dynamics backward in time, i.e., simulating the following ODE on [0, 1],

d

dt
XR

t (x) = −b
(
XR

t (x)
)
, XR

0 (x) = x,

d

dt
J R
t (x) = −∇ · b

(
XR

t (x)
)
J R
t (x), J R

0 (x) = 1,

d

dt
BR

t (x) = e−U0

(
XR

t (x)
)
J R
t (x), BR

0 (x) = 0,

(81)

where the superscript R means the reversed process. As a remark, the auxiliary backward ODE (81)
has dimension d+ 2 and the ODE (80) has dimension 2d+ 4.

I.4.2 ODE dynamics to compute the gradient

Denote ϑ as a vector containing parameters in b and let Np be the number of parameters. In
what follows, we also vectorize all quantities involving ϑ, e.g., for each parameter ϑj , there is a
corresponding Y

(j)
t (x) in (36) and we simply use the notation Yt(x) to be a matrix whose jth column

is Y j
t (x) to save notations; the same convention applies to other quantities.

Next, we shall similarly re-write the expression ∇ϑA0,1 (implicitly given in ∇ϑM0,1(b) (34)) in
terms of outputs from an ODE. Using the same idea, let us introduce

Dt(x) :=

∫ t

0

G(1)
r (x)

∫ r

r−1
F (0)

s (x) ds−F (1)
r (x)

∫ r

r−1
G(0)
s (x) ds(∫ r

r−1
F (0)

s (x) ds
)2 dr,

gt(x) :=

∫ t

t−1

G(0)
s (x) ds,

Lt(x) :=

∫ t

0

∇ϑ(∇x · b)
(
Xs(x)

)
ds,

Ht(x) :=

∫ t

0

(
∇(∇ · b)(Xs(x))

)T
Ys(x) ds,

and then we can rewrite quantities involved inside ∇ϑM0,1(b) as follows:

the evolution of Xt(x),X
lag
t (x),Jt(x), J lag

t (x), Bt(x), αt(x) in (80),

d

dt
Dt(x) =

e−U1

(
Xt(x)

)
Jt(x)

(
−∇U1

(
Xt(x)

)T
Yt(x) +Ht(x) +Lt(x)

)
Bt(x)

− e−U1

(
Xt(x)

)
Jt(x)gt(x)(

Bt(x)
)2

 , D0(x) = 0Np
,

56

d

dt
gt(x) =

e−U0

(
Xt(x)

)
Jt(x)

(
−∇U0

(
Xt(x)

)T
Yt(x)

+Ht(x) +Lt(x)
)

−e−U0

(
X lag

t (x)
)
J lag
t (x)

(
−∇U0

(
X lag

t (x)
)T

Y lag
t (x)

+H lag
t (x) +Llag

t (x)
)

 , g0(x) = gR
1 (x),

d

dt
Ht(x) =

(
∇(∇ · b)

(
Xt(x)

))T
Yt(x), H0(x) = 0Np

,

d

dt
H lag

t (x) =
(
∇(∇ · b)

(
X lag

t (x)
))T

Y lag
t (x), H lag

0 (x) = HR
1 (x),

d

dt
Lt(x) = ∇ϑ(∇x · b)

(
Xt(x)

)
, L0(x) = 0Np ,

d

dt
Llag

t (x) = ∇ϑ(∇x · b)
(
X lag

t (x)
)
, Llag

0 (x) = LR
1 (x),

d

dt
Yt(x) = ∇b

(
Xt(x)

)
Yt(x) +∇ϑb

(
Xt(x)

)
, Y0(x) = 0d×Np

,

d

dt
Y lag
t (x) = ∇b

(
X lag

t (x)
)
Y lag
t (x) +∇ϑb

(
X lag

t (x)
)
, Y lag

0 (x) = Y R
1 (x),

where the initial conditions come from solving an auxiliary backward equation on [0, 1], given as
follows:

the evolution of XR
t (x),J R

t (x),BR
t (x) in (81),

d

dt
gR
t (x) = e−U0(X

R
t (x))J R

t (x)

(
−∇U0

(
XR

t (x)
)T

Y R
t (x)

+HR
t (x) +LR

t (x)

)
, gR

0 (x) = 0Np
,

d

dt
HR

t (x) = −
(
∇(∇ · b)

(
XR

t (x)
))T

Y R
t (x), HR

0 (x) = 0Np
,

d

dt
LR

t (x) = −∇ϑ(∇x · b)
(
XR

t (x)
)
, LR

0 (x) = 0Np
,

d

dt
Y R
t (x) = −∇b

(
XR

t (x)
)
Y R
t (x)−∇ϑb

(
XR

t (x)
)
, Y R

0 (x) = 0d×Np
.

As a remark, we combine the auxiliary states for all parameters together inside Yt(x), so that all
three terms Yt(x), Y

lag
t (x), Y R

t (x) have dimension d×Np. Below is a table that summarizes the
dimension of all components.

Table 2: This table summarizes all variables and their corresponding dimensions.

notations dimensions

Jt(x), J lag
t (x), Bt(x), αt(x), J R

t (x), BR
t (x) 1

Xt(x), X
lag
t (x), XR

t (x) d

Dt(x), gt(x), Ht(x), H
lag
t (x), Lt(x), L

lag
t (x), gR

t (x), L
R
t (x), H

R
t (x) Np

Yt(x), Y
lag
t (x), Y R

t (x) d×Np

In the end, the outputs we need are

A0,1(x) = α1(x), ∇ϑA0,1(x) = D1(x), so that ∇ϑM0,1(b) = 2Eρ0

[
α1(x)D1(x)

]
.

I.5 A discussion on the backward propagation for differentiation

In the formulas (34) and (35), a crucial step is to evaluate

Φ(t, x) :=
〈
∇φ(Xt(x)),Yt(x)

〉
, φ = Uk, or ∇ · b

for time t ∈ [−T, T] where T = t+ − t−. For any fixed t, this value can be efficiently measured by
the adjoint equation with backward propagation proposed in [9]. For instance, let us consider t > 0

57

and

Φ(t, x)
(39)
=
〈
∇φ
(
Xt(x)

)
,

∫ t

0

Ct,s(x) δb
(
Xs(x)

)
ds
〉

=

∫ t

0

〈
Ct,s(x)

T∇φ(Xt(x))︸ ︷︷ ︸
=:A (s,x)

, δb
(
Xs(x)

)〉
ds.

Moreover, it can be easily verified by the definition (40) that for s ∈ [0, t],

d

ds
A (s, x) = −∇bT

(
Xs(x)

)
A (s, x), A (t, x) = ∇φ

(
Xt(x)

)
.

The above two equations are Eqs. (4) & (5) in [9]. This can eliminate the need to simulate Yt(x),
whose memory cost scales like O(dNp). However, in the finite-time NEIS scheme, we need to
estimate Φ(t, x) not only for a fixed t but also for t ∈ [−1, 1]. Therefore, the computational cost
scales like O(N2

t) where Nt is the number of time-discretization (or say the depth of the flow map in
the normalizing flow context). As a comparison, the forward propagation method uses more memory
but could be computationally cheaper as it only needs to visit the whole trajectory for O(1) times
(see the table below).

Table 3: A comparison between the forward and backward propagation in computing the derivative of
M0,1(b) with respect to parameters; see (34) and (35). The notation Np is the number of parameters
for the training and Nt is the number of grid points in time-discretization.

Method Key difference Memory Computational cost

Backward propagation simulate A (s, x) instead of Ys(x) O(Np) O(N2
t)

Forward propagation simulate Ys(x) O(dNp) O(Nt)

I.6 A discussion on query complexity

The query complexities to estimate Z1 by both AIS and NEIS are summarized in the Table 4 below:

Table 4: A summary of query complexities to U1 when estimating Z1 for various methods. K is the
transition step in AIS; N is the number of time steps (∆t = 1/N) for either integration-based or
ODE-based discretization; s is the order of ODE integration schemes. The integration-based method
does not depend on s as the query to U1 is achieved during trapezoidal integral (see Appendix I.3).
See the AIS-K algorithm and relevant analysis in Appendix I.1

AIS-K ODE-based discretization (80) Integration-based discretization
(see Appendix I.3)

U1 K + 1 sN 2(N + 1)

∇U1 K + 1 0 0

58

J More training and comparisons results

Table 5: Comparison of NEIS with AIS: we include training and estimation query costs for AIS
and NEIS, as well as statistics for 10 independent estimates of Z1; for each method, we first set the
query cost to obtain one approximated value of Z1 and then accordingly choose the sample size; we
repeatedly estimate Z1 10 times and report the mean and std of these 10 estimates (in the form of
mean ± std). For NEIS, we consider multiple random initializations for training and therefore, there
are multiple estimates about Z1 in the last row in each panel (either 2 or 3 estimates). Estimates
in AIS, however, simply refer to estimating results from independent experiments. The exact value
Z1 = 1 and 1 MB = 106; the best result using AIS is colored in blue and the best result using NEIS
is colored in green. The layer number ℓ = 2 for both generic and gradient ansatz.

Asymmetric 2-mode Gaussian mixture (2D):

AIS-10 AIS-100 NEIS
(Generic,
m = 20)

NEIS
(Generic,
m = 30)

NEIS
(Grad,
m = 20)

NEIS
(Grad,
m = 30)

training
cost N/A N/A

U1: 2 MB
∇U1: 2.1 MB

cost per
estimate

U1: 6.1 ∼ 6.2 MB U1: 8.2 MB
∇U1: 6.1 ∼ 6.2 MB ∇U1: 0

10
estimates

1.106 ±
0.409

1.031 ±
0.039

1.004 ±
0.008

0.999 ±
0.009

0.998 ±
0.006

0.998 ±
0.009

1.048 ±
0.245

1.016 ±
0.097

0.998 ±
0.006

0.999 ±
0.007

1.004 ±
0.006

1.001 ±
0.007

Symmetric 4-mode Gaussian mixture (10D):

AIS-10 AIS-100 NEIS
(Grad, m =
30)

NEIS
(Grad, m =
40)

training cost N/A N/A
U1: 11.5 MB
∇U1: 12.8 MB

cost per
estimate

U1: 48.6 MB U1: 72.9 ∼ 73 MB
∇U1: 48.6 MB ∇U1: 0

10 estimates 0.991± 0.074 1.006± 0.017 0.998± 0.004 0.999± 0.011

0.994± 0.058 1.000± 0.014 1.001± 0.005 0.997± 0.008

Funnel distribution (10D):
AIS-10 AIS-100 NEIS

(linear (22a))
NEIS
(two-parametric
(22b))

training cost N/A N/A
U1: 40.4 MB U1: 20.2 MB
∇U1: 48.8 MB ∇U1: 20.2 MB

cost per
estimate

U1: 178.3 MB U1: 267.5 ∼
267.7 MB

U1: 121.2 MB

∇U1: 178.3 MB ∇U1: 0 ∇U1: 0

10 estimates
0.820± 0.098

0.682± 0.024 0.766± 0.033 0.853± 0.057 0.984± 0.036

0.894± 0.187

59

Generic ansatz

trial 1
trial 2
variance of vanilla IS
Assisted Period

Gradient ansatz

Figure 7: Asymmetric 2-mode Gaussian mixture in 2D: variance against SGD steps for the asymmetric
2-mode Gaussian mixture (20) in two trial runs. (8) was discretized with time step 1

50 . A mini-batch
of sample size 200 was used throughout the training. The biasing parameters used in (19) were
υ = 0.6, c = 0.1 and ς = 1 (see (19) and the follow-up paragraph).

Gradient ansatz

trial 1
trial 2
variance of vanilla IS
Assisted Period

Figure 8: Symmetric 4-mode Gaussian mixture in 10D: variance as a function of SGD training step
in 2 trial runs, with gradient form ansatz for b. (8) was discretized with time step 1

60 . The sample
size of the mini-batch was 800 during the training. The biasing parameters were υ = 0.75, c = 0.3
and ς = 1 (see (19) and the follow-up paragraph).

60

Linear ansatz

trial 1
trial 2
trial 3
Assisted Period

Figure 9: Funnel distribution in 10D: variance as a function of SGD training step in 3 trial runs. We
consider the finite-time NEIS scheme with t− = − 1

2 and use the linear ansatz (22a). During the
training, the integral inside A− 1

2 ,
1
2

was discretized with time step 1
100 , and the mini-batch sample

size was 103. The biasing parameters were υ = 0.7, c = 0.3 and ς = 1 (see (19) and the follow-up
paragraph).

error var parameters

Figure 10: Funnel distribution in 10D: we consider the finite-time NEIS scheme with t− = − 1
2 and

use the two-parametric ansatz (22b). During the training, the integral inside A− 1
2 ,

1
2

was discretized
with time step 1

100 , and the mini-batch sample size was 103. The direct training method was used.

61

tr
ia

l =
 1

tr
ia

l =
 2

(a) Generic ansatz, ℓ = 2, m = 20

tr
ia

l =
 1

tr
ia

l =
 2

(b) Generic ansatz, ℓ = 2, m = 30

Figure 11: Asymmetric 2-mode Gaussian mixture in 2D: we consider the generic ansatz with ℓ = 2
as the architecture for training. In the left part, we show a comparison of NEIS using optimized flow
with AIS, under fixed query budget: we estimate Z1 using the above mentioned query budget for
each method and then repeat the experiment 10 times; we show a boxplot of these 10 independent
estimates for each method. In the right part, we plot a contour of U1 together with streamlines of
optimized flows. For each architecture, we use two random initializations for training, which refer to
two trials above; the estimates using AIS are reused within each panel.

62

tr
ia

l =
 1

tr
ia

l =
 2

(a) Gradient ansatz, ℓ = 2, m = 20

tr
ia

l =
 1

tr
ia

l =
 2

(b) Gradient ansatz, ℓ = 2, m = 30

Figure 12: Asymmetric 2-mode Gaussian mixture in 2D: we consider the gradient ansatz with ℓ = 2
as the architecture for training. In the left part, we show a comparison of NEIS using optimized flow
with AIS, under fixed query budget: we estimate Z1 using the above mentioned query budget for
each method and then repeat the experiment 10 times; we show a boxplot of these 10 independent
estimates for each method. In the right part, we plot a contour of U1 together with streamlines of
optimized flows. For each architecture, we use two random initializations for training, which refer to
two trials above; the estimates using AIS are reused within each panel.

63

tr
ia

l =
 1

tr
ia

l =
 2

(a) Gradient ansatz, ℓ = 2, m = 30

tr
ia

l =
 1

tr
ia

l =
 2

(b) Gradient ansatz, ℓ = 2, m = 40

Figure 13: Symmetric 4-mode Gaussian mixture in 10D: we consider the gradient ansatz with ℓ = 2
as the architecture for training. In the left part, we show a comparison of NEIS using optimized flow
with AIS, under fixed query budget: we estimate Z1 using the above mentioned query budget for
each method and then repeat the experiment 10 times; we show a boxplot of these 10 independent
estimates for each method. In the right part, we plot a contour of projected U1 (more specifically, the
function (x1, x2) 7→ U1

(
[x1 x2 0···]

)
) together with streamlines of optimized flows projected to the

x1-x2 plane. For each architecture, we use two random initializations for training, which refer to two
trials above; the estimates using AIS are reused within each panel.

64

tr
ia

l =
 1

tr
ia

l =
 2

tr
ia

l =
 3

(a) Linear ansatz (22a)

tr
ia

l =
 1

(b) two-parametric ansatz (22b)

Figure 14: Funnel distribution in 10D: we consider the generic linear ansatz and a two-parametric
ansatz as the architecture for training. In the left part, we show a comparison of NEIS using optimized
flow with AIS, under fixed query budget: we estimate Z1 using the above mentioned query budget
for each method and then repeat the experiment 10 times; we show a boxplot of these 10 independent
estimates for each method. In the right part, we plot the contour of projected ρ1 in log10 scale (more
specifically, we plot the function (x1, x2) 7→ log10

(
ρ1([x1 x2 0···])

)
) together with streamlines of

optimized flows projected to the x1-x2 plane. For the linear ansatz, we use three random initializations
for training, which refer to three trials above; for the two-parametric ansatz, we only use a particular
initialization (see the paragraph below (22b)), which refers to the only trial in part (b); the estimates
using AIS are reused within each panel.

65

	Introduction
	Flow-based NEIS method
	Optimal NEIS
	Variational formulations
	Training towards the optimal b
	Numerical experiments
	Conclusion and outlook
	The functional space for the infinite-time case
	Assumptions
	Preliminaries
	The functional space
	Perturbation of the dynamics

	Supplementary material for Section 2
	Proof of Proposition 2.1
	Proof of Proposition 2.2
	Remarks on the discrete-time analogy of (7)
	Remark on the relation between finite-time and infinite-time NEIS

	The first-order perturbation of the variance for the finite-time scheme
	The first-order perturbation of the variance for the infinite-time scheme
	Some explicit formulas
	Proof of Proposition D.1

	Proof of Proposition 3.1 and discussion about its assumptions and implications
	Proof of Proposition 3.1 when D= 1
	A remark about the general case
	A remark about the existence of Morse function
	Solution of Poisson's equation (11) for Gaussian mixtures
	Example: Poisson's equation yields a zero-variance dynamics
	Non-uniqueness of zero-variance dynamics
	Connection to the Beckmann’s problem.

	Explicitly solvable zero-variance dynamics
	Some general properties
	Flows for the 1D case
	Linear flows for Gaussian distributions
	Flows with parallel velocity
	Proof of Proposition F.1
	Proof of Proposition F.2

	Proof of Proposition 3.2 and more discussions
	Proof of Proposition 3.2
	Examples
	Gaussian examples in 1D
	Three-mode mixture on a 2D torus
	An example on (0,1)2 with Neumann boundary condition

	Proof of Proposition 4.1
	A characterization of the global maximum
	Some observations about the functional derivative
	A weaker version
	Proof of Proposition H.1

	Supplementary material for numerical experiments
	Details about AIS.
	More implementation details
	An integration-based forward propagation method to compute the estimator and its gradient
	An ODE-based forward propagation method to compute the estimator and its gradient for t-= 0, t+=1
	ODE dynamics to compute the estimator
	ODE dynamics to compute the gradient

	A discussion on the backward propagation for differentiation
	A discussion on query complexity

	More training and comparisons results

