
A Preliminaries

Notations: Lower case bold letters denote vectors, while capital bold face letters denote matrices,
e.g., x 2 Rn and X 2 Rn1⇥n2 . Let ei denote the i-th standard basis. For matrix X , its (i, j)-th
element is Xij or X(i, j) and its j-th column is Xj . The identity matrix I is a square matrix,
sometimes we use In to specify its size n⇥ n, and the identity linear operator is denoted by I. The
transpose of a vector/matrix is indicated by a superscript >, e.g., x> and X>. The concatenation
of two matrices (with the same number of rows), A 2 Rn1⇥n2 and B 2 Rn1⇥n3 , is denoted by
[A, B] 2 Rn1⇥(n2+n3). By with high probability (w.h.p.) we mean that with probability at least
1� c1n

�c2 for some constants c1, c2 > 0. Denote the Gaussian distribution by N (0,�2), with mean
0 and standard deviation �. We use an overline to represent the encrypted version of a variable.
Variables before encryption are called plaintexts, e.g., X , while the encrypted variables are called
cyphertexts, e.g., X .

We use an overline to represent the encrypted version of a variable on a cloud server. Variables
before encryption are called plaintexts, e.g., X , while the corresponding encrypted variables are
called cyphertexts, e.g., X . Let set ⌦ ✓ {(1, 1), (1, 2), ..., (n1, n2)} index the observed entries. We
represent the observed entries as M⌦, while for analysis purpose we define a corresponding linear
operator P⌦ : Rn1⇥n2 ! Rn1⇥n2 to represent the observation model as follows

[P⌦(M)]ij = (M⌦)ij =

⇢
Mij , if (i, j) 2 ⌦

0, otherwise.
(23)

We assume the true matrix M is low-rank, i.e., rank(M) = r ⌧ min(n1, n2). The singular
value decomposition (SVD) is M = USV >, where U 2 Rn1⇥r denotes the r left singular
vectors (corresponding to the column subspace), V 2 Rn2⇥r denotes the r right singular vectors
(corresponding to the row subspace), and S = diag(�i) 2 Rr⇥r where �i is the i-th largest singular

value and �1 � �2 � · · · � �r � 0. The nuclear norm of M is ||M ||⇤ =
rP

i=1
�i. The `2-norm of

a vector is ||x||2, while the Frobenius norm of a matrix is ||M ||F =
qP

i,j |Mij |
2. The operator

norm (spectral norm) of a matrix is equal to its first singular value, i.e., for M 2 Rn1⇥n2 ,

||M || , sup
x2Rn2 , ||x||21

||Mx||2 = �1(M), (24)

while more generally, the operator norm of a linear operator L is
||L|| = sup

||X||F1
||L(X)||F . (25)

Definition 7. (Column subspace and null space [28]) Let A 2 Rn1⇥n2 . The set
S(A) = {b 2 Rn1 | b = Ax, x 2 Rn2} (26)

is the column space or range of A, and the set
Ker(A) = {x 2 Rn2 | Ax = 0} (27)

is the kernel or (right) null space of A.
Definition 8. (Row subspace and null space [28]) Let A 2 Rn1⇥n2 . The set

S(A>) = {d 2 Rn2 | d = A>y, y 2 Rn1} (28)
is the row space of A, and the set

Ker(A>) = {y 2 Rn1 | A>y = 0} (29)
is the left null space of A.

According to Definition 7, the kernel space of the linear operator P⌦ is Ker(P⌦) = {Z 2
Rn1⇥n2 | P⌦(Z) = 0}, which is denoted as ⌦? for simplicity. We adopt the notation ⌦? since
Ker(P⌦) equals to a space on the complement set of ⌦.

Let ⌦ ⇠ Uni(m) denote a set with m entries, which is sampled uniformly from all sets of m entries,
and ⌦ ⇠ Ber(p) denote a set with E|⌦| = m entries, each sampled independently according to the
Bernoulli model in Definition 9.
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Definition 9. (Bernoulli model [4]). Let {�ij , i = 1, .., n1, j = 1, ..., n2} be a sequence of indepen-
dent identically distributed (i.i.d.) binary Bernoulli random variables with

P(�ij = 1) = p , m

n1n2
, P(�ij = 0) = 1� p. (30)

Correspondingly, we define a set

⌦ = {(i, j)| �ij = 1} with E|⌦| = m. (31)

Definition 10. (Random orthogonal model [4]) The set {uj 2 Rn
, j = 1, ..., r} is selected

uniformly at random among all sets of r orthonormal vectors.

B Formal Definition of Homomorphic Matrix Completion Problem

Now, we define the homomorphic matrix completion problem, and further specify the homomorphism
property in the context of matrix completion.
Definition 11. (Homomorphic matrix completion (HMC)) Assume the true matrix M is low-rank
with rank(M) = r ⌧ min(n1, n2), the observed entries P⌦(M) 2 Rn1⇥n2 , ⌦ ✓ [n1] ⇥ [n2],
and let the matrix completion problem (6) be formally expressed as cX = f(P⌦(M), r) where
f(·) is a mapping4. Denote the pair of encryption and decryption schemes5 by {g(·), g�1(·)}, the
homomorphic matrix completion problem estimates cX = g

�1(cX), where cX = f(P⌦(g(M)), r)
denotes the following problem

Find a matrix X 2 Rn1⇥n2 , s.t. P⌦(X) = P⌦(M), rank(X)  r, (32)

where P⌦(M) = P⌦(g(M)), and r = rank(M) may be slightly bigger than r (this change is made
by the encryption scheme g(·).
Definition 12. (The homomorphism property) With the same assumptions in Def. 11, we say that the
homomorphism property holds for the HMC problem if there exists a pair of encryption and decryption
schemes {g(·), g�1(·)}, such that f(P⌦(M), r) = g

�1(f(g(M), r)), and both f(P⌦(M), r) and
f(g(M), r) are functions6.
Remark 1. Our HMC problem shares a similar paradigm with the fully homomorphic encryption
(FHE) scheme [14, 45], but they are essentially different. The FHE scheme provides an one-to-one
mapping between plaintexts and cyphertexts for both the addition and multiplication operations, i.e.,

⇢
a+ b = c,

a · b = d,
g
�1(·)  ! g(·),

⇢
g(a) + g(b) = g(c),
g(a) · g(b) = g(d), (33)

where g(·) and g
�1(·) denote the encryption and decryption schemes, respectively. However, through-

out the paper, the HMC problem concerns the equivalence between cX and g
�1(cX), where the

recovery of M and M are essentially different from the addition and multiplication operations.

B.1 Using the Bernoulli Model to Approximate the Uniform Model

If one can bound the probability of failure for the Bernoulli model, then the failure probability for the
uniform model will be no more than twice as large, appeared in Section II.C of [5]. For completeness,
we formally describe the following two lemmas.
Lemma 5. [5] The probability that the matrix completion problem (6) fails when the set of observed
entries is sampled uniformly from the collection of set of size m (i.e., ⌦ ⇠ Uni(m)) is less than or
equal to twice the probability that (6) fails when m entries are sampled according to the Bernoulli
model in Def. 9 (i.e., ⌦0

⇠ Bern(p) with p = m
n1n2

).
4The mapping f(·) is a function when the recovered cX is unique.
5Note that we do not use the notations Enc(·) and Dec(·) that are used in the cryptography community, since

here we deal with symmetric encryption and decryption schemes, where the decryption scheme is an inverse
function of the encryption scheme.

6Here, the mapping f(·) for both plaintexts and cyphertexts are functions when the recovered cX and cX are
unique, respectively.
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Proof. The proof follows the argument in Section II.C of [5]. Let ⌦ of size m be drawn using the
uniform model, and ⌦0 be drawn from the Bernoulli model ⌦0

⇠ Bern(p) with p = m
n1n2

). We have

P(Failure(⌦0)) =
n1n2X

k=1

P(Failure(⌦0)| |⌦0
| = k)P(|⌦0

| = k)

=
n1n2X

k=1

P(Failure(⌦k))P(|⌦0
| = k)

(34)

where ⌦k denote a set of entries of size k sampled uniformly at random with |⌦k| = k.

We observe the following two inequalities:

• P(Failure(⌦k)) is a nonincreasing function of k, i.e.,

P(Failure(⌦k)) � P(Failure(⌦k0)), if k  k
0
. (35)

• Since m = p · n1n2 is an integer, it is the median of |⌦0
| [5], i.e.,

P(|⌦0
|  m� 1) <

1

2
 P(|⌦0

|  m). (36)

.

Then, we have

P(Failure(⌦0)) �
mX

k=1

P(Failure(⌦k))P(|⌦0
| = k) � P(Failure(⌦))

mX

k=1

P(|⌦0
| = k)

�
1

2
P(Failure(⌦)).

(37)

Lemma 6. [5] Let n be the number of Bernoulli trials and suppose that ⌦ ⇠ Ber(m/n). Then, with
probability at least 1� n

�10, |⌦| = ⇥(m), provided that m � c log n for a constant c.

17



C Proofs for Section 4

C.1 Proof of Lemma 1

Proof. Problem (6) is equivalent to the following problem

Find a matrix D 2 Rn1⇥n2 s.t. rank(M +D)  r, D 2 ⌦?
, (38)

where D 2 ⌦? = {D 2 Rn1⇥n2 : P⌦(M +D) = P⌦(M)} (i.e., P⌦(D) = 0)) is equivalent to
the constraint P⌦(X) = P⌦(M) in (6).

Then, M is the unique optimal solution to (6) is equivalent to D = 0. We know that rank(M +
D)  r is equivalent to D 2 DM(M) according to (13). Therefore, D = 0 is equivalent to
⌦?
\ DM(M) = {0}, namely, set DM(M) and set ⌦? intersect uniquely at 0. The lemma is

proved.

Interested readers can check a similar proof for Lemma 3.34 (page 116) of [46].

C.2 Proof of Lemma 3

We provide a geometric interpretation of the homomorphism property in the context of matrix
completion problems.

• The homomorphism property under the scheme in Alg. 1 and Alg. 2 can be mathematically
interpreted as: M is the unique optimal solution to problem (6), while simultaneously M +KR
is the unique optimal solution to problem (7). According to Lemma 1, the necessary and sufficient
condition would be ⌦?

\ DM(M) = {0} and ⌦?
\ DM(M) = {0}.

• Since it always holds that DM(M) ✓ T and DM(M) ✓ T according to Lemma 7 and Lemma 8,
a sufficient condition for the homomorphic property is that ⌦?

\ T = {0} and ⌦?
\ T = {0}

hold simultaneously. The scheme in Alg. 1 and Alg. 2 satisfies that T ✓ T , thus ⌦?
\ T = {0}

implies ⌦?
\ T = {0}.

• If the sampling probability p is large enough, with high probability, it is guaranteed that ⌦?
\ T =

{0}, which also implies ⌦?
\ T = {0} since T ✓ T .

First, according to Lemma 7 and Lemma 8, we have

DM(M) = cone{M� {M}} ✓ T, DM(M) = cone{M� {M}} ✓ T . (39)

Lemma 7 states that the tangent cone of the set M evaluated at M has a closed-form expression,
namely, it is just the space T in (4). Lemma 8 claims that the tangent cone of the set M evaluated at
M is slightly larger than the cone cone(M� {M}), where {M} denotes a set.
Definition 13. ([40]) A matrix ⌅ 2 Rn1⇥n2 is tangent to M at M if there exists a sequence {Mn

}

contained in M and converging to M , and a sequence {an} of nonnegative numbers, such that the
sequence an(Mn

�M) converges to ⌅. Then, the tangent cone of the set M at point M , denoted
by TM(M), is formally defined as follows

TM(M) = {⌅ 2 Rn1⇥n2 | 9Mn
✓M, {an} ✓ R+

, s.t. Mn
!M , an(M

n
�M)! ⌅}.

(40)
Lemma 7. [7] (Theorem. 6.1)) Let M = U⌃V > be the skinny SVD (or reduced SVD) of matrix
M . The tangent cone TM(M) of the set M = {X 2 Rn1⇥n2 : rank(X)  r} at M is a linear
subspace given by

TM(M) = {UA> +BV >
| A 2 Rn1⇥r

,B 2 Rn2⇥r
} , T, (41)

where the complementary space is denoted by T
?.

Lemma 8. ([17], Theorem 4.8) Let M be a non-empty subset of a real normed space. If M is
star-shaped w.r.t. some M 2M, i.e., t(M� {M}) ✓M� {M} for all t 2 [0, 1], then if follows

DM(M) = cone(M� {M}) ✓ TM(M). (42)
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Second, we point out that the scheme in Alg. 1 and Alg. 2 satisfies T ✓ T . It leads to our argument
that ⌦?

\ T = {0} implies ⌦?
\ T = {0}, since 0 belongs to ⌦?, T and T by definition. This

condition can be interpreted as follows: with the same observation set ⌦, recovering M = M +KR
(a matrix in a larger subspace) is more difficult than recovering M . This is formulated in Lemma 3.

C.3 Proof of Theorem 2

Proof. Applying Theorem 1 for cyphertext M , then we obtain that with probability at least 1�3n��
2 ,

||p
�1

PTP⌦PT � PT ||  C
0
R

r
n2µ0r(� log n2)

m
, ✏

0
, (43)

provided that ✏0 < 1.

Then, under the proposed scheme in Alg. 1 and Alg. 2, we show that ✏0 < 1 implies ✏ < 1, and we
have M = M +KR and r > r.

Combining the coherence change in Section 4.3, we can easily know that µ0 < µ0. Since r < r =
rank(M), we obtain that µ0r < µr. Therefore, there are constants CR, C

0
R such that for � > 1,

✏
0
< 1 implies ✏ < 1. The proof is completed.

C.4 Proof of Theorem 3

Proof. Recall that Lemma 3 states that a sufficient condition for the homomorphic property is
⌦?
\ T = {0}. We use Theorem 2 to derive a sufficient condition p �

C0µ0r(� logn2)
n1

.

According to Theorem 2, if ⌦ ⇠ Ber(p), with probability at least 1� 3n��
2 , we have

||PT � p
�1

PTP⌦PT ||  ✏ < 1, ||PT � p
�1

PTP⌦PT ||  ✏
0
< 1, (44)

provided that p � C0µ0r(� logn2)
n1

.

Note that I = P⌦ + P⌦? , where P⌦? denotes the projection onto ⌦?, then
PT � p

�1
PTP⌦PT = PT � p

�1
PT (I � P⌦?)PT = p

�1(PTP⌦?PT � (1� p)PT ), (45)
then by the triangle inequality of the operator norm, we obtain that

||PTP⌦?PT ||  p||PT � p
�1

PTP⌦PT ||+ (1� p)||PT || < ✏
0
p+ (1� p), (46)

where we have ||PT || = 1 according to Eq. 24, since for X 2 T , we have ||PT (X)|| = X .

Since ||P⌦?PT ||
2 = ||PTP⌦?P⌦?PT ||  ||PTP⌦?PT ||, then ||P⌦?PT || <

p
1� p+ ✏0p < 1.

Note that ||P⌦?PT || < 1 implies that ⌦?
\ T = {0}, which holds by contradiction: if there exists a

nonzero matrix X 2 ⌦?
\ T , then ||P⌦?PT (X)|| = X and ||P⌦?PT || = 1.

We have shown that if p � C0µ0r(� logn2)
n1

, with probability at least 1� 6n��
2 , it holds for ⌦?

\ T =
{0}. Combining Lemma 3, the proof is completed.

C.5 Proof of Lemma 4

We provide key lemmas of coherence change for the union of two subspaces, which will be used to
characterize the coherence change under the scheme in Alg. 1 and Alg. 2.

The concept “coherence" measures the relationship between a low-dimensional space and the obser-
vation operator P⌦, namely the cosine (with a scaling factor n

r ) of the principal angle between the
low-dimensional space and a standard basis.
Definition 14. (Coherence [6]) Let U 2 Rn⇥r be the r left singular vectors of M (corresponds to
the column subspace S(M)) and PU be the orthogonal projection onto U . Then the coherence of U
(or S(M), respectively) is defined as

µ(S(M)) = µ(U) , n

r
max

i=1,...,n
||PUei||

2
2 =

n

r
max

i=1,...,n
||U(U>U)�1U>ei||

2
2 =

n

r
max

i=1,...,n
||U>ei||

2
2,

(47)
since (U>U)�1 = I and U is orthonormal.
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Remark 2. Note that the left singular vectors U (or right singular vectors V , respectively)
are not uniquely defined and all candidates are unitary transform to each other, i.e., M =
(UW )S(V W )> = USV > where W 2 Rr⇥r is an orthonormal matrix, i.e., WW> =
W>W = I . The coherence of the column subspace µ(S(M)) (or the row subspace µ(S(M>)),
respectively) is uniquely defined, since the coherence is invariant under unitary transformation.
Specifically, given two orthonormal matrices W 2 Rr⇥r and U 2 Rn1⇥r, then µ(UW ) = µ(U),
since ||P(UW ) · ei||2 = ||UW ((UW )>UW )�1(UW )>ei||2 = ||U>ei||2. Therefore, we will
use µ(U) instead of µ(S(M)).
Lemma 9. (Incoherence change under the union operation) Let r = r1 + r2, the matrix U =
[U1,U2] 2 Rn⇥(r1+r2) be the concatenation of two non-overlapping orthonormal matrices U1 2

Rn⇥r1 and U2 2 Rn⇥r2 . Then, we have µ(U)  r1
r µ(U1) +

r2
r µ(U2), and it applies to the union

of two subspaces, i.e., µ(S(U))  r1
r µ(S(U1)) +

r2
r µ(S(U2)).

Proof. From Def. 14, we have

µ(U) =
n

r

n
max
i=1

||[U1,U2]
>ei||

2
2 =

n

r

n
max
i=1

�
||U>

1 (:, i)||22 + ||U>
2 (:, i)||22

�


n

r

n
max
i=1

||U>
1 (:, i)||22 +

n

r

n
max
j=1

||U>
2 (:, j)||22


r1

r
µ(U1) +

r2

r
µ(U2),

(48)

where µ(U1) and µ(U2) are given in Def. 14. For the union of subspaces, one can easily verify the
incoherence change according to Remark 2.

Definition 15. (Random orthogonal model [6]) The set {uj 2 Rn
, j = 1, ..., r} is selected

uniformly at random among all sets of r orthonormal vectors.
Lemma 10. (Random subspaces span incoherence subspaces [6]) Set r0 = max(r, log n). There
exist positive constants C and c, the random orthogonal model in Def. 15 obeys

max
i

||PUei||
2
2 = max

i
||U>ei||

2
2  Cr

0
/n, which yields µ(U)  C ·max(1,

log n

r
), (49)

with probability � 1� cn
�3 log n.

Here we formally prove Lemma 4.

Proof. The scheme in Alg. 1 and Alg. 2 can be represented as M = M +KR. Let M = USV >

and M = U S V
>

, we have the column subspaces S(M) = S(U), S(M) = S(U), and the
row subspaces S(M>) = S(V ), S(M

>
) = S(V ). Let KR = U 0S0(V 0)>. Since K and R are

randomly generated matrices, thus we know that U 0 and V 0 obey the random orthogonal model in
Def. 15.

First, with probability 1, we have

S(U) ✓ S(U), specifically, S(U) = S(U) [ S(K) = S(U) [ S(U 0), (50)

S(V ) ✓ S(V ), specifically, S(V ) = S(V ) [ S(R>) = S(V ) [ S(V 0). (51)

Secondly, we bound the coherence changes. Note that with probability 1, rank(M) = r = r + k.
From (50), we know that U 2 Rn1⇥r can be represented as the union of U 2 Rn1⇥r and U 0

2

Rn1⇥k, i.e., U = [U U 0], where U 0 obeys the random orthogonal model and the non-overlapping
requirement in Lemma 9. From Lemma 10, we know that µ(U 0)  C ·max(1, logn1

k ).

According to Lemma 9, we then obtain that

µ(U) 
r

r
µ0 +

k

r
· Cmax(1,

log n1

k
) 

r

r
µ0 + Cmax(

k

r
,
log n1

r
). (52)

Similarly, for the row subspace, we have

µ(V ) 
r

r
µ0 + Cmax(

k

r
,
log n2

r
), (53)
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Therefore,

µ0 
r

r
µ0 + Cmax(

k

r
,
log n2

r
). (54)

D Proof for Section 5

D.1 Proof of Theorem 4

A potential issue of the proposed scheme in Alg. 1 and Alg. 2 is the projection recovery. Namely, for a
single-round encryption case, one can do a corresponding projection to obtain the real data. Therefore,
we execute the proposed scheme twice and introduce two parameters �1 and �2 in Theorem 4:

• First-round encryption: we randomly generate a matrix K1
2 Rn1⇥k and k random numbers

R1 i.i.d
⇠ N (0,�2

1Ik). Then we obtain P⌦(M) = P⌦(M) + P⌦(K1R1).
• Second-round encryption: we obtain the column space of M as K2

2 Rn1⇥k and k random
numbers R2 i.i.d

⇠ N (0,�2
2Ik). Then we obtain P⌦(M) = P⌦(M) + P⌦(K2R2).

Overview of our proof strategy: 1). we first prove Theorem 5 for a single-round encryption case; 2).
Theorem 4 can be easily derived by applying Theorem 5 twice.
Theorem 5. (Gaussian mechanism [12]) Given an arbitrary n-dimensional function A : T n

! O
n,

define its `2-norm sensitivity as � = maxdist(D,D0)=1 ||A(D) � A(D0)||2 where dist(D,D
0) = 1

means that D,D
0
2 T

n differ from each other by one data entry. The Gaussian mechanism with
parameter � adds Gaussian noise w

i.i.d
⇠ N (0,�2In) to the output. Let ✏ 2 (0, 1) and c

2
>

2 ln(1.25/�), then the Gaussian mechanism, i.e., A(D) +w, with parameter � � c�
p

2 ln(2/�)/✏
satisfies (✏, �)-differential privacy.

Proof. Let v 2 O
n be a vector with ||v||2  �. For a pair of databases D,D

0
2 T

n with
dist(D,D

0) = 1, we would like to obsecure the vector v = A(D) � A(D0) by adding Gaussian
noise w

i.i.d
⇠ N (0,�2In), i.e., A(D) +w. Thus an adversary user will not be able to differentiate D

from D
0 by observing A(D) +w or A(D0) +w0. According to the joint (✏, �)-differential privacy in

Def. 3, the key is to quantify � under which the random variable privacy loss in (22) is bounded by ✏,
with probability at least 1� �. Explicitly, we would like to show that

���L(o)
M(D)||M(D0)

��� =
����ln

P(A(D) = o)

P(A(D0) = o)

���� =
����ln

exp(� 1
2�2 ||o�A(D)||22)

exp(� 1
2�2 ||o�A(D0)||22)

����

=

����ln
exp(� 1

2�2 ||w||
2
2)

exp(� 1
2�2 ||w + v||22)

���� =
����
1

2�2
(||w||

2
2 � ||w + v||22)

����  ✏

(55)

holds with probability at least 1� �.

Note that w i.i.d
⇠ N (0,�2In), combining the fact that the distribution of a spherically symmetric

normal is independent of the orthogonal basis from which its constituent normals are drawn, we
choose to work in a basis that is aligned with v. For a basis {B1,B2, ...,Bn} (or alternatively
represented as a matrix B 2 Rn⇥n) with B1 being parallel to w, we draw w by drawing signed

scalars �i ⇠ N (0,�2) for i = 1, ..., n, then defining wi = �iBi 2 Rn and w =
nP

i=1
wi
2 Rn.

Consider the right triangle with base v +wi and edge
nP

i=2
wi
2 Rn, its hypotenuse is v +w. Then,

we have

||w||
2
2 =

nX

i=1

||wi
||
2
2,

||v +w||
2
2 = ||v +w1

||
2
2 +

nX

i=2

||wi
||
2
2 = (||v||2 + �1)

2 +
nX

i=2

||wi
||
2
2,

||v +w||
2
2 � ||w||

2
2 = ||v||22 + 2�1||v||2,

(56)
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where we used the fact B1 is parallel to v and ||w1
||
2
2 = �

2
1.

Recall that ||v||2  � and �i ⇠ N (0,�2) for i = 1, ..., n, the bound in (55) becomes
����ln

exp(� 1
2�2 ||w||

2
2)

exp(� 1
2�2 )||w + v||22

���� =
����
1

2�2
(||w||

2
2 � ||w + v||22)

���� 
����
1

2�2
(2�1�+�2)

����  ✏. (57)

The quantity in (57) is bounded by ✏ whenever |�1| <
�2✏
� �

�
2 .

Set � = c�/✏ and c
2
> 2 ln(1.25/�). Let us partition R into R = R1 [ R2, where R1 = {� 2

R | |�|  c�/✏} and R2 = {� 2 R | |�| > c�/✏}, and define O = O1 [O2 where

O1 = {A(x) + �|� 2 R1},

O2 = {A(x) + �|� 2 R2}.
(58)

To ensure the privacy loss is bounded by ✏ with probability at least 1� �, one requires

P

|�| �

�
2
✏

�
�

�

2

�
< �, (59)

or alternatively, one requires

P

� �

�
2
✏

�
�

�

2

�
< �/2. (60)

Taking the integration of (57), one obtains that

P[A(x) + � 2 O] = P[A(x) + � 2 O1] + P[A(x) + � 2 O2]

 P[A(x) + � 2 O1] + �

 e
✏
· P[A(y) + � 2 O1] + �,

(61)

yielding the joint (✏, �)-differntial privacy for the Gaussian mechanism.
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