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Abstract

In recommendation systems, global positioning, system identification, and mobile
social networks, it is a fundamental routine that a server completes a low-rank ma-
trix from an observed subset of its entries. However, sending data to a cloud server
raises up the data privacy concern due to eavesdropping attacks and the single-
point failure problem, e.g., the Netflix prize contest was canceled after a privacy
lawsuit. In this paper, we propose a homomorphic matrix completion algorithm for
privacy-preserving purpose. First, we formulate a homomorphic matrix completion
problem where a server performs matrix completion on cyphertexts, and propose
an encryption scheme that is fast and easy to implement. Secondly, we prove that
the proposed scheme satisfies the homomorphism property that decrypting the re-
covered matrix on cyphertexts will obtain the target matrix (on plaintexts). Thirdly,
we prove that the proposed scheme satisfies an (✏, �)-differential privacy property.
While with similar level of privacy guarantee, we reduce the best-known error
bound O( 10

p
n3
1n2) to EXACT recovery at a price of more samples. Finally, on

synthetic data and real-world data, we show that both homomorphic nuclear-norm
minimization and alternating minimization algorithms achieve accurate recoveries
on cyphertexts, verifying the homomorphism property.

1 Introduction

The recurring low-rank matrix completion problem [4, 6, 22, 30, 13, 29, 46] concerns completing a
low-rank matrix from a randomly observed subset of entries. It has wide applications in recommen-
dation systems (collaborative filtering) [1, 47, 26], computer vision [2, 16, 27], global positioning
[48, 32], sensory data analysis in Internet of Things [25, 34, 33], system identification, network data
analysis [51, 11], mobile social networks [23, 38], etc. Existing works [6, 9] have demonstrated a
remarkable fact: if an n⇥ n matrix with rank r ⌧ n satisfies a certain incoherence property, then
with high probability, it is possible to exactly recover the matrix from O(nr poly log n) ⌧ n

2 entries
using polynomial-time algorithms. Intuitively, one needs roughly (2nr � r

2) parameters [6] (this
is the dimension of the tangent space to the manifold of rank-r matrices) to fix an n⇥ n matrix of
rank r, and the sampling randomness introduces a log n factor due to a coupon collector’s effect.
The information theoretical lower bound is ⌦(nr log n) [6], while the tightest known upper bound is
O(nr log2 n) [9] with another log n factor from the Golfing scheme used by the recovery algorithms.

The low-rank matrix completion problem usually deals with large-scale matrices that involve extensive
computations, while in mobile computing, smart devices usually outsource such a huge computation
task to a cloud server. However, sending data to a server or publishing anonymized data raises up
privacy concerns [23, 44, 42], e.g., the recommendation contest Netflix prize was canceled after
privacy lawsuit [35]. There are two major obstructive factors: anonymization in data publishing is
still vulnerable, and storing sensitive data on a cloud server may encounter the single-point of failure
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Figure 1: Matrix completion on plaintext VS. homomorphic matrix completion on cyphertext.

(SPOF) problem, say hackers. Existing works [20, 19, 10] address the privacy concern in various
ways, e.g., a popular approach is to add noise to the data [20], therefore making a tradeoff between
the recovery accuracy and the level of privacy.

In cloud computing and distributed systems, the homomorphism property [14, 45] allows computa-
tions to be carried out on cyphertexts, generating an encrypted result which, when decrypted, matches
the result of operations performed on the corresponding plaintexts. In this manner, homomorphic
encryption securely chains together different services without sacrificing recovery accuracy, but
may at a price of extensive computation. There are several partially homomorphic crypto-systems,
and also a number of fully homomorphic crypto-systems [14, 45]. In addition, the homomorphic
property can also be used to create many other secure systems, for example secure voting systems,
collision-resistant hash functions, private information retrieval schemes [43], etc.

In this paper, we integrate the large-scale distributed matrix completion task with a homomorphic
encryption-decryption scheme, which guarantees the EXACT recovery and differential privacy at a
price of more samples. First, we define the homomorphic matrix completion problem that ensures data
privacy by preserving a homomorphism property between plaintexts and cyphertexts. Specifically,
we propose a homomorphic encryption-decryption scheme, in which each node performs local
encryption and decryption, and uploads an encrypted incomplete vector to a server that carries out
the matrix completion computation. Then, we theoretically prove that the proposed scheme satisfies
the homomorphism and differential privacy properties — reducing the best-known error bound
O( 10

p
n3
1n2) [20] to EXACT recovery. Finally, based on synthetic and real-world data, we show

that the homomorphic nuclear-norm minimization and alternating minimization algorithms achieve
accurate recoveries on both cyphertexts and plaintexts, verifying the homomorphism property.

2 Homomorphic Matrix Completion Problem

First, we formally define the homomorphic matrix completion problem. Then, we introduce a notation
of privacy by adapting the join (✏, �) differential privacy, which is a subspace-aware variant.

2.1 Notations and Preliminaries

Notations: Let ei denote the i-th standard basis, Ik denote the k⇥k identity matrix, and I denote the
identity linear operator. For matrix X , the (i, j)-th element is Xij or X(i, j), the j-th column is Xj ,
and the transpose is X>. The concatenation of two matrices A 2 Rn1⇥n2 and B 2 Rn1⇥n3 with
the same number of rows is denoted by [A, B] 2 Rn1⇥(n2+n3). By with high probability (w.h.p.)
we mean that with probability at least 1� c1n

�c2 for some positive constants c1, c2. Let N (0,�2)
denote a Gaussian distribution with mean 0 and standard deviation �. We use an overline to represent
the encrypted version of a variable: variables before encryption are called plaintexts, e.g., X , while
the encrypted variables are called cyphertexts, e.g., X .

Let M⌦ 2 Rn1⇥n2 denote the observed entries of a data matrix M 2 Rn1⇥n2 , where
⌦ ✓ {(1, 1), (1, 2), ..., (n1, n2)} indicates the observed entries. We define a linear operator
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P⌦ : Rn1⇥n2 ! Rn1⇥n2 to represent the partial observation model as follows

[P⌦(M)]ij =

⇢
Mij , if (i, j) 2 ⌦

0, otherwise.
(1)

Assuming the true data matrix M is low-rank, i.e., rank(M) = r ⌧ min(n1, n2). The (compact)
singular value decomposition (SVD) is M = U⌃V >, where U 2 Rn1⇥r represents r left singular
vectors (a basis of the column subspace), V 2 Rn2⇥r represents r right singular vectors (a basis of
the row subspace), and ⌃ = diag([�1,�1, · · · ,�r]) 2 Rr⇥r with singular values �1 � �2 � · · · �

�r � 0. The `2-norm of a vector is ||x||2, while the Frobenius norm and nuclear norm of M are
||M ||F =

qP
i,j |Mij |

2 and ||M ||⇤ =
Pr

i=1 �i, respectively. The operator norm (spectral norm)
of a matrix and a linear operator L are defined as follows

||M || , sup
x2Rn2 , ||x||21

||Mx||2 = �1, and ||L|| , sup
||X||F1

||L(X)||F . (2)

Definition 1. (Column subspace and null space [28]) Let A 2 Rn1⇥n2 . The set S(A) = {b 2

Rn1 | b = Ax, x 2 Rn2} is the column space or range of A, and the set Ker(A) = {x 2

Rn2 | Ax = 0} is the kernel or (right) null space of A.

The null space (kernel space) of operator P⌦ is Ker(P⌦) = {Z 2 Rn1⇥n2 | P⌦(Z) = 0}, which is
denoted as ⌦? 2. Let ⌦ ⇠ Uni(m) denote a set with m entries, which is sampled uniformly from all
sets of m entries, and ⌦ ⇠ Ber(p) denote a set with E|⌦| = m entries, where each entry is sampled
independently according to a Bernoulli model with p = m/(n1n2).

Let PU and PV denote the orthogonal projections onto the column and row space of M , respectively,

PU =
X

i2[r]

uiu
>
i = UU>

, PV =
X

i2[r]

viv
>
i = V V >

. (3)

Define an orthogonal decomposition Rn1⇥n2 = T � T
?, where T is the linear space spanned by

matrices with the same column space or row space as M , and T
? is its orthogonal complement that

consists of matrices with row-space orthogonal to the row-space V and column-space orthogonal to
the column-space U . T can be expressed as follows

T = {UA> +BV >
| A 2 Rn1⇥r

, B 2 Rn2⇥r
}. (4)

The orthogonal projection PT onto T and the orthogonal projection onto T
? are as follows

PT (X) = PUX +XPV � PUXPV ,

PT?(X) = (I � PT )(X) = (In1 � PU )X(In2 � PV ).
(5)

2.2 Problem Formulation for Homomorphic Matrix Completion

We are interested in completing large-scale matrices and want to outsource this compute-intensive
task from mobile devices to a cloud server. Here we aim to preserve the matrix entries from leakage,
which is the key concern for recommendation systems as in Netflix’s privacy lawsuit [35].

Distributed matrix completion problem on plaintexts. Assume that there are n2 nodes with limited
computing power and a cloud server with superior computing power. The j-th node has an attribute
vector Mj 2 Rn1 , j = 1, ..., n2, however, it is incomplete and the observed entries are indexed by
a set ⌦j ✓ {(1, j), (2, j), ..., (n1, j)}. We assume that the true values of these n2 vectors form a
low-rank matrix M 2 Rn1⇥n2 with rank r ⌧ min(n1, n2), the `2-norms of the attribute vectors is
bounded by L, i.e., max1jn2 ||Mj ||2  L, and the observation set ⌦ =

S
j=1,...,n2

⌦j . Nodes
upload their incomplete vectors to a cloud server to carry out a matrix completion task

Find a matrix X 2 Rn1⇥n2 , s.t. P⌦(X) = P⌦(M), rank(X)  r, (6)

where ⌦ ⇠ Uni(m) and r may be unknown. Without loss of generality, we assume that n1  n2

from now on. Note that our formulation also includes the case [37] where a matrix is distributed into
blocks and then is completed in parallel.

2We adopt the notation ⌦? since Ker(P⌦) corresponds to a set of matrices vanishing at ⌦?.
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Homomorphic matrix completion problem on cyphertexts. In cloud computing, the homomor-
phism property allows computations to be carried out on cyphertexts, generating an encrypted result
which, when decrypted, matches the result of operations performed on the plaintext. Following this
paradigm, we define a homomorphic matrix completion problem that ensures data privacy. As shown
in Fig. 1, this novel framework consists of three main steps:

1) each node locally encrypts as P⌦j (M j) = P⌦j (g(Mj)) with its private keys, j = 1, ..., n2, and
uploads P⌦j (M j) to a cloud server that later forms an incomplete matrix P⌦(M) 2 Rn1⇥n2 ;

2) the cloud server solves the following matrix completion problem given P⌦(M) and sends back
the recovered vector cM j to the j-th node, j = 1, ..., n2,

Find a matrix X 2 Rn1⇥n2 , s.t. P⌦(X) = P⌦(M), rank(X)  r, (7)

where r = rank(M) may be slightly bigger than r due to by the encryption scheme g(·).

3) each node locally decrypts its own vector using private keys, i.e., cMj = g
�1(cM j), j = 1, ..., n2.

2.3 Notions of Privacy

We introduce a new variant of differential privacy for low-rank matrices.

2.3.1 Differential Privacy

Let D = {d1, ..., dn} be a dataset of n entries and T be a fixed domain, where each entry dj 2 T

encodes potentially sensitive information about node j. Let A : T n
! O

n be an algorithm that
operates on dataset D and produces n outputs, one for each node j and from a set of possible output
O. Let D�j denote the dataset D without the entry of the j-th node, and similarly A�j(D) denote
the set of outputs without the output for the j-th node. Let (dj ;D�j) denote the dataset obtained by
adding a data entry dj to the dataset D�j .

The (✏, �)-differential privacy and joint (✏, �)-differential privacy [21] are given in the following.
Definition 2. ((✏, �)-differential privacy [12]). An algorithm A satisfies (✏, �)-differential privacy if
for any node j, any two possible values of data entry dj , d

0
j 2 T for node j, any tuple of data entries

for all other nodes D�j 2 T
n�1, and any output set O ✓ O

n, we have

PA[A(dj ;D�j) 2 O]  e
✏
· PA[A(d0j ;D�j) 2 O] + �. (8)

Definition 3. (Joint (✏, �)-differential privacy [21]). An algorithm A satisfies (✏, �)-joint differential
privacy if for any node j, any two possible values of data entry dj , d

0
j 2 T for node j, any tuple of

data entries for all other nodes D�j 2 T
n�1, and any output set O ✓ O

n�1, we have

PA[A�j(dj ;D�j) 2 O]  e
✏
· PA[A�j(d

0
j ;D�j) 2 O] + �. (9)

Intuitively, an algorithm A satisfies (✏, �)-differential privacy if for any node j and dataset D, A(D)
and D�j do not reveal “much" information about dj . For low-rank matrices, [20] used a relaxed
notion joint (✏, �)-differential privacy: an algorithm A satisfies joint (✏, �)-differential privacy if for
any node j and dataset D, A�j(D) (the output for the other n � 1 nodes) and D�j (data entries
of the other n � 1 nodes) do not reveal “much" information about dj . Relaxing (✏, �)-differential
privacy to joint (✏, �)-differential privacy is reasonable for the matrix completion problem since the
j-th column for the j-th node can reveal a lot of information about dj .

2.3.2 Differential Privacy for Low-rank Matrix Completion

We would like to point out that joint (✏, �)-differential privacy in Def. 3 can be further refined. For
a low-rank matrix M , its column subspace S(M) is global information, which is shared across
all n2 nodes and can be easily inferred from A�j(D) and D�j . Note that the differential privacy
notion aims to protect individual information, rather than global information. We adapt it to low-rank
matrices by excluding the shared column subspace.

Low-rank matrices have linearly dependent columns, and this dependency is reflected in the fact that
they share a common column subspace. Formally, a rank-r matrix M = U⌃V > can be expressed
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Algorithm 1 Homomorphic matrix completion at the cloud server
Input: parameters n1, n2, r, k.
Output: matrix K 2 Rn1⇥k as public keys, the recovered matrix cX 2 Rn1⇥n2 (cyphertexts).
1: Generate a random matrix K 2 Rn1⇥k and broadcast K to all n2 nodes;
2: until received all n2 encrypted vectors P⌦j (M j) (line 4 in Alg. 2) do
3: Carry out a matrix completion task in (7) and obtain cX 2 Rn1⇥n2 ;
4: Send the recovered vector cXj 2 Rn1 back to the j-th node, j = 1, ..., n2.
5: end

Algorithm 2 Homomorphic matrix completion at node j, for j = 1, ..., n2

Input: an incomplete vector P⌦j (Mj), observation set ⌦j , and parameters n1, r, k.
Output: an recovered vector cXj (plaintexts).
1: until received K 2 Rn1⇥k from the server (line 1 in Alg. 1) do
2: Generate k random numbers Rj

i.i.d
⇠ N (0,�2Ik);

3: Perform local encryption as P⌦j (M j) = P⌦j (Mj) + P⌦j (KRj);
4: Upload P⌦j (M j) to the cloud server;
5: end
6: until received the recovered vector cXj from the cloud server (line 4 in Alg. 1) do
7: Using Rj and K, decrypt cXj to obtain cXj , i.e., cXj = cXj �KRj .
8: end

as M = UC where U 2 Rn1⇥r and C = ⌃V >
2 Rr⇥n2 ; alternatively, a column can be expressed

as Mj = UCj , for j = 1, ..., n2, where Cj is the coefficient vector (individual information) of the
j-th node in the column subspace with basis U (global information).

The following subspace-aware joint (✏, �)-differential privacy considers the coefficient vectors Cj for
j = 1, ..., n2, i.e., D in Def. 3 corresponds to the coefficient matrix C 2 Rr⇥n2 .
Definition 4. (Subspace-aware joint (✏, �)-differential privacy). Assume n2 nodes’ data vector form
a rank-r matrix M 2 Rn1⇥n2 with M = USV > = UC where U 2 Rn1⇥r and C = SV >

2

Rr⇥n2 . A matrix completion algorithm A satisfies subspace-aware (✏, �)-joint differential privacy if
for any node j, any two possible coefficient vectors Cj ,C 0

j 2 Rr for node j, any tuple of coefficient
vectors for all other nodes C�j 2 Rr⇥(n2�1), and any output set O ✓ Rr⇥n2 that consists of
estimated coefficient vectors in a column subspace with basis U , we have

PA[A�j(Cj ;C�j |U) 2 O]  e
✏
· PA[A�j(C

0
j ;C�j |U) 2 O] + �. (10)

3 Novel Homomorphic Framework for Matrix Completion

We propose a homomorphic encryption-decryption scheme: a node performs local encryption and
decryption, and uploads an encrypted vector to a server to perform the matrix completion computation.

3.1 Our Idea: Hiding a Low-rank Data Matrix in a Larger Subspace

To preserve the privacy of a low-rank data matrix M 2 Rn1⇥n2 with rank r, our idea is to hide
M (lies in an r-dimensional subspace) into a larger subspace of dimension r, such that r � r and
r, r ⌧ n1. A sound approach would be enlarging the original subspace of the data matrix (i.e., the
plaintext) as follows: a cloud server generates a random matrix K 2 Rn1⇥k as public keys, k ⌧ n1,
and broadcasts K to all n2 nodes; then, node j generates k random numbers as private keys Rj 2 Rk,
and encrypts its vector Mj 2 Rn1 as follows (a version with missing entries will be given in (12))

M j = Mj +KRj , j = 1, ..., n2; Equivalently, M = M +RR. (11)

In the encryption scheme (11), M is added up with KR, resulting in a matrix M with rank r  r+k.
Since r ⌧ n1, M is also low-rank, it is possible to recover M from a subset of entries.
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Figure 2: Our encryption method. Plaintext and cyphertext have the same set ⌦ of missing entries.

3.2 Proposed Homomorphic Encryption-Decryption Scheme

We propose a homomorphic encryption-decryption scheme that consists of the following steps, while
the pseudocodes are summarzied in Alg. 1 and Alg. 2.

• First, in line 1 of Alg. 1, the cloud server generates a random matrix K 2 Rn1⇥k as public keys,
then broadcasts K to all n2 nodes.

• Second, in lines 1-5 of Alg. 2, after receiving K 2 Rn1⇥k from the server (line 1 in Alg. 1), the
j-th node locally carries out an encryption with k private keys (i.e., Rj 2 Rk). As shown in Fig. 2,
the j-th node locally encrypts its incomplete vector P⌦j (Mj) as follows

P⌦j (M j) = P⌦j (Mj) + P⌦j (KRj), j = 1, ..., n2, (12)

where Rj
i.i.d
⇠ N (0,�2Ik), P⌦j (KRj) means keeping the entries in ⌦j and setting the entries

in the complement set of ⌦j to be zeros, thus P⌦j (M j) has the same set of missing entries as
P⌦j (Mj). Note that Rj is stored locally, which are private keys that will NOT be shared with any
other node. Then, each node uploads its encrypted vector P⌦j (M j) to the cloud server.

• Third, in lines 2-5 of Alg. 1, after receiving all n2 encrypted vectors P⌦j (M j), j = 1, ..., n2,
the server forms an incomplete matrix M⌦ with ⌦ =

S
j=1,...,n2

⌦j . Then, the server carries

out a matrix completion task in (7), and sends the recovered vector cXj back to the j-th node,
j = 1, ..., n2.

• Finally, in lines 11-13 of Alg. 2, using the locally stored private keys Rj , and the public keys K,

the j-th node decrypts its own vector, i.e., cXj = g
�1(cXj) = cXj �KRj , j = 1, ..., n2.

4 Homomorphism Property Holds at Price of More Samples

We prove that the homomorphism property holds for the proposed scheme, which guarantees exact
recovery on cyphertexts at a cost of more samples. The detailed proofs are given in Appx. C.

Overview: Starting from a necessary and sufficient condition in Lemma 1, we relax to a sufficient
condition in Lemma 3 for the homomorphism property to hold. Then, we provide a homomorphic
version of Rudelson Selection Estimation Theorem in Theorem 2 that guarantees Lemma 3 with high
probability. Therefore, we obtain a sample complexity for EXACT recovery in Theorem 3, where our
interesting finding is that the homomorphism property holds at price of more samples.

4.1 Sufficient Condition for Low-rank Matrix Completion

We start from a necessary and sufficient condition for low-rank matrix completion. Note that a similar
necessary and sufficient condition for sparse vector recovery is discussed in compressive sensing
[3, 8, 46]. Here, we apply a similar argument to obtain Lemma 1.

We define a set of matrices with rank at most r and a rank-descent cone as follows(
M = {X 2 Rn1⇥n2 : rank(X)  r},

DM(M) = {t(X �M) 2 Rn1⇥n2 : rank(X)  r, t � 0},
(13)
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where M is the closure of the manifold of rank-r matrices. Accordingly, for M , we have
(
M = {X 2 Rn1⇥n2 : rank(X)  r},

DM(M) = {t(X �M) 2 Rn1⇥n2 : rank(X)  r, t � 0}.
(14)

Lemma 1. (Necessary and sufficient condition for low-rank matrix completion) M is the unique
optimal solution to (6) if and only if ⌦?

\ DM(M) = {0}, where ⌦? denotes Ker(P⌦).

Geometric interpretation: M is the unique optimal solution to problem (6) if and only if starting
from M , the rank of M +D increases for all directions D 2 ⌦?, where D is nonzero. Therefore,
the homomorphism property of low-rank matrix completion in problem (7) holds if

⌦?
\ DM(M) = {0} = ⌦?

\ DM(M). (15)

Lemma 2. ([15, 7] (Theorem 6.1)) Let M = U⌃V > be the compact SVD of matrix M . The
tangent cone TM(M) of the set M at M is a linear subspace given by

TM(M) = {UA> +BV >
| A 2 Rn1⇥r

,B 2 Rn2⇥r
} , T, (16)

and its complementary space is denoted by T
?.

Since the rank-descent cone is a subset of the tangent cone defined in (16) ([17], Theorem 4.8),
DM(M) ✓ T, and DM(M) ✓ T , we relax (15) to the following sufficient condition.
Lemma 3. A sufficient condition for the homomorphic property of matrix completion under the
proposed scheme in Alg. 1 and Alg. 2 is ⌦?

\ T = {0}.

Interpretation: if ⌦?
\ T = {0} holds, then we know that M = M +KR is the unique optimal

solution to problem (7) and M is the unique optimal solution to problem (6). Since M = M +KR
is a one-to-one mapping, a decryption scheme M �KR will return the desired true matrix M .

4.2 Homomorphic Version of Rudelson Selection Estimation Theorem

The Rudelson selection estimation theorem [39] investigates the number of random points needed
to bring a convex body into a nearly isotropic position. Such an approximate isometry property is
fundamentally useful to characterize the number of entries needed to complete a low-rank matrix.
Definition 5. (Coherence) Let U 2 Rn⇥r be the r left singular vectors of M (corresponds to the
column subspace S(M)) and PU be the orthogonal projection onto U . Then the coherence of U (or
S(M), respectively) is defined as

µ(S(M)) = µ(U) , n

r
max
1in

||PUei||
2
2 =

n

r
max
1in

||U>ei||
2
2, (17)

since (U>U)�1 = I and U is orthonormal.

The concept “coherence" measures the relationship between a low-dimensional space and the obser-
vation operator P⌦, namely the cosine (with a scaling factor n

r ) of the principal angle between the
low-dimensional space and a standard basis. M is said to satisfy the standard incoherence condition
with parameter µ0 if

µ(U)  µ0, and µ(V )  µ0. (18)

A small µ0 ensures that the information of the row/column spaces of M is not too concentrated on
a small number of rows/columns. It characterizes the contribution of an entry in recovering M : a
small µ0 means that each entry provides approximated the same amount of information.
Theorem 1. (Rudelson selection estimation theorem [3]) Assume that ⌦ ⇠ Ber(p) with p =
⇥( m

n1n2
), and M obeys the standard incoherence condition (18) with parameter µ0. There is a

constant CR such that for � > 1, with probability � 1� 3n��
2 , we have

||p
�1

PTP⌦PT � PT ||  CR

r
µ0n2r(� log n2)

m
, ✏ < 1. (19)
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We derive the following homomorphic variant of the Rudelson selection estimation theorem [39] and
will use it to guarantee Lemma 3. Our new contribution here is to derive the conditions when the
approximate isometry property will hold simultaneously for both cyphertexts and plaintexts.
Theorem 2. (Homomorphic version of Rudelson selection estimation theorem) Assume that
⌦ ⇠ Ber(p) with p = ⇥( m

n1n2
), M and M satisfy the standard incoherence condition (18) with

parameter µ0 and µ0, respectively. Under the proposed scheme in Alg. 1 and Alg. 2, there are
constants CR, C

0
R such that for � > 1, with probability � 1� 3n��

2 , we have

(cyphertext) ||p
�1

PTP⌦PT � PT ||  C
0
R

r
n2µ0r(� log n2)

m
, ✏

0
< 1, which implies

(plaintext) ||p
�1

PTP⌦PT � PT ||  CR

r
n2µ0r(� log n2)

m
, ✏ < 1.

(20)

Note that ||p�1
PTP⌦PT � PT || < 1 implies that the sufficient condition ⌦?

\ T = {0} holds.

4.3 Sample Complexity for EXACT Recovery

Then, we prove Theorem 3 that the homormophism property holds for the proposed scheme in Alg. 1
and Alg. 2, provided that there are sufficient number of observations (|⌦| is large enough).

Theorem 3. For Alg. 1 and Alg. 2, with probability � 1� 3n��
2 , the homomorphism property holds

if p �
C0µ0r(� logn2)

n1
, where C0 is a positive constant.

Next, we characterize the coherence change of µ0 and provide the sample complexity for the EXACT
recovery in Alg. 1 and Alg. 2.
Lemma 4. The new coherence under the proposed scheme in Alg. 1 and Alg. 2 satisfies

µ0 
r

r
µ0 + Cmax(

k

r
,
log n2

r
), with probability � 1� cn

�3
2 log n2. (21)

Combining Theorem 3 and Lemma 4, we characterize the required number of entries.

Corollary 1. For Alg. 1 and Alg. 2, with probability � 1� 6n��
2 � cn

�3
2 log n2, the homomorphism

property holds if p �
C0(rµ0+C max(k,logn2))(� logn2)

n1
, where c, C0, C are positive constants.

5 Differential Privacy Property Holds

In this section, we show that the differential privacy holds for the proposed scheme in Alg. 1 and Alg.
2. It is well-known that one can achieve (✏, �)-differential privacy by adding Gaussian noise.
Definition 6. (Privacy loss as a random variable [12]) Considering a mechanism A on a pair of
databases D,D

0. For an outcome o 2 O, the privacy loss on o is defined as the logarithmic ratio
between the probability to observe o on input D compared to that on input D0:

L
(o)
A(D)||A(D0) = ln

P(A(D) = o)

P(A(D0) = o)
, (22)

where P(A(D) = o) is a probability density over a continuous set O.

Two potential issues of the proposed scheme in Alg. 1 and Alg. 2 is the projection recovery and
the rank value r may be unknown. Namely, for a single-round encryption case, one can do a
corresponding projection to obtain the real data. Therefore, we execute the proposed scheme twice
and introduce two parameters �1 and �2:

• First-round encryption: the server randomly generats a matrix K1
2 Rn1⇥k and each node gener-

ates k random numbers R1
j

i.i.d
⇠ N (0,�2

1Ik). Then, we have P⌦(M) = P⌦(M) + P⌦(K1R1).

• Second-round encryption: the server obtains the column space of M as K2
2 Rn1⇥r with

r = r + k and then each node generates r + k random numbers R2
j

i.i.d
⇠ N (0,�2

2Ir+k). Then we
have P⌦(M) = P⌦(M) + P⌦(K2R2).
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Figure 3: Comparing NN and AM algorithms with their homomorphic versions. The figure plots the
success rates within 10 trials, where the white and black cells mean “success” and “fail”. The trial is
“success” if RSE  10�5. We set k = 10 in Alg. 1 and Alg. 2

Theorem 4 states that the proposed scheme satisfies the subspace-aware joint (✏, �)-differential privacy
in Section 2.3.2. The detailed proofs are given in Appx. D, where the key is to quantify � under
which the random variable privacy loss in (22) is bounded by ✏, with probability at least 1� �.
Theorem 4. Let ✏ 2 (0, 1) and c

2
> 2 ln(1.25/�). Assume the true data matrix M 2 Rn1⇥n2

has rank r and each column has bounded `2-norm, i.e., � = max1jn2 ||Mj ||2  L. Let R1
j ⇠

N (0,�2
1Ik) with �1 � 2cL

p
2 ln(2/�)/✏ and R2

j ⇠ N (0,�2
2Ik+r) with �2 � 2cL

p
2 ln(2/�)/✏,

then the encryption and decryption scheme in Alg. 1 and Alg. 2, satisfies the subspace-aware joint
(✏, �)-differential privacy property.

A substantial improvement is: for the same level of privacy (the same parameters ✏, � in the above
joint (✏, �)-DP property), our algorithms are able to achieve EXACT recovery. Note that by proving
the homomorphism property and characterising the sample complexity, we reduce the error bound
O( 10

p
n3
1n2) from [20] to ZERO since we have EXACT recovery.

6 Performance Evaluation

We evaluate the proposed scheme on synthetic data and real-world datasets using two matrix comple-
tion algorithms [41, 18], verifying the homomorphism property.

6.1 Experimental Settings

Datasets. We experiment with synthetic data and real-world datasets. The synthetic data is generated
randomly according to the low-rank 1, 000 ⇥ 1, 000 matrix model and serves as well-controlled
inputs for verification. The real-world datasets include two benchmark datasets for recommendation
systems, namely the MovieLens10M (Top 400)3 and Netflix (Top 400) datasets. The MovieLens
dataset contains ratings of 400 most rated movies made by approximately 7, 000 users, and the Netflix
dataset contains ratings of 400 most rated movies made by approximately 480 thousand users.

Matrix completion algorithms. For the matrix completion on the server, we use nuclear-norm
minimization (NN) and alternating minimization (AM) algorithms. In Section 6.2, we compare both
algorithms with their homomorphic versions. In Section 6.3, on the real-world datasets, we also
include the private Frank-Wolf (FW) algorithm [20] for comparison.

Performance metric. We measure the recovery error via the relative square root error RSE =
||cM�M ||F

||M ||F . All experiments are executed for ten times and we report the average results.

6.2 Results on Synthetic Data

We experiment with randomly generated low-rank matrices on NN and AM algorithms and their
homomorphic versions HNN and HAM. We vary the rank r of the generated matrix and the percentage
of observed entries from 1, 5, to 95. As shown in Fig. 6.2, we observe two trends: 1) for a certain
rank r, the success rate increases as the percentage of observed entries increases; and 2) for a certain
percentage of observed entries, the success rate decreases as the rank r increases. On the other hand,
we find that the HNN and HAM need slightly more observed entries to reach the success threshold,

3https://movielens.org/
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Figure 4: Results on MovieLens10M and Netflix datasets. We vary the percentage of observed entries
and measure the RSE recovery error.

which verifies Theorem 3 that the scheme guarantees exact recovery at a cost of more samples. As an
interpretation, the homomorphic version is to hide the plaintext matrix into a larger space, namely
from rank r to rank r + k. In this case, given that we set k = 10 for the experiments, we find that the
results of HNN and HAM can be obtained by shifting the results of their counterparts left one grid.

6.3 Results on MovieLens10M and Netflix Datasets

Fig. 4 shows the results on MovieLens10M and Neflix datasets. For the newly introduced compared
algorithm FW, we set the privacy parameter ✏ = 2 log(1/�) and � = 10�6. For the NN and AM
algorithms, the setting is the same in Section 6.2.

First of all, we observe that the homomorphic algorithms can achieve significantly lower recovery
errors than the error of FW algorithm. This points out the difference between the proposed scheme
and existing strategies, in which we do not sacrifice the recovery error to improve the privacy. On
the other hand, we find that the homomorphic algorithms can reach the same level of recovery error
as the vanilla algorithms on plaintexts, but need more samples. Such a performance is consistent
with our theoretical proofs and our observations in Section 6.2. Moreover, we analyze the impact of
increasing the percentage of observed entries on three types of algorithms, as shown in Fig. 4. For
AM and FW algorithms, the recovery error decreases smoothly as the percentage increases (note that
the y-axis decreasing in log). However, the NN algorithm demonstrates a significant error drop as we
increase the percentage of observed entries.

7 Conclusion and Future Work

This work studied the problem of privacy-preserving data completion in a distributed manner. To
address the privacy concern, we define the homomorphic matrix completion problem and propose
a homomorphic encryption-decryption scheme. Unlike existing works that preserve privacy by
sacrificing recovery accuracy, our work guarantees the EXACT recovery while making a tradeoff
between privacy and the number of samples. Then, we theoretically prove that the proposed scheme
satisfies the homomorphism and differential privacy properties. Experimentally, we show that the
proposed scheme is compatible with two matrix completion algorithms, namely the nuclear norm
minimization and alternating minimization, and verify the homomorphism property.

In the future, it would be interesting to extend this homomophic framework to the tensor completion
problem [31, 32]. It would also be practically interesting to study federated learning application [24]
and develop high-performance implementations for high-dimensional data analysis [50, 49, 36, 50].
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