
A Appendix: AD-DROP for Token-Level Tasks

A.1 Attribution Matrix

Note that AD-DROP is naturally suitable for classification tasks since we can obtain one single
attribution matrix with respect to the only logit output for each attention map. For token-level tasks
(e.g., NER and text generation), as we have several logit outputs to produce the corresponding
attribution matrices for each attention map, applying AD-DROP has the challenge of how to fuse
these attribution matrices. We provide a simple alternative to calculate the attribution matrix as:

B̃h = − ∂L
∂Ah

, (1)

where L is the pseudo loss in terms of the pseudo labels. Given a sequence x with n input tokens, we
represent each pseudo label as a one-hot vector of C elements and compute L as:

L =

n∑
i=1

Li = −
n∑

i=1

C∑
c=1

yi,clogPF (c|x, i) = −
n∑

i=1

yi,c̃logPF (c̃|x, i), (2)

where yi,c is the c-th element in the one-hot vector for token i, PF (c|x, i) is the softmax output of
class c for token i, and c̃ is the pseudo label. Then, Eq. (1) can be updated as:

B̃h = − ∂L
∂Ah

= −
n∑

i=1

∂Li

∂Fi,c̃ (A)
· ∂Fi,c̃ (A)

∂Ah
=

n∑
i=1

(yi,c̃ − PF (c̃|x, i))Bi,h. (3)

Therefore, we can use Eq. (3) to compute a single attribution matrix for each attention map when
applying AD-DROP in token-level tasks. Besides, as regression tasks (e.g., STS-B) cannot infer
pseudo labels, we directly use the actual loss instead.

A.2 Token-Level Experiments

We conduct additional experiments of AD-DROP on NER (CoNLL-2003) and Machine Translation
(WMT 2016) tasks.1 The results on the test sets are reported in Table 1 and Table 2. Moreover,
to verify that AD-DROP can be adapted to other pre-trained models, for CoNLL-2003 NER, we
choose ELECTRA as the base model. For WMT 2016, OPUS-MT is chosen. The results show that
AD-DROP consistently improves the baselines on both NER and Machine Translation tasks.

Table 1: Test results of AD-DROP on the
CoNLL-2003 NER dataset.

Methods Accuracy F1

ELECTRAbase 97.83 91.23
+AD-DROP 97.95 91.77
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Table 2: Test results of AD-DROP on Transla-
tion datasets. The evaluation metric is BLEU.

Methods EN-RO TR-EN

OPUS-MT 26.11 23.88
+AD-DROP 26.43 23.96

Our observations show that dropping low-attribution positions makes the model fit the training data
rapidly, while dropping high-attribution positions reduces the fitting speed. To further probe the effect
of dropping low- or high-attention positions, we fine-tune a RoBERTa on the training set and evaluate
its performance on the development set by applying the two dropping strategies. The results on MRPC,
SST-2, and QNLI are plotted in Figure 1. Similar phenomena can be observed that the model rapidly
fits the data while dropping only a small proportion of low-attribution positions. As the dropping
rate increases, the accuracy remains stable until discarding too many low-attribution positions. When
dropping high-attribution positions, we observe an opposite trend that the performance deteriorates
sharply. These results further confirm the observations in Section 2.2 that attention positions should
not be treated equally important in dropout.

1We follow the official colab implementation (https://huggingface.co/transformers/v4.7.0/
notebooks.html) for the two tasks.
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Note that we only drop positions in the first layer of RoBERTa for the above experiments to exclude
the impact of different layers. We also conduct experiments in the other layers on SST-2, and the
overall results are shown in Figure 2. We note that similar results are obtained in the first few layers,
while the trend becomes less obvious as the number of layers increases. It could be caused by the
over-smoothing issue that the representations of all tokens are similar in the last few layers.
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Figure 1: Performance of fine-tuned RoBERTa on development sets, where two dropping strategies
(i.e., drop low-/high-attribution positions) are applied. Gold labels are used for the attribution.

C Appendix: Experimental Details

C.1 Details of Datasets

Table 3: Statistics of the used datasets.

Dataset Train Dev Test

SST-2 67349 872 1821
MNLI 392702 9815 9796
QNLI 104743 5463 5463
QQP 363846 40430 390965
CoLA 8551 1043 1063
STS-B 5749 1500 1378
MRPC 3668 408 1725
RTE 2490 277 3000
CoNLL-2003 14041 3250 3453
EN-RO 610320 1999 1999
TR-EN 205756 1001 3000
HANS 30000 30000 -
PAWS-X 49401 2000 2000

The details of the used datasets are introduced as
follows. (1) Stanford Sentiment Treebank (SST-2)
is a sentence sentiment prediction task. (2) Multi-
Genre Natural Language Inference (MNLI) is a
pairwise sentence classification task that aims to
predict whether the relationship between two sen-
tences is entailment, contradiction, or neutral. (3)
Question Natural Language Inference (QNLI) is a
binary sentence classification task that aims to pre-
dict whether the sentence in a question-sentence
pair contains the correct answer to the question.
(4) Quora Question Pairs (QQP) is a binary pair-
wise sentence classification task that aims to predict
whether two questions are semantically equivalent.
(5) The Corpus of Linguistic Acceptability (CoLA)
aims to predict whether a single English sentence
conforms to linguistics. (6) The goal of Semantic
Textual Similarity Benchmark (STS-B) is to pre-
dict how two given sentences are semantically similar. (7) Microsoft Research Paraphrase Corpus
(MRPC) aims to predict if two sentences are semantically equivalent. (8) Recognizing Textual En-
tailment (RTE) is similar to MNLI but has binary labels. (9) CoNLL-2003 is to recognize the named
entities in a sentence, which contains four types of named entities. (10) WMT 2016 is a multilingual
translation database. In this study, we choose English-Romanian (EN-RO) and Turkish-English
(TR-EN) for the experiment. (11) Heuristic Analysis for NLI Systems (HANS) aims to evaluate
whether NLI models adopt syntactic heuristics. (12) PAWS-X is a cross-lingual adversarial dataset
for paraphrase identification. HANS and PAWS-X are typically used for the OOD generalization test.
The statistics of these datasets are shown in Table 3.

C.2 Hyperparameter Settings

Table 4 presents the final hyperparameter settings of AD-DROP for BERT/RoBERTabase. The setting
with only one value means the parameter is shared by BERT and RoBERTa.
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Figure 2: Results of dropping self-attention positions in different layers of RoBERTa on SST-2.

Table 4: Hyperparameter settings of AD-DROP for BERT and RoBERTa.

Dataset Learning rate Batch size Length p q

SST-2 1e-5 16/64 120 0.6/0.3 0.8/0.7
MNLI 1e-5 16/32 128 0.5/0.4 0.9/0.2
QNLI 1e-5 16 128 0.8 0.8/0.4
QQP 1e-5 16 120 0.2/0.7 0.7/0.9
CoLA 1e-5/2e-5 16 47 0.3/0.8 0.4/0.3
STS-B 1e-5/2e-5 16 100 0.9/0.1 0.7/0.5
MRPC 1e-5/2e-5 16 100 0.5/0.8 0.8/0.3
RTE 1e-5 16 128 0.6/0.7 0.7/0.1
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D Appendix: More Experimental Results

D.1 Ablation of Cross-Tuning

We further report the results of removing cross-tuning in AD-DROP when enumerating p and q in the
range of [0.1, 0.9] on the CoLA and MRPC datasets. We observe consistent performance degradation
in Figure 3 after removing the cross-tuning strategy from AD-DROP.
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Figure 3: Results of AD-DROP with and without cross-tuning when enumerating p and q in the range
of [0.1, 0.9] on the CoLA and MRPC datasets.

D.2 Effect of Data Size on QQP
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Figure 4: Results of comparison between
AD-DROP and original FT as the size of
training data changes on QQP.

Figure 4 shows a comparison between AD-DROP and the
original fine-tuning (FT) as the size of training examples
changes. We observe from the figure that AD-DROP per-
forms consistently better than original FT with different
sizes of training data.

E Appendix: Limitations

We discuss potential limitations of AD-DROP as fol-
lows. First, as reported in Section 4.7, training with AD-
DROP requires more computational cost than the original
fine-tuning approach especially when integrated gradi-
ent is applied for attribution in all the attention heads.
Therefore, we propose to use gradient for attribution in
AD-DROP as it achieves competitive performance with
acceptable computational cost. Second, AD-DROP intro-
duces additional hyperparameters (p and q) and requires
more effort to search for the best hyperparameters.
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