
Tempo: Accelerating Transformer-Based Model
Training through Memory Footprint Reduction

Muralidhar Andoorveedu1, Zhanda Zhu2,3, Bojian Zheng1,3, Gennady Pekhimenko1,3

1University of Toronto, Toronto, Canada
2Shanghai Jiao Tong University, Shanghai, China

3Vector Institute, Toronto, Canada
{andoorve, zhanda, bojian, pekhimenko}@cs.toronto.edu

Abstract

Training deep learning models can be computationally expensive. Prior works have
shown that increasing the batch size can potentially lead to better overall throughput.
However, the batch size is frequently limited by the accelerator memory capacity
due to the activations/feature maps stored for the training backward pass, as larger
batch sizes require larger feature maps to be stored. Transformer-based models,
which have recently seen a surge in popularity due to their good performance
and applicability to a variety of tasks, have a similar problem. To remedy this
issue, we propose Tempo, a new approach to efficiently use accelerator (e.g., GPU)
memory resources for training Transformer-based models. Our approach provides
drop-in replacements for the GELU, LayerNorm, and Attention layers, reducing
the memory usage and ultimately leading to more efficient training. We implement
Tempo and evaluate the throughput, memory usage, and accuracy/loss on the
BERTLARGE pre-training task. We demonstrate that Tempo enables up to 2×
higher batch sizes and 16% higher training throughput over the state-of-the-art
baseline. We also evaluate Tempo on GPT2 and RoBERTa models, showing 19%
and 26% speedup over the baseline.

1 Introduction

Transformer-based models such as BERT [12] and GPT-2 [49] have found success in numerous
general natural language processing tasks including question answering [51], paraphrasing [13],
natural language inference [68], and even areas outside language tasks such as image recognition [14].
However, training such models can be highly expensive in terms of time, monetary resources and
carbon footprint [24, 60]. For instance, the pre-training of BERTLARGE takes 4 days to complete on
16 Cloud TPUs (64 TPU chips total) [12], which costs about $10,000 [56]. Training a more recent
Transformer-based model, GPT-3, has an even more astonishing price tag - $12 million[66]. Hence,
even a small decrease in the end-to-end training time of Transformer-based models matters.

Although there has been significant progress made in accelerating Transformers using specialized
hardware (e.g., Google TPUs [30], NVIDIA Tensor Cores [39]) in the past few years, a fundamental
issue with Transformer-based models is that they are limited by the memory capacity of hardware
accelerators. For example, even a batch size of 1 does not fit into a modern GPU with 12GB of
memory when training BERT with sequence length 512 [15]. Reducing memory footprint [48, 8, 52]
is a viable option to allow larger batch training, leading to better hardware utilization and ultimately
improved training throughput [73].

Many existing approaches to memory footprint reduction (e.g., offloading [52, 65, 48], checkpoint-
ing [8, 73, 33, 28], and data compression/encoding [26, 6]) either have high computational overhead
or do not apply to Transformer-based models directly. Prior approaches fall into two main categories,

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

neither of which are satisfactory for the Transformer-based model case. First, these techniques may
be too general [48, 6, 50, 33, 28] to utilize the specifics of Transformer-based models well, such as the
multi-headed attention mechanism used in Transformers [63], or optimization opportunities available
in specific layers such as the LayerNorm [4] layer. For example, although checkpointing [8, 28] can
significantly enlarge batch size, it also brings high overhead (e.g., 30% performance degradation
observed in some prior works [8]). Second, if prior works are specific, they focus on other types of
models/layers with ideas not being applicable to Transformers. For example, Gist and In-Place ABN
deal with CNNs [26, 53].

In our work, we demonstrate that low overhead memory footprint reduction can lead to a positive
improvement in throughput. In addition, unlike prior works which do not leverage the specifics of
Transformer-based models, we propose a new approach specifically tailored for Transformer-based
models, called Tempo. This approach includes three new techniques: (i) In-place GELU, (ii) In-place
LayerNorm, and (iii) Sub-Layer Dropout Recomputation. In-place GELU and In-place LayerNorm
both use alternative derivations for the computation of the backward passes of these layers. These
derivations allow some activations that are normally retained during the forward pass (to be later used
in the backward pass) to be discarded, leading to a more memory-efficient implementation. Sub-Layer
Dropout Recomputation discards activations within the high memory footprint attention mechanism
during the forward pass, then recomputes these during the backward pass without recomputing extra
unnecessary tensors. Tempo is able to increase the training throughput with larger batch sizes by
reducing the total memory footprint of the models during training. To our best knowledge, this is
the first work to explore memory footprint optimizations specifically for Transformer-based layers
that show not just footprint reduction, but the actual increase in throughput using the extra memory
savings. Tempo reduces the memory footprint of training Transformer-based models by targeting
a major part of the total footprint – the activation memory [74] (the saved feature maps during the
forward pass of the model that are required for backpropagation [54]). All the proposed techniques
provide a large memory footprint reduction with very low throughput degradation (as low as 1%).
Our results show up to 2× improvement in batch size for BERTLARGE pre-training at a sequence
length of 512 on modern GPUs while increasing the training throughput by up to 16% .

2 Background and Motivation

2.1 Memory Footprint of BERT

BERT [12] is a popular natural language processing model that is based on the Transformer ar-
chitecture [63]. The model has been successfully applied to a variety of tasks such as question
answering (SQuAD [51]), paraphrasing (MRPC [13]), natural language inference (MNLI [68]), and
others [57, 72] through a two step training process. The training process entails first training on
a general unlabelled data set (pre-training) [12]. The faster second part of the training process
(fine-tuning) takes the parameter weights produced by the pre-training section and further trains on a
downstream task such as question answering [51] or sentiment analysis [57] which it accomplishes
through the addition of a specialized output layer [12].

The BERT architecture allows for multiple different configurations depending on model hyperparam-
eters selected, some being derived from the original Transformers paper; these include the hidden
layer size (H), sequence length (S), number of attention heads (A) and number of layers (L).

In the context of this work, we point out some of the relevant parts of the model and their activation
memory footprint with respect to these hyperparameters referring to Figure 1.

1⃝ At this point, where attention [63] is calculated we observe that the size of each of the feature
maps goes as O(S2)− there are a variety of previous techniques and models that have been explored
in the literature to deal with this problem [61]. Additionally, at this point note that we store three
feature maps of size [B ×A× S2]. Calculations based on Figure 1 at the BERTBASE parameters
show that at a sequence length of 512 these three feature maps account for 56% of the encoder
layer activation memory.

2⃝ At these two points, we store the input to the two LayerNorm layers of size [B × S ×H]

3⃝ Here a GELU [21] layer is used as the activation function for the preceding fully-connected layer
of size [B × S × 4H]. The activation memory for this function stores almost 17% of the total layer
activation memory of BERTBASE at a sequence length of 128.

2

Figure 1: A diagram of a single Transformer encoder [63] layer used in BERT [12]. This is based on
the Huggingface implementation of BERT [69]. As in the BERT paper, A represents the number of
attention heads, and H represents the hidden size. We represent the batch size by B and the sequence
length by S. Sizes of intermediate tensors (both retained activations and unretained intermediates)
are annotated.

2.2 Why Activation Memory Matters

As iterated in previous works [52, 26, 48, 73, 6] there are multiple benefits to reducing the memory
footprint of models. First, it allows for larger models which can positively affect the model’s
performance on downstream tasks [12]. Second, memory footprint reduction can allow for a larger
batch size. This, in turn, could lead to better utilization of the GPU hardware [17], increasing the
overall throughput [73]. In order to verify this possibility for Transformer-based models, we conduct
our own experiments using Huggingface’s BERT implementation [69] to train BERTLARGE on the
MRPC [13] fine-tuning task. Figure 2 shows the throughput on this task for sequence lengths of
128 and 512. From the figure, we conclude that there is a steady improvement in batch size when
the sequence length is 128. This is also the case when the sequence length is 512, however, in this
situation the trend ends more abruptly as the memory consumption of the model exceeds the GPU
memory capacity, showing a clear opportunity to take advantage of memory footprint reduction.

0 2 4 6 8 10 12 14 16

10

20

30

Batch Size

T
hr

ou
gh

pu
t(

Se
qu

en
ce

s/
s)

S = 128
S = 512

Figure 2: Plots of throughput (sequences/s) vs batch size for BERTLARGE [12] fine-tuning on the
MRPC [13] task at sequence lengths 128 and 512 on four 2080Ti [40] GPUs. The maximum batch
sizes are respectively 16 and 2.

We note that previous works on Transformer-based models show that although the model parameters
contribute to the memory footprint, the main memory capacity consumer during training is actually
the activation feature maps [74, 28, 8, 48, 26, 33, 6]. In addition, the majority of this activation
memory will be used in each of the BERT Transformer encoder layers. Profiling the Huggingface
BERTBASE implementation [69] on the MRPC [13] fine-tuning task at a batch size of 32 and

3

sequence length of 128 shows that 66% of the total memory is taken up by these encoder activations.
More details on this are shown in Appendix A.

2.3 Key Prior Works

There are three major prior techniques used in training memory footprint reduction of deep learning
models. The first of these is Checkpointing [8, 33, 28, 73]. This technique involves discarding certain
feature maps in the forward pass while retaining others. Later, in the backward pass, these discarded
feature maps may be recomputed from the retained feature maps, and thus used in the computation of
the gradients. The second technique is Offloading [48, 52, 65]. In this case, the main idea involves
taking feature maps that would be stored in the GPU memory, and instead offloading them to the
CPU memory. These techniques can also involve pre-fetching tensors from the CPU memory in
anticipation of their use. Offloading suffers from a dependence on system variables such as the
communication channel bandwidth [52, 48]. It also requires extensive engineering effort to avoid
high overhead [6]. Finally, Compression/encoding; this can be divided into two different categories,
lossless and lossy [26, 6]. However, the fundamental idea is to compress, or reduce the space taken
up by feature maps in the forward pass, then decompress it for use in the backward pass.

These techniques are usually largely orthogonal to one another as was shown in prior works where
both offloading and checkpointing are used simultaneously [48, 65]. We expand on these techniques
in Appendix C.

2.4 Why Tempo?

Although the techniques in the previous section show good performance on a variety of models,
they suffer from a variety of issues. Checkpointing’s scope is often too broad to consider certain
layer-specific optimizations and alternative derivations that can provide lower overhead [53]. Fur-
thermore, overhead can be high (as much as 30%) [8]. Offloading can be system- dependent and
requires significant engineering effort, while compression can be lossy or not applicable to the
Transformer case. Hence, there is a clear need for a deeper look at activation memory optimizations
for Transformer-based neural networks in particular. To our best knowledge, our work is the first to
explore such optimizations tuned to improving the throughput of Transformer-based models. Table 1
shows a summary comparison of Tempo and various other techniques, with the major points that
differentiates our technique from prior work.

Feature Ca
pu

ch
in

Ch
ec

km
at

e
A

ct
N

N

G
ist Te
m

po

Layer-Specific ✗ ✗ ✗ ✓ ✓
Transformer-Specific ✗ ✗ ✗ ✗ ✓

Lossless ✓ ✓ ✗ ∼1 ∼2

Drop-In Layer Replacement ✗ ✗ ✓ ✓ ✓
Online ✓ ✗ ✓ ✓ ✓

Table 1: Comparison between Tempo and Capuchin [48], Checkmate [28], ActNN [6], and Gist [26].

3 Tempo: Key Ideas

We now present the major ideas that lays behind the design of Tempo: (1) In-place GELU, (2)
In-place LayerNorm, and (3) Sub-Layer Dropout Recomputation. The major theme behind all of
these ideas is to compute the backward pass as normal, while using less storage to do so. To this end,
In-place GELU and In-place LayerNorm compute the output of each layer in-place; instead using
the output activation to compute the gradient. Sub-Layer Dropout Recomputation also discards the
output, and through a closer look at the structure of the Dropout layer is able to recompute the output
without excessive recomputation. We strongly suggest reading Appendix E for the implementation
details. We also add in this appendix a new optimization of softmax that we use that further reduces
memory [18].

1Some of the Gist [26] optimizations are lossy.
2Accuracy of our lossy optimization is tunable, offering a flexible tradeoff between the accuracy and the

hardware cost.

4

3.1 In-place GELU

The GELU layer is used as an activation function for the feed-forward section of the BERT layer (3⃝
in Figure 1) [12]. A plot of this function is shown in Figure 3a. Referring to the baseline in Figure 3b,
note that both X and Y are stored for the backward pass. Y is needed for the downstream fully
connected layer, while X is stored for the GELU layer itself [46]. Prior work has demonstrated that
certain activation functions such as ReLU may be computed in-place [26]. This can be done without
affecting the calculation of the backward pass. If we were able to compute the GELU function
in-place, potentially by recovering the input from the output on the backward pass, we could save the
storage required for X . However, this is impossible to do directly. A key observation to make with
respect to the GELU function is that it is not bijective – hence there is no function that will be able to
compute the input from the output without additional information.

However, we observe that the GELU function is both continuous and has only one extremum, a
minimum value at x ≈ −0.75179 as can be seen in Figure 3a. Notably, this implies that just one
additional piece of information: which side of the minimum the input originates from, allows us
to compute the inverse of the GELU. This is because on each side of the minimum the function
is one-to-one, and hence the input is recoverable from the output in each section. Based on this
key observation, we can discard the input, and simply retain the output of the GELU, as well as
the additional information on whether the input is greater than or equal to the value at which the
minimum occurs. Figure 3b illustrates the difference between our method and the baseline.

In order to execute this efficiently on a real system, we note that the original derivative in terms of
the input can be composed with the function inverse in order to create a composite kernel. This
kernel consists of a polynomial approximation of this composite function, the approximation being
necessary since GELU is transcendental, and therefore the inverse cannot be solved in terms of
elementary functions [58]. Further details are discussed in Appendix E.

Figure 3(a): A plot of the GELU[21] function near
the origin, along with the marked minimum point.

Figure 3(b): Saved feature maps between the base-
line and Tempo. Note that our method only saves
a 8-bit mask3 that denotes whether the input is
greater or less than the minimum value, instead of
the full 32-bit input feature map.

3.2 In-place LayerNorm

The LayerNorm layer is used at multiple points in the Transformer encoder layer [63], which we
denote by 2⃝ in Figure 1. Usually, the gradient computation of LayerNorm relies on the gradient
input from the next layer, as well as the input feature map which is stashed for this computation [46].

Similar to GELU, we are able to derive an expression for the gradient of the LayerNorm layer as
a function of its output. In this context, the output of LayerNorm must be stashed to compute the
gradient of the successive fully connected layer anyways. Using this approach, the memory footprint
overhead of LayerNorm is just the intermediate mean and variance computed in the forward pass.
The full derivation is presented in Appendix E which is extended from the treatment of BatchNorm
in [53].

Comparison with Checkpointing: Note that although In-place GELU requires more memory
compared to recomputing Y from X , it will have increased overhead due to the recomputation.

3Pytorch boolean masks use 8-bits per value [46]. Masks can also be implemented as 1-bit manually but this
brings extra overhead due to unpacking and packing bit tensors.

5

Additionally, our technique is orthogonal to conventional Checkpointing, as it could take advantage
of the fact that no recomputation is required for the input X for both In-place GELU and In-place
LayerNorm.

3.3 Sub-Layer Dropout Recomputation

In this section we explore the idea of sub-layer granularity checkpointing, or partial recomputation
applied to the Dropout layer [59] found in 1⃝ in Figure 1. The function of a dropout layer is to set the
output of p% of entries in the incoming feature map to zero (“drop” the outputs) and then scale the
remaining outputs by the factor 1

1−p , which makes the network less sensitive to any output of the
preceding feature map, thereby making it more robust [59].

We define sub-layer recomputation as a technique where recomputation of only some of the feature
maps is necessary for the backward pass that may be produced by a given layer’s output. We
observe that better recomputation strategies are possible if we carefully deconstruct layers in the
case where they store multiple outputs. This observation can be directly applied to the Dropout
layer. In the computation of Dropout, both a mask (which records the entries which are set to zero
in implementations of Dropout [46, 7]) and output are produced. If a layer-based checkpointing
implementation [16] was used, it would cause both the mask and the output to be recomputed in the
backward pass if the layer is checkpointed, thus requiring higher overhead. However, we notice that
nothing precludes us from simply doing only one of these recomputations. Storing the mask would
only reduce the recomputation (including memory transfer) time, while the fact that the mask itself
only has Boolean values allows us to keep most of the memory benefit of recomputation. In this way,
we can save the storage required for the output at the critical O(S2) Attention section (3⃝ in Figure 1)
for the cost of a simple mask multiply. This technique is illustrated in Figure 4.

Figure 4: Comparison of dropout implementation between the baseline, and our method. Note that
we only save the mask, and recompute the other output. The representation on the left is not an exact
copy of the PyTorch implementation, rather it is an illustrative representation.

3.4 Other Engineering Optimizations

We note that PyTorch uses a memory-inefficient implementation of the softmax function which
retains both the input and output of the function for the backward pass [46]. Instead, only the output
is necessary. This optimization has also previously been implemented as part of some models in the
Huggingface library [18]. We use this optimization as well in our implementation of the attention
mechanism to further reduce the activation memory pressure.

4 Evaluation

4.1 Methodology

Infrastructure Our main test setup consists of 4 NVIDIA RTX 2080 Ti GPUs [40], each with 11
GB of memory connected over PCIe v3 [47]. We also use an Amazon Web Services p3.8xlarge [3]
instance consisting of 4 NVIDIA Tesla V100 GPUs [39] each with 16 GB of memory connected

6

using NVLink [42]. For our ablation studies, we employ a system with an NVIDIA A100 GPU [43]
with 40 GB of memory. We summarize the detailed setup in Appendix G.

Applications We evaluate our work using both the BERT pre-training and fine-tuning tasks [12].
For pre-training, we employ the NVIDIA DeepLearningExamples library [41] with the English
Wikipedia dataset [67]. We perform the training in two phases, the first (i.e., longer) phase at a
sequence length of 128, and the second (i.e., shorter) phase at a sequence length of 512 [12, 41]. For
throughput and memory experiments, we use the BERTLARGE configuration. For our fine-tuning
task, we use the MRPC [13] paraphrasing task on BERTBASE using the Huggingface library [69].

For our ablation studies, we also train both RoBERTa [34] and GPT2[49]. For the evaluation of
RoBERTa, we use the Fairseq library [44], while GPT2 uses the Huggingface GPT2 model [69].
Both of these models use the WikiText Dataset for evaluation [35].

Metrics The first metric we focus on is the total memory footprint of our method compared to
the baselines. There are two ways to look at this metric. First, we compare the maximum batch
size possible for each method. We compare this across sequence lengths of 128 and 512 5 on
BERTLARGE for both 2080Ti and V100 GPUs. Second, we compare the total memory used by
PyTorch at a given commonly used batch size for the same parameters. The second metric we use
is the throughput for which we count the total number of sequences per second processed. Finally,
we provide a comparison between our method and the baseline method on BERTBASE pre-training
in order to compare the loss curves and show the change due to our lossy optimizations. We also
provide fine-tuning curves on the MRPC [13] task, training for 10 epochs to ensure no significant
accuracy deviations.

Our ablation studies only use the throughput metric.

4.2 Results

We use two major baselines. The first baseline is the NVIDIA BERTLARGE model [41], with no
memory footprint techniques applied which we refer to as the Baseline. The second one is the same
model, with the default checkpointing applied, based on the PyTorch implementation, applied at the
input of each Transformer encoder layer [46, 41] and is similar to the Huggingface implementation
[69]. We refer to this baseline as Checkpoint. We refer to our method that uses In-Place GELU,
In-Place LayerNorm, Sub-Layer Dropout Recomputation, and the softmax engineering optimization
as Tempo.

Impact on Memory Footprint Table 2 shows the maximum batch size and memory consumed at
a fixed batch size for all three methods. Additionally, the total memory used at a batch size of 15
at a sequence length of 128 is 11.3 GB, 8.3 GB and 9.2 GB respectively for Baseline, Checkpoint,
and Tempo. From this, we conclude that Checkpoint reduces the memory footprint to a much higher
degree than both Baseline and Tempo. This is expected, as Checkpoint discards most of the feature
maps to be recomputed [69, 41] no matter the performance cost. Tempo still provides a significant
increase in batch size over Baseline at the sequence length of 512 – we see 2× and 1.5× larger
batches over Baseline for the 2080 Ti and V100 respectively but, as the next section shows, with
much better throughput.

Technique Sequence Length Batch Size

Baseline 128 15
Baseline 512 1

Checkpoint 128 50
Checkpoint 512 4

Tempo 128 24
Tempo 512 2

Technique Sequence Length Batch Size

Baseline 128 28
Baseline 512 4

Checkpoint 128 96
Checkpoint 512 18

Tempo 128 41
Tempo 512 7

Table 2: The maximum batch size on both 2080 Ti (left) and V100 (right) for BERTLARGE .

Impact on Throughput Figure 5 illustrates our main results with respect to throughput. From
the figure, we can see that Tempo outperforms both Checkpoint and Baseline across both sequence

5These are the sequence lengths of Phase 1 and Phase 2 of pre-training [12, 41].

7

lengths and across different hardware setups. We observe an improvement of 16% over Baseline
on the 2080 Ti at a sequence length of 512. At these settings, we also have an improvement of 8%
over Checkpoint. We also observe up to 27% over Checkpoint on the V100 at a sequence length
of 512, which also corresponds to a 5% improvement over Baseline. This is despite the fact that
Checkpoint uses the largest batch size as per Table 2. This is because Checkpoint stores feature maps
at the beginning of each Transformer encoder layer, and recomputes these layers [69, 41]. Hence, an
increased batch size also means more recomputation. In contrast, Tempo is able to decrease the total
memory footprint, and then convert this decrease into a substantial performance improvement over
the Baseline due to the use of only low overhead mechanisms.

128 512
0

100

200
1.04×

1.08×

Sequence Length

T
hr

ou
gh

pu
t(

Se
qu

en
ce

s/
s)

Base.
Chk.

Tempo

Figure 5(a): 2080 Ti

128 512

1.03×

1.04×

Sequence Length

Figure 5(b): V100

Figure 5: Throughput experiments at the maximum batch size annotated with the speedup over the
best baseline.

Impact on Loss and Accuracy We pre-train BERTBASE to ensure that our model’s loss curve is
not affected by approximate optimizations (e.g., In-Place GELU). Figure 6a shows the loss curve
of phase 1 of BERTBASE pre-training [12]. We observe almost complete overlap in the loss curves
with no more than a 0.5% difference between Tempo and the baseline at the endpoint. We conclude
that within that margin of error our method is satisfactory.

Figure 6(a): Phase 1 BERTBASE pre-training curve on
the English Wikipedia dataset [67].

Figure 6(b): Accuracy of BERTBASE fine-tuning [12]
on the MRPC [13] task. We run 10 trials of 10 epochs.
The solid line represents the median accuracy of these
trials, and the maximum and minimum along the train-
ing process by the transparent curves’ boundaries.

For the fine-tuning accuracy, we use the pre-trained Huggingface [69] implementation. Figure 6b
shows the results of BERTLARGE fine-tuning [12] on the MRPC [13] task. The figure shows a
consistent overlap between the maximum and minimum accuracy of Tempo and the baseline, so we
can conclude that Tempo has little impact on the accuracy of the trained model.

4.3 Ablation Studies

Ablation Study With Respect to Larger Model Parameters on Modern Hardware Platforms
We also evaluate on other hardware platforms as well as model parameters. First, we use an increased
hidden layer size for various configurations. These experiments are conducted on a platform with

8

an NVIDIA A100 GPU [43] across sequence lengths of 128 and 512. We maintain the hidden layer
size H to the number of attention heads A ratio of 64 which is in line with prior works [63, 12]. The
results are shown in Figure 7. The figure demonstrates two important generalizations of Tempo. First,
note that even on newer and more advanced GPUs, Tempo continues to provide a tangible benefit.
Second, across larger hidden layer sizes Tempo consistently demonstrates a clear improvement over
the baseline (as shown in the figure, this can be as high as a 39% speedup over Baseline which
corresponds to a 16% speedup over Checkpoint). The speedup over Checkpoint is as high as 20% .
We conclude that Tempo will continue to be applicable to new hardware and larger models.

128 512
0

0.5

1

1.5
1.07× 1.07×

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

128 512

1.04× 1.11×

128 512

1.02×
0.98×

128 512

1.15×
1.16×

Baseline Checkpoint Tempo

Sequence Length

Figure 7: Normalized throughput at the maximum batch size, with annotated speedup over the best
baseline. From left to right the configurations are (a) BERTLARGE (H = 1024), (b) BERTBASE

H = 2048, (c) BERTLARGE H = 2048, (d) BERTBASE H = 3072.

We also conduct experiments on BERTLARGE (modified to use 12 Layers instead of 24 for more
data points) for sequence lengths larger than 512. Figure 8 shows the results for this experiment,
where we demonstrate that Tempo outperforms Baseline on longer sequence lengths as well which
can be as high as a 27% speedup over Baseline. At the same settings, we observe 16% speedup
over Checkpoint. Tempo also outperforms Checkpoint by as much as 20%. We conclude that yet
again Tempo will be able to take advantage of modern hardware, as well as remain advantageous as
sequence lengths increase. Note that the largest sequence length of 3072 on Baseline does not have
enough memory to run.

128 512 1024 2048 3072
0

0.5

1

1.5
1.06× 1.10× 1.16× 1.16× 1.10×

Sequence Length

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

Base.
Chk.

Tempo

Figure 8: Normalized throughput relative to the Baseline across different sequence lengths on the
NVIDIA A100 GPU for BERTLARGE modified to use 12 layers. We annotate each bar group with
Tempo’s speedup over the best baseline.

Results on Other Models We conduct experiments on other Transformer-based models as well:
RoBERTa [34] and GPT2 [49]. For the evaluation of RoBERTa, we use the Fairseq library [44]
as well as a sequence length of 512, while GPT2 uses the Huggingface GPT2 model [69]. These
experiments are conducted on both 2080 Ti and V100 setups. We note that the improvement over the
baseline is substantial (up to 19% and 26% for GPT2 and RoBERTa respectively on the 2080 Ti

9

setup. This improvement corresponds to a increase in batch size of 3× and 2×. Furthermore, we also
see speedups of 5% and 4% on the V100 setup as well. From these results, we conclude that Tempo
generalizes well to other Transformer-based models besides BERT.

5 Extensions

5.1 Extending In-place GELU

The ideas used in section 3 for In-place GELU can be extended to general elementwise layers. The
generic steps required for this are listed below, from the the high-level mathematics to the low-level
kernel based accelerator implementation. To the best of our knowledge, ours is the first work that
exposes this potential optimization. This is a generic strategy to reduce memory footprint in a
multi-dimensional space.

Consider an elementwise layer with n inputs that applies a function f inputs such that y =
f(x1, x2, ..., xn) to each corresponding element of the input tensors and where the output is re-
tained for the backward pass of the subsequent layer.

• Discard activation x1 without loss of generality. Determine a function g such that x1 =
g(y, x2, ..., xn). For bijective functions of one variable this is simply the inverse.
• If such a function does not exist without ambiguity, construct functions g1, ..., gj that can recover
x1 on an interval. Construct a function g∗ such that x1 = g(m, y, x2, ...xn) where m is an indicator
that denotes the interval from which x1 from and thus the piecewise selection of one of g1, ..., gj .
Polynomially approximate each of g1, ..., gj to construct a new piecewise function g∗p in the case
that they cannot be expressed analytically.
• For the implementation of the forward pass, fold the computation of m into the computation of
f . In essence, construct a new function f∗ such that (y,m) = f∗(x1, ..., xn). This can be done in a
single kernel call.
• For the backward pass, fold the calculation of x1 = g∗p(m, y, x2, ..., xn) into the computations
of ∂f

∂x2
, ..., ∂f

∂xn
if the computation of these values requires x1 by composing these functions. In

essence, fusing the kernels for the inverse and gradient operator. Then, we require n kernel calls to
calculate the gradient with respect to the loss as before.

We illustrate this strategy in appendix E in more detail. The crux of the idea is that m, if needed at
all, can be stored with less memory than x1, while keeping the number of kernel calls to a minimum.

5.2 Auto-Tempo

As part of exploratory future work, we consider the application of Tempo as an automatic compiler
pass. We propose and prototype two different methods of automatically applying Tempo to trans-
formers which are available at the link in section 6. The first method is a fast method of profiling
beforehand to determine whether memory footprint reduction would help, then applying Tempo to
all applicable layers. The second method is a fine-grained method applies Tempo to a subset of the
applicable layers where the subset is determined through automatic profile and search, analogous to
binary search.

6 Conclusion

We propose Tempo, a new mechanism that reduces the memory footprint of Transformer-based
models at low cost. It shows an improvement in throughput of up to 16% over the state-of-the-art
baseline for BERTLARGE pre-training task and also shows an improvement in maximum batch size
of up to 2× on both V100 and 2080 Ti GPUs. Our technique also generalizes well to new models,
more modern hardware, as well as diverse model parameters in terms of memory footprint and
throughput, demonstrating the robustness of our technique. Our hope is that Tempo will be used
with other footprint reduction methods to improve training efficiency of Transformer-based models.
We open-source Tempo for an immediate positive impact on both machine learning researchers and
practitioners here: https://github.com/UofT-EcoSystem/Tempo.

10

https://github.com/UofT-EcoSystem/Tempo

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system
for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation, (OSDI 2016). USENIX Association, 2016. https://www.usenix.org
/conference/osdi16/technical-sessions/presentation/abadi.

[2] Jorge Albericio, Patrick Judd, Tayler H. Hetherington, Tor M. Aamodt, Natalie D. Enright Jerger,
and Andreas Moshovos. Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing.
In 43rd ACM/IEEE Annual International Symposium on Computer Architecture, (ISCA 2016),
2016. https://doi.org/10.1109/ISCA.2016.11.

[3] AWS. Amazon EC2 P3 Instance Product Details, 2019. https://aws.amazon.com/ec2/i
nstance-types/p3.

[4] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. CoRR, 2016.
http://arxiv.org/abs/1607.06450.

[5] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The Long-Document Trans-
former. CoRR, abs/2004.05150, 2020. https://arxiv.org/abs/2004.05150.

[6] Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W Mahoney,
and Joseph E Gonzalez. ActNN: Reducing Training Memory Footprint via 2-Bit Activation
Compressed Training. In International Conference on Machine Learning (ICML), 2021.

[7] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient Machine Learning Library
for Heterogeneous Distributed Systems. CoRR, 2015. http://arxiv.org/abs/1512.01274.

[8] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training Deep Nets with Sublinear
Memory Cost. CoRR, 2016. http://arxiv.org/abs/1604.06174.

[9] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier
Temam. DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-
learning. In Architectural Support for Programming Languages and Operating Systems, (ASP-
LOS 2014). ACM, 2014. https://doi.org/10.1145/2541940.2541967.

[10] Yu-Hsin Chen, Joel S. Emer, and Vivienne Sze. Eyeriss: A Spatial Architecture for Energy-
Efficient Dataflow for Convolutional Neural Networks. In 43rd ACM/IEEE Annual International
Symposium on Computer Architecture, (ISCA 2016), 2016. https://doi.org/10.1109/IS
CA.2016.40.

[11] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking Attention with
Performers. In 9th International Conference on Learning Representations, (ICLR 2021), 2021.
https://openreview.net/forum?id=Ua6zuk0WRH.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational Linguistics, 2019. "https:
//aclanthology.org/N19-1423".

[13] William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential
paraphrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005),
2005. "https://aclanthology.org/I05-5002".

11

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1109/ISCA.2016.11
https://aws.amazon.com/ec2/instance-types/p3
https://aws.amazon.com/ec2/instance-types/p3
http://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2004.05150
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1604.06174
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://openreview.net/forum?id=Ua6zuk0WRH
"https://aclanthology.org/N19-1423"
"https://aclanthology.org/N19-1423"
"https://aclanthology.org/I05-5002"

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In 9th International Conference on Learning Representations, (ICLR
2021), 2021. https://openreview.net/forum?id=YicbFdNTTy.

[15] Google. Out-of-memory issues. https://github.com/google-research/bert#out-o
f-memory-issues.

[16] Priya Goyal. [Re-checkpointing] Autograd container for trading compute for memory, 2018.
https://github.com/pytorch/pytorch/blob/e1348973ac9a557aa6018e3fd2d548
9619dd81a7/torch/utils/checkpoint.py.

[17] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour. CoRR, 2017. http://arxiv.org/abs/1706.02677.

[18] Sylvain Gugger. PyTorch DeBERTa model, 2020. https://github.com/huggingface/t
ransformers/blob/5b6bd4e7880cd51375c2d6c33bbd8173acfd920b/src/transfor
mers/models/deberta/modeling_deberta.py.

[19] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.
Dally. EIE: Efficient Inference Engine on Compressed Deep Neural Network. In 43rd
ACM/IEEE Annual International Symposium on Computer Architecture, (ISCA 2016), 2016.
https://doi.org/10.1109/ISCA.2016.30.

[20] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural
Network with Pruning, Trained Quantization and Huffman Coding. In 4th International
Conference on Learning Representations, (ICLR 2016), 2016. http://arxiv.org/abs/15
10.00149.

[21] Dan Hendrycks and Kevin Gimpel. Bridging Nonlinearities and Stochastic Regularizers with
Gaussian Error Linear Units. CoRR, abs/1606.08415, 2016. http://arxiv.org/abs/1606
.08415.

[22] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the Knowledge in a Neural
Network. CoRR, abs/1503.02531, 2015. http://arxiv.org/abs/1503.02531.

[23] ISO. ISO/IEC 14882:2011 Information technology — Programming languages — C++. Inter-
national Organization for Standardization, 2012. http://www.iso.org/iso/iso_catalo
gue/catalogue_tc/catalogue_detail.htm?csnumber=50372.

[24] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler. Data Movement
Is All You Need: A Case Study on Optimizing Transformers. In Proceedings of Machine
Learning and Systems (MLSys), 2021. https://proceedings.mlsys.org/paper/2021/f
ile/c9e1074f5b3f9fc8ea15d152add07294-Paper.pdf.

[25] Animesh Jain, Parker Hill, Shih-Chieh Lin, Muneeb Khan, Md. Enamul Haque, Michael A.
Laurenzano, Scott A. Mahlke, Lingjia Tang, and Jason Mars. Concise loads and stores: The
case for an asymmetric compute-memory architecture for approximation. In 49th Annual
IEEE/ACM International Symposium on Microarchitecture, (MICRO 2016), pages 41:1–41:13.
IEEE Computer Society, 2016. https://doi.org/10.1109/MICRO.2016.7783744.

[26] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady Pekhimenko. Gist:
Efficient data encoding for deep neural network training. In International Symposium on
Computer Architecture (ISCA 2018), 2018. /https://www.microsoft.com/en-us/rese
arch/publication/gist-efficient-data-encoding-deep-neural-network-tra
ining/.

[27] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonzalez,
Kurt Keutzer, and Ion Stoica. Checkmate, 2019. https://github.com/parasj/checkmate.

12

https://openreview.net/forum?id=YicbFdNTTy
https://github.com/google-research/bert#out-of-memory-issues
https://github.com/google-research/bert#out-of-memory-issues
https://github.com/pytorch/pytorch/blob/e1348973ac9a557aa6018e3fd2d5489619dd81a7/torch/utils/checkpoint.py
https://github.com/pytorch/pytorch/blob/e1348973ac9a557aa6018e3fd2d5489619dd81a7/torch/utils/checkpoint.py
http://arxiv.org/abs/1706.02677
https://github.com/huggingface/transformers/blob/5b6bd4e7880cd51375c2d6c33bbd8173acfd920b/src/transformers/models/deberta/modeling_deberta.py
https://github.com/huggingface/transformers/blob/5b6bd4e7880cd51375c2d6c33bbd8173acfd920b/src/transformers/models/deberta/modeling_deberta.py
https://github.com/huggingface/transformers/blob/5b6bd4e7880cd51375c2d6c33bbd8173acfd920b/src/transformers/models/deberta/modeling_deberta.py
https://doi.org/10.1109/ISCA.2016.30
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1503.02531
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
https://proceedings.mlsys.org/paper/2021/file/c9e1074f5b3f9fc8ea15d152add07294-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/c9e1074f5b3f9fc8ea15d152add07294-Paper.pdf
https://doi.org/10.1109/MICRO.2016.7783744
/https://www.microsoft.com/en-us/research/publication/gist-efficient-data-encoding-deep-neural-network-training/
/https://www.microsoft.com/en-us/research/publication/gist-efficient-data-encoding-deep-neural-network-training/
/https://www.microsoft.com/en-us/research/publication/gist-efficient-data-encoding-deep-neural-network-training/
https://github.com/parasj/checkmate

[28] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonzalez,
Kurt Keutzer, and Ion Stoica. Checkmate: Breaking the Memory Wall with Optimal Tensor
Rematerialization. In Proceedings of Machine Learning and Systems (MLSys), 2020. /https:
//proceedings.mlsys.org/paper/2020/file/084b6fbb10729ed4da8c3d3f5a3ae7
c9-Paper.pdf.

[29] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. TinyBERT: Distilling BERT for natural language understanding. In Findings of
the Association for Computational Linguistics: EMNLP 2020. Association for Computational
Linguistics, 2020. https://aclanthology.org/2020.findings-emnlp.372.

[30] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav Agrawal, Ramin-
der Singh Bajwa, Sarah Bates, Suresh Bhatia, Nanette J. Boden, Al Borchers, Rick Boyle,
Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey
Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert B.
Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Daniel Hurt, Julian Ibarz,
Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu,
Kyle A. Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad
Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, J. W. Souter, Dan Steinberg,
Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter
performance analysis of a tensor processing unit. 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), 2017.

[31] Patrick Judd, Jorge Albericio, Tayler H. Hetherington, Tor M. Aamodt, and Andreas Moshovos.
Stripes: Bit-serial deep neural network computing. In 49th Annual IEEE/ACM International
Symposium on Microarchitecture, (MICRO 2016), 2016. https://doi.org/10.1109/MICR
O.2016.7783722.

[32] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared Roesch,
Tianqi Chen, and Zachary Tatlock. Dynamic Tensor Rematerialization (DTR) Prototype, 2020.
https://github.com/uwsampl/dtr-prototype.

[33] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared Roesch,
Tianqi Chen, and Zachary Tatlock. Dynamic Tensor Rematerialization. In 9th International
Conference on Learning Representations, (ICLR 2021), 2021.

[34] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized BERT
Pretraining Approach. CoRR, abs/1907.11692, 2019. http://arxiv.org/abs/1907.11692.

[35] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer Sentinel Mixture
Models. In 5th International Conference on Learning Representations, (ICLR 2017), 2017.
https://openreview.net/forum?id=Byj72udxe.

[36] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David
García, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu.
Mixed Precision Training. In 6th International Conference on Learning Representations, (ICLR
2018), 2018. https://openreview.net/forum?id=r1gs9JgRZ.

[37] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Parallel Programming
with CUDA: Is CUDA the Parallel Programming Model That Application Developers Have
Been Waiting For? Queue, 2008. https://doi.org/10.1145/1365490.1365500.

[38] NVIDIA. NVIDIA Driver Downloads. https://www.nvidia.com/Download/index.aspx.

[39] NVIDIA. Tesla V100 Data Center GPU, 2017. https://www.nvidia.com/en-us/data-c
enter/v100/.

13

/https://proceedings.mlsys.org/paper/2020/file/084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper.pdf
/https://proceedings.mlsys.org/paper/2020/file/084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper.pdf
/https://proceedings.mlsys.org/paper/2020/file/084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper.pdf
https://aclanthology.org/2020.findings-emnlp.372
https://doi.org/10.1109/MICRO.2016.7783722
https://doi.org/10.1109/MICRO.2016.7783722
https://github.com/uwsampl/dtr-prototype
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=r1gs9JgRZ
https://doi.org/10.1145/1365490.1365500
https://www.nvidia.com/Download/index.aspx
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/

[40] NVIDIA. GEFORCE RTX 2080 Ti, 2018. https://www.nvidia.com/en-us/geforce/gr
aphics-cards/rtx-2080-ti/.

[41] NVIDIA. BERT For PyTorch. https://github.com/NVIDIA/DeepLearningExamples/t
ree/master/PyTorch/LanguageModeling/BERT/, 2019.

[42] NVIDIA. NVLink, 2019. https://www.nvidia.com/en-us/data-center/nvlink/.

[43] NVIDIA. NVIDIA A100 Tensor Core GPU, 2020. https://www.nvidia.com/en-us/da
ta-center/a100/.

[44] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A Fast, Extensible Toolkit for Sequence Modeling. In Proceedings
of NAACL-HLT 2019: Demonstrations, 2019.

[45] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkate-
san, Brucek Khailany, Joel S. Emer, Stephen W. Keckler, and William J. Dally. SCNN: An
Accelerator for Compressed-sparse Convolutional Neural Networks. In Proceedings of the
44th Annual International Symposium on Computer Architecture, (ISCA 2017). ACM, 2017.
https://doi.org/10.1145/3079856.3080254.

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, (NeurIPS
2019), 2019. https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f
92f2bfa9f7012727740-Abstract.html.

[47] PCI-SIG. Specifications, 2005. /https://pcisig.com/specifications.

[48] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan Yang, and Xuehai
Qian. Capuchin: Tensor-Based GPU Memory Management for Deep Learning. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), ASPLOS ’20. Association for Computing Machinery,
2020. /https://doi.org/10.1145/3373376.3378505.

[49] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 2019.

[50] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. ZeRO-
infinity: breaking the GPU memory wall for extreme scale deep learning. In SC ’21: The
International Conference for High Performance Computing, Networking, Storage and Analysis,
2021. https://doi.org/10.1145/3458817.3476205.

[51] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing. Association for Computational Linguistics,
2016. "https://aclanthology.org/D16-1264".

[52] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W. Keckler.
vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network De-
sign. In The 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
2016.

[53] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder. In-Place Activated BatchNorm for
Memory-Optimized Training of DNNs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[54] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Representations by
Back-propagating Errors. Nature, 323(6088), 1986. http://www.nature.com/articles/
323533a0.

14

https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT/
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://doi.org/10.1145/3079856.3080254
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
/https://pcisig.com/specifications
/https://doi.org/10.1145/3373376.3378505
https://doi.org/10.1145/3458817.3476205
"https://aclanthology.org/D16-1264"
http://www.nature.com/articles/323533a0
http://www.nature.com/articles/323533a0

[55] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. http:
//arxiv.org/abs/1910.01108.

[56] Or Sharir, Barak Peleg, and Yoav Shoham. The Cost of Training NLP Models: A Concise
Overview. CoRR, abs/2004.08900, 2020. https://arxiv.org/abs/2004.08900.

[57] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, A. Ng, and
Christopher Potts. Recursive Deep Models for Semantic Compositionality Over a Sentiment
Treebank. In EMNLP, 2013.

[58] Phillip Spencer. Solution to the Transcendental Equation 2x + 3x = 5, 1999. https:
//www.math.toronto.edu/mathnet/questionCorner/transsol.html.

[59] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15(56), 2014. http://jmlr.org/papers/v15/srivastava14a.html.

[60] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and Policy Considerations
for Deep Learning in NLP. In Proceedings of the 57th Conference of the Association for
Computational Linguistics, (ACL 2019), 2019. https://doi.org/10.18653/v1/p19-1355.

[61] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient Transformers: A Survey.
CoRR, 2020. https://arxiv.org/abs/2009.06732.

[62] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, 2009.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural
Information Processing Systems (NeurIPS), 2017. /https://proceedings.neurips.cc/p
aper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[64] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar Das, Sasikanth Avancha,
Ashok Jagannathan, Ajaya Durg, Dheemanth Nagaraj, Bharat Kaul, Pradeep Dubey, and Anand
Raghunathan. ScaleDeep: A Scalable Compute Architecture for Learning and Evaluating
Deep Networks. In Proceedings of the 44th Annual International Symposium on Computer
Architecture, (ISCA 2017). ACM, 2017. https://doi.org/10.1145/3079856.3080244.

[65] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin
Xu, and Tim Kraska. Superneurons: Dynamic GPU Memory Management for Training Deep
Neural Networks. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP). Association for Computing Machinery, 2018.
/https://doi.org/10.1145/3178487.3178491.

[66] Kyle Wiggers. OpenAI’s massive GPT-3 model is impressive, but size isn’t everything, 2020.
https://venturebeat.com/2020/06/01/ai-machine-learning-openai-gpt-3-siz
e-isnt-everything/.

[67] Wikipedia. English Wikipedia, 2021. /https://en.wikipedia.org/.

[68] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, 2018. "htt
ps://aclanthology.org/N18-1101".

[69] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-
the-art natural language processing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, (EMNLP). Association for
Computational Linguistics, 2020. "https://www.aclweb.org/anthology/2020.emnl
p-demos.6".

15

http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2004.08900
https://www.math.toronto.edu/mathnet/questionCorner/transsol.html
https://www.math.toronto.edu/mathnet/questionCorner/transsol.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.18653/v1/p19-1355
https://arxiv.org/abs/2009.06732
/https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
/https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3079856.3080244
/https://doi.org/10.1145/3178487.3178491
https://venturebeat.com/2020/06/01/ai-machine-learning-openai-gpt-3-size-isnt-everything/
https://venturebeat.com/2020/06/01/ai-machine-learning-openai-gpt-3-size-isnt-everything/
/https://en.wikipedia.org/
"https://aclanthology.org/N18-1101"
"https://aclanthology.org/N18-1101"
"https://www.aclweb.org/anthology/2020.emnlp-demos.6"
"https://www.aclweb.org/anthology/2020.emnlp-demos.6"

[70] Geoffrey X. Yu, Tovi Grossman, and Gennady Pekhimenko. Skyline: Interactive In-Editor
Computational Performance Profiling for Deep Neural Network Training. In Proceedings of the
33rd ACM Symposium on User Interface Software and Technology (UIST’20), 2020.

[71] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big
Bird: Transformers for Longer Sequences. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, (NeurIPS
2020), 2020. https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d8
49725f31a9a7a361ab9-Abstract.html.

[72] Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. SWAG: A Large-Scale Adversarial
Dataset for Grounded Commonsense Inference. In EMNLP, 2018.

[73] Bojian Zheng, Nandita Vijaykumar, and Gennady Pekhimenko. Echo: Compiler-based GPU
Memory Footprint Reduction for LSTM RNN Training. In 47th ACM/IEEE Annual International
Symposium on Computer Architecture, (ISCA 2020), 2020. https://doi.org/10.1109/IS
CA45697.2020.00092.

[74] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Anand Jayarajan, Amar
Phanishayee, Bianca Schroeder, and Gennady Pekhimenko. Benchmarking and Analyzing Deep
Neural Network Training. In 2018 IEEE International Symposium on Workload Characteriza-
tion (IISWC), 2018.

16

https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://doi.org/10.1109/ISCA45697.2020.00092
https://doi.org/10.1109/ISCA45697.2020.00092

	Introduction
	Background and Motivation
	Memory Footprint of BERT
	Why Activation Memory Matters
	Key Prior Works
	Why Tempo?

	Tempo: Key Ideas
	In-place GELU
	In-place LayerNorm
	Sub-Layer Dropout Recomputation
	Other Engineering Optimizations

	Evaluation
	Methodology
	Results
	Ablation Studies

	Extensions
	Extending In-place GELU
	Auto-Tempo

	Conclusion

