
Appendix

This Appendix is structured as follows: in Section A, we give additional background information on
CATE estimation. In Section B, we discuss feature importance methods in more detail. Finally, in
Section C we give further details on experiments and present additional results.

A Further Background on CATE Estimation

In this section, we discuss the unique characteristics of CATE estimation in more detail. As outlined
in section 2, we consider three characteristics most important:

• 1. The need to rely on untestable assumptions. To infer causal effects from observational data,
one needs to make strong untestable assumptions which ensure identifiability of a treatment effect and
should be assessed by a domain expert in practice. Such assumptions are used to assure that treated
and untreated individuals are exchangeable, so that EP [Y (w) | X = x] = EP [Y | W = w,X = x].
As is standard in related literature, we rely on the strong ignorability conditions [35] giving rise to

Assumption 1. [Consistency, ignorability, and positivity] Consistency: If individual n is assigned
treatment wn, we observe the associated potential outcome Y n

= Y n
(wn

). Ignorability: there
are no hidden confounders, such that Y (0), Y (1) ? W | X . Positivity: treatment assignment is
non-deterministic, i.e. 0 < ⇡(x) < 1, 8x 2 X .

• 2. The presence of covariate shift due to confounding. Even when ignorability holds because X
contains all confounders, a non-constant propensity score ⇡(x) will lead to covariate shift between
the two treatment groups. When treatment effects are estimated indirectly by first obtaining estimates
of µw(x), this can be problematic during empirical risk minimization as the observed population
distribution then does not correspond to the target (marginal) distribution of characteristics.

• 3. The target label of interest is absent. In fully randomized experiments, identifying
assumptions hold by construction and the distribution of covariates across treatment arms is identical
(in expectation) – yet CATE estimation remains non-trivial. This is because the true target label
Y (1)�Y (0) is absent even in experimental studies. Because Y (1) and Y (0) are available separately,
outcome regressions estimating µw(x) = EP [Y | W = w,X = x] can be performed and ⌧̂(x) can be
estimated indirectly as µ̂1(x) and µ̂0(x). Nonetheless, as we discuss in Section 2 it is also possible to
target ⌧(x) directly; the two estimation strategies have different theoretical strengths [4, 13].

B Feature Importance Methods

B.1 Useful Properties for CATE Interpretability

With the specificity of the CATE setting in mind, let us describe some desirable properties of the
importance scores ai, i 2 [d]. The presence (or absence) of these properties in popular feature
importance methods is summarized in Table 1.

Sensitivity. The covariates that do not affect the CATE model are given zero contribution. More
formally, if for some i 2 [d] we have ⌧̂(x) = ⌧̂(x�i) for all x 2 X , then ai(⌧̂ , x) = 0 for all x 2 X .
This allows to discard covariates that are irrelevant for the CATE model.

Completeness. Summing the importance scores gives the shift between the CATE and a baseline.
More formally, for all x 2 X , we have:

dX

i=1

ai(⌧̂ , x) = ⌧̂(x)� b,

where b 2 R is a constant baseline. In this way, each importance score ai can be interpreted as
the contribution from covariate i of x to have a CATE that differs from the baseline b. Note that
the choice of the baseline differs from one method to another. For instance, the baseline for SHAP
and Expected Gradient [41] is the average treatment effect: b = EX⇠P [⌧̂(X)]. Alternatively, the
baseline employed in Integrated Gradient and DeepLift is the treatment effect for a baseline patient
with covariates x̄: b = ⌧̂(x̄). Finally, Lime uses a zero baseline: b = 0.
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Linearity. The importance score is linear with respect to the black-box function f . More formally,
this means that for all covariate i 2 [d], real numbers ↵,� 2 R, functions fa, fb : X ! Y we have
ai(↵ · fa + � · fb, ·) = ↵ · ai(fa, ·) + � · ai(fb, ·). If the CATE model f = ⌧̂ is written directly in
terms of the estimated potential outcomes ⌧̂ = µ̂1 � µ̂0, this allows to write:

ai(⌧̂ , x) = ai(µ̂1, x)� ai(µ̂0, x).

This formulation renders the distinction between prognostic and predictive covariates intuitive. If xi

is a prognostic covariate, one expects ai(µ̂1, x) = ai(µ̂0, x) so that ai(⌧̂ , x) = 0, which implies that
i is not relevant to explain effect heterogeneity. On the other hand, if xi is a predictive covariate, one
expects ai(µ̂1, x) 6= ai(µ̂0, x) so that ai(⌧̂ , x) 6= 0, which implies that xi is relevant to explain effect
heterogeneity.

Model Agnosticism. The feature importance score can be computed for all CATE model ⌧̂ : X ! Y .
Some methods only work with a restricted family of models, which prevents them from being model
agnostic. A typical example is Integrated Gradient, which requires the model ⌧̂ to be differentiable
with respect to its input. Another example is DeepLift that requires ⌧̂ to be represented by a
deep-neural network.

Implementation Invariance. The feature attribution would be the same for two functionally equiva-
lent models. This means that if we have two CATE models ⌧̂1 and ⌧̂2 such that ⌧̂1(x) = ⌧̂2(x) for
all x 2 X , this implies that ai(⌧̂1, x) = ai(⌧̂2, x) for all x 2 X and all i 2 [d]. While this property
might seem trivial, we note that it is not fulfilled when the attribution methods explicitly depend on
the model’s architecture. An example of such methods are the ones that use neuron activations, like
DeepLift and LRP.

Table 1: Properties of popular feature importance methods. Note that Shap also has a gradient-based
implementation called GradientShap. Hence, it also belongs to the Gradient-Based category.

Type Name Sensitivity Completeness Linearity Impl. Invariance

Gradient-Based
Saliency [38] 3 7 3 3

Integrated Gradients [39] 3 3 3 3

Perturbation-Based

Lime [42] 7 3 7 3

Feature Ablation 3 7 7 3

Feature Permutation 3 7 7 3

Shap [40] 3 3 3 3

Neuron Activation
LRP [45] 3 3 3 7

DeepLift [46] 3 3 3 7

We note that two methods stand-out in the previous analysis: Integrated Gradients and Shap. The
former is much more efficient computationally as it typically requires 50 backwards pass on the
model per instance. Shap’s complexity, on the other hand, scales exponentially with the number of
features d [40]. For datasets with high d (like TCGA), computing Shap for thousands of examples
quickly become prohibitively expensive. For this reason, we chose Integrated Gradients as our main
explanation method.

B.2 Quantitative Comparison between Feature Importance Methods

We shall now reproduce the experiments form Sections 5.1 & 5.2 with different feature importance
methods. To approximate Shapley values, we use the Monte-Carlo sampling from [57]. We found
this approach more computationally efficient than KernelShap.

Prognostic Scale. The experiments from Section 5.1 with various feature importance methods is
reported in Figure 5. We clearly see that the results for Shap and Integrated Gradients are nearly
identical. The predictive accuracy obtained with Feature Ablation is marginally lower, while Feature
Permutation substantially underperforms. We note that all the conclusions discussed in Section 5.1
still hold if we replace Integrated Gradients by Shap or Feature Ablation. In particular, the relative
ordering between learners is not affected by this choice.

Nonlinearity Sensitivity. The experiments from Section 5.2 with various feature importance methods
is reported in Figure 6. Again, Shap and Integrated Gradients are closely followed by Feature Ablation
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(a) Integrated Gradients

(b) Shap

(c) Feature Ablation

(d) Feature Permutation

Figure 5: Performance comparison of feature importance methods in terms of Attrpred when varying
the predictive scale, using four feature datasets (TGCA, Twins, News, ACIC). Averaged across
multiple runs, shaded areas indicates one standard error.

and Feature Permutation significantly underperforms. All the conclusions discussed in Section 5.2
still hold if we replace Integrated Gradients by Shap or Feature Ablation. In particular, the relative
ordering between learners is not affected by this choice.

C Experimental Details and Additional Results

C.1 CATE Model and Implementation Details

We use two direct learners, both of which use a first-stage regression step to estimate nuisance
parameters ⌘ = (µ0, µ1,⇡) and then use these to create a surrogate for the treatment effect in the
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(a) Integrated Gradients

(b) Shap

(c) Feature Ablation

(d) Feature Permutation

Figure 6: Performance comparison of feature importance methods in terms of Attrpred when varying
the nonlinearity scale, using four feature datasets (TGCA, Twins, News, ACIC). Averaged across
multiple runs, shaded areas indicates one standard error.
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second stage. In particular, [3]’s DR-learner uses the pseudo-outcome

ỸDR,⌘̂ =

✓
W

⇡̂(X)
� (1�W )

1� ⇡̂(X)

◆
Y +

✓
1� W

⇡̂(X)

◆
µ̂1(x)�

✓
1� 1�W

1� ⇡̂(X)

◆
µ̂0(X)

�
(3)

which is based on the doubly-robust AIPW estimator [58] and is unbiased if either propensity score
or outcome regressions are correctly specified. [2]’s X-learner, on the other hand, creates two
pseudo-outcomes, one to be used in each treatment group: ⌧̂1 is estimated by using pseudo outcome
Y � µ̂0(X) in a regression using only treated individuals, while ⌧̂0 is estimated by using pseudo
outcome µ̂0(X) � Y in a regression using only control individuals. The two estimators are then
combined using ⌧̂(x) = g(x)⌧̂1(x)+(1�g(x))⌧̂0(x) for some weighting function g(x); as proposed
by [2] we rely on g(x) = ⇡(x). Other direct learners, which we do not include in our experiments as
they rely on similar principles, have also been studied in the literature: e.g. the RA- and PW-learner
in [4] as singly-robust versions of the DR-learner, or the doubly-robust R-learning strategy [59, 60]
which uses [61]’s approach for semiparametric regression through orthogonalization with respect
to the nuisance functions ⇡(x) and µ(x) = E[Y |X = x] (the unconditional outcome expectation),
instead of the AIPW-transformation.

Indirect learners (T-learner, S-learner and TARNet) are as described in the main text.

We use the PyTorch implementations of all models provided in the python package Catenets5; as
[4] we ensure that each estimated function (µ̂w(x), ⇡̂(x) and ⌧̂(x)) has access to the same amount
of hidden layers and units in total (2 hidden layers with 100 units and a final prediction layer; for
TARNet/CFRNet this means that the representation � and the outcome heads hw each have 1 hidden
layer) and each architecture can hence represent similarly complex nuisance functions. We use dense
layers with ReLU activation function. All models are trained using the Adam optimizer with learning
rate 10

�4, batch size 1024 and early stopping on the validation set (which represents 30% of the
initial training set).

We used a virtual machine with 6 CPUs, an Nvidia K80 Tesla GPU and 56GB of RAM to run all
experiments.

C.2 Dataset Details

TCGA. The TCGA dataset [51] consists of information about gene expression measurements from
9659 cancer patients. We use the same version of the TCGA dataset as in [62]6. In our experiments,
we use as patient covariates the measurements from the 100 most variable genes. These are all
continuous features. The data is log-normalized and each feature is scaled in the [0, 1] interval.

Twins. The Twins dataset [52] consists of information from 11400 twin births in the USA recorded
between 1989-1991. Each twin pair is characterized by 39 covariates related to the parents, pregnancy
and birth; these represent a mixture of continuous and categorical features. In our experiments, the
publicly available version of the dataset from Catenets is used where we randomly sample one of
the twins to observe.

News. The News dataset consists of 10000 news items (randomly sampled), each characterized by
2858 word counts [53, 9, 62]. Similarly to [9] we perform Principal Component Analysis and use as
covariates for each news item the first 100 principal components (continuous features). We use the
same version of the News dataset as used in [62].

ACIC2016. The ACIC2016 dataset consists of data from the Collaborative Perinatal Project provided
as part of the Atlantic Causal Inference Competition (ACIC2016) [50]. We use the publicly available
version of the dataset from the Catenets package which consist of 55 covariates (mixture of
continuous and categorical ones) for 2200 patients. Note that the same version of the dataset was
used in [13].

For information about how each dataset was collected and curated, refer to the corresponding
references. Note that all of these datasets are publicly available. Each dataset undergoes a 80%/20%
split for training/testing respectively. Moreover 30% of the training dataset is used for validation as
part of the early stopping procedure performed by the Catenets package. The feature importance
metrics are computed for up to 1000 examples from the test set, while the PEHE is computed over

5https://github.com/AliciaCurth/CATENets
6https://github.com/d909b/drnet
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Figure 7: Performance comparison in terms of Attrpred (left, higher is better), Attrprog (middle,
lower is better) and PEHE (right, lower is better) when varying the predictive scale, using a high-
dimensional feature space (5000 genes) for the TCGA dataset. Averaged across multiple runs, shaded
areas indicates one standard error.
the entire test set. The results are averaged over 30 random seeds for Experiments 1 & 2 and over 10
random seeds for Experiment 3 (note that there are three experimental settings here for the different
types of confounding).

C.3 Feature Importance Methods Implementation

We use the Pytorch implementation of all feature importance methods provided in the Python package
Captum7. For the relevant feature importance methods, we set the zero vector as a baseline input:
x̄ = 0. We see mainly two limitations for Integrated Gradients, both of which can be addressed in
our setting.

1. To compute Integrated Gradients, the black-box needs to be differentiable with respect to its
input features. In our setting this is not a problem since all learners are parametrized with
feed-forward neural networks.

2. Integrated Gradients is sensitive to the choice of the baseline x̄, as discussed in [63]. For
this reason, it is important to choose a baseline with a clear interpretation. In our setting, the
baseline x̄ = 0 has a natural interpretation since all the covariates we manipulate are either
normalized in the interval [0, 1] (this is the case for the TCGA, News and Twins datasets)
or standardized (this is the case for ACIC2016). Hence, the baseline corresponds to the
minimal features in the former case and to the mean features in the later case.

C.4 Experiment 1: Altering the Strength of Predictive Effects – Extension to
High-Dimensional Feature Spaces

In Fig. 7 we also report performance when using a version of the TCGA dataset with a high-
dimensional feature space. In particular, we have obtained a version of the TCGA data which has the
d = 5000 most variable genes as features (instead of 100 as used in our initial experiments). Out
of the 5000 features, we set nI = 500 of them (10%) to be important as prognostic and predictive
for each potential outcome. We notice that in this setting, the different learners have poor absolute
performance in discovering the predictive features, while relative performance remains similar to the
smaller scale experiments. Thus, our benchmark suggests that developing CATE learners that can
better identify predictive covariates in a high dimensional setting is needed and would represent an
interesting direction for future work.

C.5 Experiment 2: Incorporating Nonlinearities

Each nonlinear function � is sampled randomly from the function set F = {�1 : x 7! |x| , �2 : x 7!
exp(�x2

), �3 : x 7! (1 + x2
)
�1, �4 : x 7! cos(x), �5 : x 7! sin(x), �6 : x 7! arctan(x), �7 :

x 7! tanh(x), �8 : x 7! log(1 + x2
), �9 : x 7! (1 + x2

)
1/2, �10 : x 7! cosh(x)}.

7https://captum.ai/
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