
A Appendix : Introspection, Reasoning, and Explanations

Introspection was formalized by (51) as a field in psychology to understand the concepts of memory,
feeling, and volition (52). The primary focus of introspection is in reflecting on oneself through
directed questions. While the directed questions are an open field of study in psychology, we use
reasoning as a means of questions in this paper. Specifically, abductive reasoning. Abductive
reasoning was introduced by the philosopher Charles Sanders Peirce (53), who saw abduction
as a reasoning process from effect to cause (54). An abductive reasoning framework creates a
hypothesis and tests its validity without considering the cause. From the perspective of introspection,
a hypothesis can be considered as an answer to one of the three following questions: a correlation

‘Why P?’ question, a counterfactual ‘What if?’ question, and a contrastive ‘Why P, rather than Q?’

question. Here P is the prediction and Q is any contrast class. Both the correlation and counterfactual
questions require active interventions for answers. These questions try to assess the causality of some
endogenous or exogenous variable and require interventions that are long, complex, and sometimes
incomplete (55). However, introspection is the assessment of ones own notions rather than an external
variable. Hence, a contrastive question of the form ‘Why P, rather than Q?’ lends itself as the directed
question for introspection. Here Q is the introspective class. It has the additional advantage that the
network f(·) serves as the knowledge base of notions. All reflection images from 1, Fig. 6, and Fig. 2
are contrastive. We describe the generation process of these post-hoc explanations.

Introspective Feature Visualization We modify Grad-CAM (6) to visualize rj from Eq. 2. Grad-
CAM visually justifies the decision made by f(·) by highlighting features that lead to ŷ. It does so by
backpropagating the logit associated with the prediction, ŷ. The resulting gradients at every feature
map are global average pooled and used as importance scores. The importance scores multiply the
activations of the final convolutional layer and the resultant map is the Grad-CAM visualization.
Hence, gradients highlight the activation areas that maximally lead to the prediction ŷ. In Fig. 1,
given a spoonbill image x and a ImageNet-pretrained (23) VGG-16 network, the sensing visualization
shown is Grad-CAM. Grad-CAM indicates that the pink and round body, and straight beak are the
reasons for the decision. Instead of backpropagating the ŷ logit, we backpropagate J(yI , ŷ) in the
Grad-CAM framework. The gradients represent introspective features and are used as importance
scores. It can be seen that they visually highlight the explanations to ‘Why ŷ, rather than yI ’. In
Fig. 1, the network highlights the neck of the spoonbill to indicate that since an S-shaped neck is not
observed, x cannot be a flamingo. Similarly, the body of the spoonbill is highlighted when asked
why x is not a crane since cranes have white feathers while spoonbills are pink. Two more examples
are shown in Fig. 6. In the first row, a VGG-16 architecture is trained on Stanford Cars dataset (56).
Given a Bugatti convertible image, Grad-CAM highlights the bonnet as the classifying factor. An
introspective question of why it cannot be a bugatti coupe is answered by highlighting the open top
of the convertible. The entire car is highlighted to differentiate the bugatti convertible from a Volvo.
In the second row, we explore visual explanations in computed seismic images using LANDMASS
dataset (57). A ResNet-18 architecture using the procedure from (58) is trained. The dataset has
four geological features as classes - faults, salt domes, horizons, and chaotic regions. Given a fault
image in Fig. 6, Grad-CAM highlights the regions where the faults are clearly visible as fractures
between rocks. However, these regions resemble salt domes as shown in the representative image.
The introspective answer of why x is not predicted as a salt dome tracks a fault instead of highlighting
a general region that also resembles a salt dome. Note that no representative images are required to
obtain introspective visualizations. The gradients introspect based on notions of classes in network
parameters.

Biological plausibility of introspection in recognition Recognition is fast and mostly a feed-
forward process. However, when there is uncertainty involved - either due to distributional shift
or noise - we tend to reason about our decisions. Human visual system detects salient portions
of an image and attends to them in a feed-forward process. An alternative perspective to this is
expectancy-mismatch - the idea that HVS attends to those features that deviate from expectations (15).
We simulate this via introspection. By asking ‘Why P, rather than Q?’, we ask the network to
examine its expectations and describe the mismatches. This is seen as the lack of S-shaped neck
in spoonbill in Fig. 1. By interpreting introspective features as hypotheses that answer contrastive
questions, we convert the biologically feed-forward process into a reflection process. Moreover, our
results also support this - when train and testsets are from the same distribution, there is no change in
results. However, when there is a distributional difference, we notice the gains for introspection - on

16



Figure 6: Introspective feature visualizations. The images in the leftmost column are the input x. The
representative images are for illustrative purposes and are not used to extract features.

CIFAR-10C, CIFAR-10-CURE, active learning, OOD and IQA experiments. Moreover, higher the
distributional difference, larger is the introspective gain as shown in Fig. 8.

A broader view on Introspection In this paper, we limit introspection as answers to ‘Why P, rather

than Q?’ questions. We limit P to be the predictions made by networks. Hence, we are left with
N questions to answer. However, creative abduction calls for asking questions of the form ‘Why P,

rather than Q1 and Q2?’. Such Qs can extend to all N classes. Hence, introspective labels can be
the powerset of all one-hot labels - 2N . Moreover, the prediction itself can be made to change by
intervening within data leading to questions of the form ‘Why Q, rather than P?’. These include
counterfactual questions of the form ‘What if?’ when considered from the output perspective. Hence,
for N classes, there can be N ⇥ 2N introspective questions. Hence, the proposed features are only
one possible feature set when considering introspection. However, we posit that all these features
are a function of the data and the model, thereby making gradients an essential feature set while
considering introspection and this paper provides intuitions as to their applicability.

B Appendix : Proofs

B.1 Proof for Lemma 1

We start by assuming J(·) is a cross-entropy loss. J(yI , ŷ), I 2 [1, N ] can also be written as,

J(yI , ŷ) = �yŷ + log
NX

j=1

eyj , where ŷ = f(x), ŷ 2 <N⇥1. (12)

This definition is used in PyTorch to implement cross entropy. Here we assume that the predicted
logit, i.e, the argument of the max value in the logits ŷ is yŷ. While training, yŷ is the true label. In
this paper, we backpropagate any trained class I , as an introspective class. Hence, Eq. 12 can be
rewritten as,

J(yI , ŷ) = �yI + log
NX

j=1

eyj , where ŷ = f(x), ŷ 2 <N⇥1. (13)

Approximating the exponent within the summation with its second order Taylor series expansion, we
have,

J(yI , ŷ) = �yI + log
NX

j=1

✓
1 + yj +

y2j
2

◆
. (14)

17



Figure 7: For the input image on the left, the rWLJ(yI , 3) are shown on the right. Each image is a
visualization of the 64⇥ 10 gradient matrix.

Note that for a well trained network f(·), the logits of all but the predicted class are negligible. As
noted before, the predicted logit is yŷ . Taking yŷ within the summation as common,

J(yI , ŷ) = �yI + log
NX

j=1

yŷ

✓
1

yŷ
+

yj
yŷ

+
y2j
2yŷ

◆
. (15)

Taking out yŷ from within the summation since it is a constant and independent of summation variable
j,

J(yI , ŷ) = �yI + log
✓
yŷ

NX

j=1

✓
1

yŷ
+

yj
yŷ

+
y2j
2yŷ

◆◆
. (16)

Using product rule of logarithms,

J(yI , ŷ) = �yI + log(yŷ) + log
NX

j=1

✓
1

yŷ
+

yj
yŷ

+
y2j
2yŷ

◆
. (17)

For a well trained network, all logits except yŷ are negligible. Also for a well trained network, yŷ is
large. Hence the third term on the RHS within the summation reduces to 1 + yŷ

2 . Note that in the
second term of the RHS, yŷ = c is a constant for any deterministic trained network even when there
are small changes in the values of weights W . Substituting,

J(yI , ŷ) = �yI + log(c) + log
✓
1 +

yŷ
2

◆
. (18)

The quantity in Eq. 18 is differentiated, hence nulling the effect of constant log(c). Hence, we can
obtain rWJ(yj , ŷ) as a function of two logits, yI and yŷ given by,

rWJ(yI , ŷ) = �rW yI +rW log
✓
1 +

yŷ
2

◆
. (19)

yI is a one-hot vector of dimensionality N ⇥1 while rW is a dL�1⇥N matrix. The product extracts
only the Ith filter in the W matrix in gradient calculations. Following the above logic for yŷ, we
have,

rWJ(yI , ŷ) = �rW,IyI +rW,yŷg(yŷ), (20)
where g(·) is some function of yŷ . Hence the gradient rI = rWJ(yI , ŷ) lies in the span of the filter
gradients of WI and Wŷ , making rI orthogonal to all other filter gradient pairs. Hence proven.

Hence, for N introspective features in 5, the space complexity of rx which is a concatenation of N
separate ri, reduces from O(dL�1 ⇥N2) to O(dL�1 ⇥N).

Similar to Fig. 2 that was presented on a well trained network on MNIST dataset, we show the
sparsity analysis on CIFAR-10 data in Fig. 7. The sparse nature of gradients is still observed in Fig. 7
but it is not as prevalent as the gradients from Fig. 2. This is because of the assumption of the well
trained network in Lemma 1. This assumption allows for Eq. 18 where we assume only the predicted
logit and its closest logit are non-zero. However, in Table 9, we show that the approximation does not
alter the empirical results since the excess non-zero logits tend to store redundant information across
filters. This is also observable in Fig. 7.

18



Table 4: Structure of H(·) and accuracies on CIFAR-10C as reported in the paper.

(Training Domain)f(·) Part 1: Structure of H(·) - All layers separated by sigmoid Accuracy (%)

(CIFAR-10) R-18,34 640⇥ 300� 300⇥ 100� 100⇥ 10 71.4, 73.36
(CIFAR-10) R-50, 101 2560⇥ 300� 300⇥ 100� 100⇥ 10 75.2, 75.47

(Webcam) R-18,34 1984⇥ 31 -
(Webcam) R-50,101 7936⇥ 31 -

(Amazon) R-18,34 1984⇥ 1000� 1000⇥ 100� 100⇥ 31 -
(Amazon) R-50,101 7936⇥ 3000� 3000⇥ 500� 500⇥ 31 -

(DSLR) R-18,34 1984⇥ 1000� 1000⇥ 100� 100⇥ 31 -

(VisDA) R-18 768⇥ 300� 300⇥ 100� 100⇥ 12 -

B.2 Proof for Theorem 1

The proof for Theorem 1 follows from Lemma 1. For any given data x, there are N possible
introspections and hence N possible reflections. The LHS in Eq. 20 is summed across N losses.
Since yj , j 2 [1, N ] are one-hot vectors, they are orthogonal and the first term in RHS is an addition
across j. The second term in RHS is independent of j. Representing this in equation form, we have,

NX

j=1

rWJ(yj , ŷ) = �
NX

j=1

rW,jyj +N ⇥rW,yŷg(yŷ). (21)

The first term is added N times for N orthogonal yI . Hence, the first term reduces to a sum of all
gradients of jth filters when backpropagating yj . Removing the summation and replacing yj = 1N

or a vector of all ones in the LHS, we still have the same RHS given by,

rWJ(1N , ŷ) = �
NX

j=1

rW,jyj +N ⇥rW,yŷg(yŷ). (22)

Equating the LHS from Eq. 21 and Eq. 22, we have the proof.

B.3 Tradeoff in Eq. 8

Eq. 8 suggests a trade-off between minimizing E[(H(rx)�y)2], which is the cost function for training
H(·), and the variance of the network H(·). Ideally, an optimal point exists that optimally minimizes
the cost function of H(·) while maximizing its variance. This also prevents decomposing H(·)
into H1(·) and H2(·) that further introspect on H(·). In this paper, we create a single introspective
network H(·). Hence, we do not comment further on the practical nature of the trade-off or perpetual
introspection. It is currently beyond the scope of this work. In all experiments, we train H(·) as any
other network feed-forward network - by minimizing an empirical loss function given the ground
truth.

B.4 Fisher Vector Interpretation

We make two claims before Eq. 10 both of which are well established. These include :

• Variance of a linear function For a linear function y = W ⇥ x+ b, the variance of y is
given by Var(Wx+ b) = W 2Var(x) if Var(W ) = 0.

• Variance of a linear function when W is estimated by gradient descent Ignoring the bias
b, and taking y = Wx = xT⌃�1xT (xW ), we have Var(Wx) = �2Tr(xT⌃�1x).

Both these results lead to Eq. 9. Since rx 2 <dL�1⇥N , the trace of the matrix given by Tr(rTx F�1rx),
is a sum of projections on individual weight gradients given by

PN
j=1 r

T
j F

�1rj in the Fisher sense.

19



Figure 8: Introspective performance gains over Feed-Forward networks of a) ResNets-18,34,50,101,
b) Level-wise averaged results across ResNets-18,34,50,101

C Appendix : Additional Results on Recognition and Calibration

C.1 Structure of H(·) and training details

In this section, we provide the structure of the proposed H(·) architecture. Note that, from Eq. 1, the
yfeat in feed-forward learning are processed through a linear layer. We process the introspective
features rx through an MLP H(·), whose parameter structure is given in Table 4. Hence, we follow
the same workflow as feed-forward networks in introspective learning. The feed-forward features
fL�1(x) are passed through the last linear layer in f(·) to obtain the prediction ŷ. The introspective
features are passed through an MLP to obtain the prediction ỹ. The exact training procedure for H(·)
is presented below.

Training f(·) and Hyperparameters We train four ResNet architectures - ResNet-18, 34, 50, and
101 (4). Note that we are not using any known techniques that promote either generalization (training
on noisy data (28)) or calibration (Temperature scaling (37)). The networks are trained from scratch
on CIFAR-10 dataset which consists of 50000 training images with 10 classes. The networks are
trained for 200 epochs using SGD optimizer with momentum = 0.9 and weight decay = 5e � 4.
The learning rate starts at 0.1 and is changed as 0.02, 0.004, 0.0008 after epochs 60, 120, and 160
respectively. PyTorch in-built Random Horizontal Flip and standard CIFAR-10 normalization is used
as preprocessing transforms.

Training H(·) The structures of all MLPs are shown in Table 4. ResNet-18,34 trained on CIFAR-10
provide rx of dimensionality 640⇥1. This is fed into H(·) which is trained to produce a 10⇥1 output.
Note that rx from ResNet-50,101 are of dimensionality 2560⇥ 1 - due to larger dimension of fL�1().
All MLPs are trained similar to f(·) - for 200 epochs, SGD optimizer, momentum = 0.9, weight decay
= 5e�3, learning rates of 0.1, 0.02, 0.004, 0.0008 in epochs 1� 60, 61� 120, 121� 160, 161� 200
respectively. For the larger 5-layered ResNet-50,101 networks in Table 9, dropout with 0.1 is used
and the weight decay is reduced to 5e�4.

C.2 Introspective Accuracy Gain and Calibration Error Studies

In this section, we present additional recognition and calibration results. In Fig. 5a), we showed
distortion-wise accuracy and the introspective gain for ResNet-18. In this section, we present level-
wise and network-wise accuracies for all four considered ResNet architectures. We show that an
introspective ResNet-18 matches a Feed-Forward ResNet-50 in terms of recognition performance. We
then compare the results of ResNet-18 against existing techniques that promote robustness. We show
that introspection is a plug-in approach that acts on top of existing methods and provides gain. We do
the same for calibration experiments on CIFAR-10C where we provide level-wise distortion-wise
graphs for Expected Calibration Error (ECE) similar to Fig. 5b).

20



Figure 9: Introspective performance gains over Feed-Forward Resnet-18 across distortions and levels

C.2.1 Level-wise Recognition on CIFAR-10C

In Fig. 8b), the introspective performance gains for the four networks are categorized based on the
distortion levels. All 19 categories of distortion on CIFAR-10C are averaged for each level and
their respective feed-forward accuracy and introspective gains are shown. Note that the levels are
progressively more distorted. Hence, level 1 distribution X 0 is similar to the training distribution X
when compared to level 5 distributions. As the distortion level increases, the introspective gains also
increase. This is similar to the results from Section D. In both active learning and OOD applications
as X 0 deviates from X , introspection performs better. In Fig. 8a), we show the distortion-wise and
level-wise increase for each network. Note that, an Introspective ResNet-18 performs similarly to a
Feed-Forward ResNet-50. From (4), the number of parameters in a ResNet-18 model (1.8⇥ 109) are
less than half the parameters in a ResNet-50 model (3.8⇥ 109). However by adding an introspective
model H(·) with 2.23⇥ 105 parameters to a feed-forward ResNet-18 model, we can obtain the same
accuracy as a ResNet-50 model. This is in addition to the calibration gains provided by introspection.

C.2.2 Distortion-wise and Level-wise Recognition on CIFAR-10C

In Fig. 9, the introspective accuracy performance for Resnet-18 across 19 distortions and 5 distortion
levels is shown. Note that CIFAR-10C consists of 950,000 test images. The 4% increase in
performance translates to around 35,000 more images correctly classified over its feed-forward
counterpart. These gains are especially visible among Level 5 distortions.

Table 5: Introspecting on top of existing robustness techniques.

Methods Accuracy

ResNet-18 67.89%
Denoising 65.02%
Adversarial Train (27) 68.02%
SimCLR (19) 70.28%
Augment Noise (28) 76.86%
Augmix (26) 89.85%

ResNet-18 + Introspection 71.4%
Denoising + Introspection 68.86%
Adversarial + Introspection 70.86%
SimCLR + Introspection 73.32%
Augment Noise + Introspection 77.98%
Augmix + Introspection 89.89% (ECE 43.33% #)

21



Figure 10: ECE vs distortion levels across 12 separate distortions from CIFAR-10C for ResNet-18.

C.2.3 Introspection as a plug-in on top of existing techniques

Several techniques exist that boost the robustness of neural networks to distortions. These include
training with noisy images (28), training with adversarial images (27), and self-supervised methods
like SimCLR (19) that train by augmenting distortions. Another commonly used technique is to
pre-process the noisy images to denoise them. All these techniques can be used to train f(·). Our
proposed framework sits on top of any f(·). Hence, it can be used as a plug-in network. These
results are shown in Table 5. Denoising 19 distortions is not a viable strategy assuming that the
characteristics of the distortions are unknown. We use Non-Local Means denoising and the results
obtained are lower than the feed-forward accuracy by almost 3%. However, introspecting on this
model increases the results by 3.84%. We create untargeted adversarial images using I-FGSM attack
with ↵ = 0.01 and use them to train a ResNet-18 architecture. In our experiments this did not increase
the feed-forward accuracy. Introspecting on this network provides a gain of 2.84%. SimCLR (19) and
introspection on SimCLR is discussed in Section C.3. In the final experimental setup of augmenting
noise (28), we augment the training data of CIFAR-10 with six distortions - gaussian blur, salt and
pepper, gaussian noise, overexposure, motion blur, and underexposure - to train a ResNet-18 network
f 0(·). We use the noise characteristics provided by (40) to randomly distort 500 CIFAR-10 training
images by each of the six distortions. The original training set is augmented with the noisy data and
trained. The results of the feed-forward f 0(·) show a substantial increase in performance to 76.86%.
This is about 9% increase from the original architecture. We show that introspecting on f 0(·) provides
a further gain in accuracy of 1.12%. Note that to train H(·), we do not use the augmented data.
We only use the original CIFAR-10 undistorted training set. The gain obtained is by introspecting
on only the undistorted data, even though f 0(·) contains knowledge of the distorted data. Hence,
introspection is a plug-in approach that works on top of any network f(·) or enhanced network f 0(·).
Augmix (26) is currently the best performing technique on CIFAR-10C. It creates multiple chains
of augmentations to train the base WideResNet network. On CIFAR-10C, f 0(·) obtains 89.85%
recognition accuracy. We use f 0(·) as our base sensing model and train an introspective MLP on
f 0(·). Note that we do not use any augmentations for training H(·). Doing so, we obtain a statistically
similar accuracy performance of 89.89%. However, the expected calibration error of the feed-forward
f 0(·) model decreases by 43.33% after introspection. Hence, when there is no accuracy gains to be
had, introspection provides calibrated models.

22



Table 6: Expected Calibration Error and Maximum Calibrated Error for Feed-Forward vs Introspective
Networks.

Architectures ResNet-18 ResNet-34 ResNet-50 ResNet-101

ECE (#) f(·) 0.14 0.18 0.13 0.16
H(·) 0.07 0.09 0.06 0.1

MCE (#) f(·) 0.27 0.34 0.27 0.32
H(·) 0.23 0.24 0.25 0.23

C.2.4 Expected Calibration Error (ECE)

In Fig. 5b), we show ECE for two distortion types - brightness and saturation across 5 distortion
levels. In Fig. 10, we show results across five distortion levels for the first 12 distortions. The blue
plot is the Feed-Forward ECE while the lower orange plot is its introspective counterpart. Apart from
Level 5 contrast, intrsopective ResNet-18 is more calibrated than its feed-forward counterpart. This
is in addition to the performance gains. The trend remains the same in the remaining distortions
and among all considered networks. We average out ECE across 19 distortions and 5 challenge
levels and provide ECE results for ResNets-18, 34, 50, 101 in Table 6. Lower the error, better is the
architecture. The proposed introspective framework decreases the ECE of its feed-forward backbone
by approximately 42%. An additional metric called Maximum Calibration Error (MCE) is also used
for comparison. While ECE averages out the calibration difference in all bins (From Section 6),
MCE takes the maximum error among all bins (37). The introspective networks outperform their
feed-forward backbones among all architectures when compared using ECE and MCE.

Table 7: SimCLR and its supervised and introspective variations tested on CIFAR-10C.

Methods ResNet-18 ResNet-34 ResNet-50 ResNet-101

SimCLR (19) 70.28% 69.5% 67.32% 64.68%
SimCLR-MLP 72.79% 72.54% 70.37% 70.89%
SimCLR-Introspective (Proposed) 73.32% 73.06% 71.28% 71.76%

C.3 SimCLR and Introspection

SimCLR (19) is a self-supervised contrastive learning framework that is robust to noise distortions.
The algorithm involves creating augmentations of existing data including blur, noise, rotations, and
jitters. The network is made to contrast between all the augmentations of the image and other
images in the batch. A separate network head g(·) is placed on top of the network to extract
features and inference is made by creating a similarity matrix to a feature bank. Note that g(·) is
a simple MLP. Our proposed framework is similar to SimCLR in that we extract features and use
an MLP H(·) to infer from these features. In Table 5, we show the results of Introspecting ResNets
against SimCLR. However, this comparison is unfair since the features in SimCLR are trained in
a self-supervised fashion. In this section, we train SimCLR for ResNets-18, 34, 50, 101 and train
a new MLP g(·), not for extracting features, but to classify images. In other words, in (19), the
authors create g(·) to be a 512 ⇥ 128 layer that extracts features. We train a network of the form
512⇥ 128� 128⇥ 10 that is trained to classify images. We then introspect on this g(·) to obtain rx.
Hence, our extracted features are a result of introspecting on self-supervision. Note that g(·) is now a
fully supervised network. We pass CIFAR-10C through g(·) and name it SimCLR-MLP in Table 7.
It is unsurprising that the fully-supervised SimCLR-MLP beats the self-supervised SimCLR across
all four ResNets. The introspective network is called SimCLR-Introspective in Table 7. Note that
there is less than 1% recognition performance increase across networks compared to SimCLR-MLP.
Hence, the performance gains for introspecting on SimCLR-MLP is not as high as base ResNet
architectures from Table 5. One hypothesis for this marginal increase is that the notions created
within SimCLR-MLP are predominantly from the self-supervised features in SimCLR. These may
not be amenable for the current framework of introspection that learns to contrast between classes
and not between features within-classes.

C.4 Ablation Studies

The feature generation process in Section 2 is dependent on the loss function J(ŷ, y). In this section,
we analyze the performance of our framework for commonly used loss functions and show that the

23



Table 8: Introspective Learning accuracies when rx is extracted with different loss functions for
ResNet-18 on CIFAR-10C.

Feed-Forward MSE-M CE BCE L1 L1-M Smooth L1 Smooth L1-M NLL SoftMargin

67.89% 71.4% 69.47% 70.76% 70.12% 70.72% 70.42% 70.63% 70.93% 70.91%

Table 9: Ablation studies for H(·) on CIFAR-10C.

Part 1 : Varying the number of layers

R-18

Feed-Forward 64⇥ 10 67.89%
640⇥ 10 71%

640⇥ 100� 100⇥ 10 71.57%
640⇥ 300� 300⇥ 100� 100⇥ 10 71.4%

640⇥ 400� 400⇥ 200� 200⇥ 100� 100⇥ 10 66.1%

R-50
Feed-Forward 64⇥ 10 71.8%

2560⇥ 300� 300⇥ 100� 100⇥ 10 75.2%
2560⇥ 1000� 1000⇥ 500� 500⇥ 300� 300⇥ 100� 100⇥ 10 73%

Part 2 : Is the performance increase only because of a large H(·)?

R-18

Feed-Forward 67.89%
fL(·) 1 Layer : 64⇥ 10 67.86%
H(·) 1 Layer : 640⇥ 10 71%

fL(·) 3 Layers 64⇥ 30� 30⇥ 20� 20⇥ 10 63.61%

fL(·) 3 Layers 64⇥ 512� 512⇥ 256� 256⇥ 10 64.78%
H(·) 3 Layers: 640⇥ 300� 300⇥ 100� 100⇥ 10 71.4%

fL(·), 6200 parameters : 64⇥ 50� 50⇥ 40� 40⇥ 20� 20⇥ 10 66.85%

H(·), 6400 parameters : 640⇥ 10 71%
Prediction on yfeat using 10-NN (No fL(·)) 66.31%

Prediction on rx using 10-NN (No H(·)) 68.76%
Part 3 : VGG-16

VGG-16
Feed-Forward 68.96%

f(·) 512⇥ 1024� 1024⇥ 256� 256⇥ 10 62.43%
H(·) 5120⇥ 1000� 1000⇥ 100� 100⇥ 10 73.79%

Part 4 : Effect of approximation of Lemma 1 and Theorem 1

R-18
Feed-Forward 67.89± 0.23%

With Approximation 71.57± 0.12%
Without Approximation 71.43± 0.11%

introspective network outperforms its feed-forward counterpart under any choice of J(ŷ, y). We also
ascertain the effect of the size of the parameter set in H(·) on performance accuracy.

C.4.1 Effect of Loss functions

We extract rx using 9 loss functions and report the final distortion-wise level-wise averaged results
Table 8. We do so for ResNet-18 and for the architecture of H(·) shown in Table 4. The following
loss functions are compared : CE is Cross Entropy, MSE is Mean Squared Error, L1 is Manhattan
distance, Smooth L1 is the leaky extension of Manhattan distance, BCE is Binary Cross Entropy,
and NLL is Negative Log Likelihood. Notice that the performance of rx extracted using all loss
functions exceed that of the feed-forward performance. The shown results of MSE, L1-M and Smooth
L1-M are obtained by backpropagating a 1N from Theorem 1 vector multiplied by the average of all
maximum logits M , in the training dataset. We use M instead of 1 because we want the network to
be as confidant of the introspective label yI as it is with the prediction label ŷ. Note that the results
in Table 8 are for CIFAR-10C. MSE-M outperforms NLL loss by 0.37% in average accuracy and is
used in our experiments.

24



Figure 11: Introspective vs. Feed-Forward accuracy of ResNet-18 across training epochs on (a)
CIFAR-10 original testset, (b) CIFAR-10C Motion Blur Testset on all 5 challenge levels, (c) CIFAR-
10C Gaussian Noise Testset on all 5 challenge levels.

C.4.2 Effect of H(·)

We conduct ablation studies to empirically show the following : 1) the design of H(·) does not
significantly vary the introspective results, 2) the extra parameters in H(·) are not the cause of
increased performance accuracy.

How does changing the structure of H(·) change the performance? We vary the architecture of
H(·) from a single linear layer to 4 layers in the first half of Table 9 for ResNet-18. The results in the
first three cases are similar. A four layered network performs worse than f(·). However, changing
the weight decay from 5e�3 to 5e�4 during training increases the results to above 70% but does not
beat the smaller networks. For ResNet-18 architecture, the highest results are obtained when H(·) is
a 2-layered architecture but for the sake of uniformity, we use the results from a 3-layered network
across all ResNet architectures.

Are the extra parameters in H(·) the only cause for increase in performance accuracy? We
show an ablations study of the effect of structure of H(·) and f(·) on the introspective and feed-
forward results in Part 2 of of Table 4 on CIFAR-10-C dataset. The results are divided into four
sections. In the first section, we show the performance of the original feed-forward network f(·),
the performance when the final layer, fL(·) is retrained using features yfeat from Eq. 1, and the
introspective network when H(·) is a single layer. The second section shows the results when the
features yfeat are used to train a three layered network fL(·), and the introspective network is also
three layered. Finally, in section 3, we try to equate the number of parameters for fL(·) and H(·).
Note that in all cases, fL(·) and H(·) are trained in the same manner as detailed in Section C.1. H(·)
beats the performance of fL(·) among all ablation studies. Finally, similar to SimCLR, we forego
using an MLP and use 10-Nearest Neighbors on yfeat (64 ⇥ 1) and rx (640 ⇥ 1) for predictions.
Both results are worse-off than their MLP results but rx outperforms yfeat.

Introspection on larger rx and wider fL�1(·) On Resnet-101 experiments in Section C.2.1, rx
is of dimension 2560 ⇥ 1. On all Resnet-18 experiments, rx is 640 ⇥ 1. In part 3 of Table 4, we
show results on a larger VGG-16 architecture where rx is of size 5120⇥ 1. Row 1 shows the normal
feed-forward accuracy. Row 3 is the introspective results on VGG-16 and the results are 4.83%
higher than its feed-forward counterpart. In row 2, we expand the penultimate layer of f(·) from
512 to 1024 so as to include more parameters in the feed-forward network. Note that this is not
possible for Resnet-18 as fL�1(·) is 64⇥ 1. Hence, we compare our introspective network against a
wider f(·) architecture instead of an elongated architecture like in Part 2. In both cases, introspection
outperforms additional parameters in f(·).

Effect of Lemma 1 and Theorem 1 Note that with approximations from Lemma 1 and Theorem 1,
rx generation occurs with a time complexity of O(1). Without approximation, rx generation occurs
in O(N). However, the results are statistically insignificant when averaged across 5 seeds.

25



Figure 12: Introspective vs. Feed-Forward accuracy of ResNet-18 across training epochs when (a)
f(·) and H(·) are trained on the same training set (b) H(·) is trained on a separate held-out validation
set

C.5 Introspective accuracy across training epochs

In Section 2, we make the assumption that f(·) is well trained to approximate rx using Theorem 1. In
Section 4, the Fisher Vector analysis works when the gradients form distances across the manifold in
f(·) which occurs if f(·) is well trained. In this section we show that, practically, introspection per-
forms as well as feed-forward accuracy across training epochs on CIFAR-10 testset and outperforms
feed-forward accuracy on CIFAR-10C distortions. We show results on original testset, gaussian noise
and motion blur testsets in Fig. 11.

Training, Testing, and Results in Fig. 11a In this experimental setup, ResNet-18 is trained for
200 epochs. The model states at multiples of 3 epochs from 1 to 200 are stored. This provides 67
states of f(·) along its training process. Each f(·) is tested on CIFAR-10 testset and the recognition
accuracy is plotted in blue in Fig. 11a). The introspective features rx for all 67 states are extracted
for the 50, 000 training samples. These rx are used to train 67 separate H(·) of structure provided
in Table 4 with a similar training setup as in Section C.1. The rx from the 10, 000 testing samples
are extracted individually for each of the 67 f(·) states and tested. The results are plotted in red in
Fig. 11a). Note the sharp spikes at epochs 60 and 120 where there is a change in the learning rate.
Hence, when training and testing distributions are similar, introspective and feed-forward learning
provides statistically similar performance across varying states of f(·).

Training, Testing, and Results in Fig. 11b, c We now consider the case when a network f(·) is
trained on distribution X and tested on X 0 from CIFAR-10C distortions. The 67 trained models of
ResNet-18 are tested on two distortions from CIFAR-10C. From the results in Fig. 5, introspective
learning achieves one of its highest performance gains in Gaussian noise, and an average increase in
motion blur after epoch 200. The results in Fig. 11 indicate that after approximately 60 epochs, the
feed-forward network has sufficiently sensed notions to reflect between classes. This is seen in the
performance gains in both the motion blur and Gaussian noise experiments.

Training of H on a separate validation set in Fig. 12b In all experiments, the introspective
network H(·) is trained on the same training set as f(·). In Fig. 12, we show the results when the
introspective network is trained on a separate portion of the dataset. We use 40, 000 images to train
f(·) and 10, 000 to train H(·) both of which are randomly chosen. We follow the training procedure
from before. The model states at multiples of 3 epochs from 1 to 200 are stored. This provides 67
states of f(·) along its training process. Each f(·) is tested on CIFAR-10 testset and the recognition
accuracy is plotted in blue in Fig. 12b). The H(·) at each iteration on the other hand is trained
with the 10, 000 images. However, it has access to the notions created from the remaining 40, 000
images and hence the results for introspection match Fig. 11a) which is reproduced in Fig. 12a). The
feed-forward results catch up to the introspective results around epoch 60. At Epoch 120, we add

26



Table 10: Performance of Proposed Introspective H(·) vs Feed-Forward f(·) Learning under Domain
Shift on Office dataset

DSLR DSLR Amazon Amazon Webcam Webcam
Architectures # # # # # #

Amazon Webcam DSLR Webcam DSLR Amazon

ResNet-18 f(·) 39.1 78 62.9 59 89.8 42.2
(%) H(·) 47 90.7 67.3 63.9 96 44

ResNet-34 f(·) 41.8 83.3 67.3 60.1 90.6 41.7
(%) H(·) 46.4 89.8 67.3 63.9 97.8 43.3

ResNet-50 f(·) - - 67.3 62 92.4 33.4
(%) H(·) - - 78.1 68.4 97.8 30.8

ResNet-101 f(·) - - 62.9 59 89.8 31.77
(%) H(·) - - 76.5 67.3 92.4 33.6

back the 10, 000 held-out images into the training set of f(·) and the results match between Fig. 12a)
and Fig. 12b).

Table 11: Performance of Proposed Introspective H(·) vs Feed-Forward f(·) Learning under Domain
Shift on VisDA Dataset

ResNet-18 Plane Cycle Bus Car Horse Knife Bike Person Plant Skate Train Truck All

f(·) (%) 27.6 7.2 38.1 54.8 43.3 4.2 72.7 8.3 28.7 22.5 87.2 2.9 38.1
H(·) (%) 39.9 27.6 19.6 79.9 73.5 2.7 46.6 6.5 43.8 30 73.6 4.3 43.58

C.6 Results on large images

C.6.1 Domain Adaptation on Office dataset

In Section 4, we claim that introspection helps a network to better classify distributions that it has
not seen while training. In Section 6, we tested on 95 new distributions in CIFAR-10C and 30
new distributions in CIFAR-10-CURE. In this section, we evaluate the efficacy of introspection
when there is a domian shift between training and testing data under changes in background, and
camera acquisition setup among others. Specifically, the robust recognition performance of H(·) is
validated on Office (42) dataset using Top-1 accuracy. The Office dataset has 3 domains - images
taken from either Webcam or DSLR, and extracted from Amazon website. Images can belong
to any of 31 classes and they are of varying sizes - upto 1920 ⇥ 1080. Hence, results on Office
shows the applicability of introspection on large resolution images. ImageNet pre-trained ResNet-
18,34,50,101 (4) architectures are used for f(·). The final layer is retrained using the source domain
while the remaining two domains are for testing. The experimental setup, the same detailed in
Section 6, is applied and the Top-1 accuracy is calculated. The results are summarized in Table 10.
In every instance, the top domain is X - the training distribution, and the bottom domain is X 0 - the
testing distribution. Note that ResNet-50 and 101 failed to train on 498 images in DSLR source
domain. The results of introspection exceed that of feed-forward learning in all but ResNet-50 when
classifying between Webcam and Amazon domains.

C.6.2 Domain Adaptation on Vis-DA dataset

Validation results on a synthetic-to-real domain shift dataset called VisDA (59) are presented in
Table 11. VisDA has 12 classes with about 152, 000 synthetic training images, and 55, 000 real vali-
dation images. The validation images are cropped images from MS-COCO. ResNet-18 architecture
pretrained on ImageNet is finetuned on the synthetically generated training images from VisDA
dataset fro 200 epochs. It is then tested on the validation images and the recognition performance is
shown in Table 11 as feed-forward f(·) results. Introspective H(·) results are obtained and shown
when f(·) is ResNet-18. There is an overall improvement of 5.48% in terms of performance accuracy.
However, the individual class accuracies leave room for improvement.

27



Figure 13: Introspective vs. Feed-Forward accuracy of ResNet-18 across training rounds for state-of-
the-art techniques in an active learning setting. The query batch size per round is 1000. The trainset
is CIFAR-10 and testset is Gaussian Noise from CIFAR-10C.

Table 12: Out-of-distribution Detection of existing techniques compared between feed-forward and
introspective networks when the data is under adversarial attack.

Methods OOD FPR Detection AUROC
Datasets (95% at TPR) Error
(Attack) # # "

Feed-Forward/Introspective

MSP (35)
Textures 99.98/23.19 45.9/7.9 30.4/96.48

iSUN 98.63/87.2 46.71/28.95 46.44/75.81
Places365 100/83.59 47.64/26.46 25.08/79
LSUN-C 99.65/87.64 43.38/26.31 43.47/78.4

ODIN (36)
Textures 99.95/2.06 47.7/3.48 37.5/99.11

iSUN 96.8/90.42 44.77/31.11 53.88/73.22
Places-365 99.97/82.5 47.12/26.86 32.69/78.88
LSUN-C 98.6/88.28 40.51/27.88 56.7/ 77.25

D Appendix: Downstream Applications

D.1 Active Learning

In Table 2, the mean recognition accuracies across the first 20 rounds of Active Learning experiments
for commonly used query strategies are shown. We plot these recognition accuracies across for all
five query strategies in Fig. 13. The x-axis is the round at which the performance is calculated. The
calculated accuracy is plotted on the y-axis. The experiment starts with a random 100 images in
round 1. Each strategy queries using either a round-wise sample trained f(·) or a round-wise sample
trained H(·). Note that at each round, the networks are retrained. This continues for 20 rounds. Both
BALD (34) and BADGE (33) applied on H(·) consistently beat its f(·) counterpart on every round.
This is because both these methods rely on extracting features from the network as compared to the
other three techniques that directly use the output logits from either H(·) or f(·). Since the network is
not well-trained at the initial stages - due to a dearth of training data - the introspective network is not
as consistent as the feed-forward network among Entropy, Least Confidence, and Margin strategies.
Nonetheless, H(·) outperforms f(·) on average across all rounds.

28



Table 13: Performance of Contrastive Features against Feed-Forward Features and other Image
Quality Estimators. Top 2 results in each row are highlighted.

Database
PSNR IW SR FSIMc Per CSV SUM Feed-Forward Introspective

HA SSIM SIM SIM MER UNIQUE UNIQUE
Outlier Ratio (OR, #)

MULTI 0.013 0.013 0.000 0.016 0.004 0.000 0.000 0.000 0.000
TID13 0.615 0.701 0.632 0.728 0.655 0.687 0.620 0.640 0.620

Root Mean Square Error (RMSE, #)
MULTI 11.320 10.049 8.686 10.794 9.898 9.895 8.212 9.258 7.943
TID13 0.652 0.688 0.619 0.687 0.643 0.647 0.630 0.615 0.596

Pearson Linear Correlation Coefficient (PLCC, ")

MULTI 0.801 0.847 0.888 0.821 0.852 0.852 0.901 0.872 0.908
-1 -1 0 -1 -1 -1 -1 -1

TID13 0.851 0.832 0.866 0.832 0.855 0.853 0.861 0.869 0.877
-1 -1 0 -1 -1 -1 0 0

Spearman’s Rank Correlation Coefficient (SRCC, ")

MULTI 0.715 0.884 0.867 0.867 0.818 0.849 0.884 0.867 0.887
-1 0 0 0 -1 -1 0 0

TID13 0.847 0.778 0.807 0.851 0.854 0.846 0.856 0.860 0.865
-1 -1 -1 -1 0 -1 0 0

Kendall’s Rank Correlation Coefficient (KRCC)

MULTI 0.532 0.702 0.678 0.677 0.624 0.655 0.698 0.679 0.702
-1 0 0 0 -1 0 0 0

TID13 0.666 0.598 0.641 0.667 0.678 0.654 0.667 0.667 0.677
0 -1 -1 0 0 0 0 0

D.2 OOD

Adversarial setting in Table 3 A datapoint z, is perturbed as z + ✏ and the goal of the detector is
to classify z 2 X or z 2 X 0. This modality is proposed by the authors in (44) and we use their setup.
PGD attack with perturbation 0.0014 is used. The same MSP and ODIN detectors from Table 3 are
utilized. On 4 OOD datasets, both MSP and ODIN show a performance gain across all three metrics
on H(·) compared to f(·). Note that the results in Table 12 is for ResNet-18 architecture for the same
f(·) and H(·) used in other experiments including Fig. 4.

Vanilla setting in Table 12 In Table 12, we show the results of out-of-distribution detection when
X is CIFAR-10 and X 0 are the four considered datasets. Note that among the four datasets, textures
and SVHN are more out-of-distribution from CIFAR-10 than the natural image datasets of Places365
and LSUN. The results of the introspective network is highest on Textures DTD dataset.

D.3 Image Quality Assessment

Related Works Multiple methods have been proposed to predict the subjective quality of images
including PSNR-HA (60), IW-SSIM (61), SR-SIM (62), FSIMc (63), PERSIM (64), CSV (65),
SUMMER (66), ULF (67), UNIQUE (39), and MS-UNIQUE (68). All these methods extract
structure related hand-crafted features from both reference and distorted images and compare them to
predict the quality. Recently, machine learning models have been proposed to directly extract features
from images (39). (39) propose UNIQUE that uses a sparse autoencoder trained on ImageNet to
extract features from both reference and distorted images. We use UNIQUE as our base network f(·).

Feed-Forward UNIQUE (39) train a sparse autoencoder with a one layer encoder and decoder
and a sigmoid non-linearity on 100, 000 patches of size 8⇥ 8⇥ 3 extracted from ImageNet testset.
The autoencoder is trained with MSE reconstruction loss. This network is our f(·). UNIQUE follows
a full reference IQA workflow which assumes access to both reference and distorted images while
estimating quality. The reference and distorted images are converted to YGCr color space and
converted to 8⇥ 8⇥ 3 patches. These patches are mean subtracted and ZCA whitened before being
passed through the trained encoder. The activations of all reference patches in the latent space are
extracted and concatenated. Activations lesser than a threshold of 0.025 are suppressed to 0. The
choice of threshold 0.025 is made based on the sparsity coefficient used during training. Similar
procedure is followed for distorted image patches. The suppressed and concatenated features of both
the reference and distorted images are compared using Spearman correlation. The resultant is the
feed-forward estimated quality of the distorted image.

29



Introspective-UNIQUE We use the architecture and the workflow from (39) which is based on
feed-forward learning to demonstrate the value of introspection. We replace the feed-forward features
with the proposed introspective features. The loss in Eq. 6 for introspection is not between classes but
between the image x and its reconstruction x̃ from the sparse autoencoder from (39). For a reference
image x, rx is derived using J(x, x̃). Hence, gradients of rx span the space of reconstruction noise.
Since the need in IQA is to characterize distortions, we obtain rx for reference images from the first
layer and project both reference and distorted images onto rx. These projections are compared using
Spearman correlation to assign a quality estimate. In this setting, H(·) is the projection operator and
Spearman correlation. Hence, Introspective-UNIQUE broadens introspection in the following ways -
1) defining introspection on generative models, 2) using gradients in the earlier layers of a network.

Statistical Significance We use the statistical significance code and experimental modality from
the Feed-Forward model (39). Specifically, we follow the procedure presented for IQA statistical
significance test regulations suggested by ITU-T Rec. P.1401. Normality tests are conducted
on the human opinion scores within the datasets and those scores that significantly deviate from
dataset-specific parameters are discarded. Hence, for the purpose of our statistical significance tests,
we assume that the given scores are a good fit for normal distribution. The predicted correlation
coefficients from the proposed Introspective-UNIQUE technique are compared individually against
all other techniques in Table 13. For the test itself, we use Fisher-Z transformation to obtain the
normally distributed statistic between the compared methods. A 0 corresponds to statistically similar
performance between Introspective-UNIQUE and the compared method, �-1 means that the compared
method is statistically inferior to Introspective-UNIQUE, and 1 indicates that the compared method
is statistically superior to Introspective-UNIQUE.

Results We report the results of the proposed introspective model in comparison with commonly
cited methods Table 13. We utilize MULTI-LIVE (MULTI) (69) and TID2013 (70) datasets for
evaluation. The performance is validated using outlier ratio (consistency), root mean square error
(accuracy), Pearson correlation (linearity), Spearman correlation (rank), and Kendall correlation
(rank). Arrows next to each metric in Table 13 indicate the desirability of a higher number (") or
a lower number(#). Two best performing methods for each metric are highlighted. The proposed
framework is always in the top two methods for both datasets in all evaluation metrics. In particular, it
achieves the best performance for all the categories except in OR and KRCC in TID2013 dataset. The
feed-forward model does not achieve the best performance for any of the metrics in MULTI dataset.
However, the same network using introspective features significantly improves the performance and
achieves the best performance on all metrics. For instance, the feed-forward model is the third best
performing method in MULTI dataset in terms of RMSE, PLCC, SRCC, and KRCC. However, the
introspective features improve the performance for those metrics by 1.315, 0.036, 0.020, and 0.023,
respectively and achieve the best performance for all metrics. This further reinforces the plug-in
capability of the proposed introspective inference. Additionally, against no technique is our method
not statistically significant in at least 1 metric.

D.4 Uncertainty

Table 14: Uncertainty quantification algorithms measured against Introspective Resnet-18. Accuracy
is recognition accuracy.

Modality Techniques CIFAR-10-Rotations

Log-likelihood Brier Score Accuracy
(") (#) (")

Ensemble Bootstrap (71) �2.03 0.71 0.47

Bayesian MC Dropout (72) �2.81 0.85 0.44
Bayesian BBP without lrt (73) �1.87 0.74 0.39
Bayesian BBP with lrt (73) �2.33 0.78 0.42

Deterministic TENT (74) �15.54 1.36 0.30
Deterministic Introspective Resnet-18 �2.97 0.89 0.45

Existing methods of uncertainty quantification are compared against an Introspective Resnet-18
in Table. 14. Column 1 denotes the modality of the method. A deterministic method like the
proposed introspection and TENT (74) require only a single pass through the network. Bayesian

30



networks require multiple passes. Ensemble techniques require multiple networks. We use two
uncertainty measures, log-likelihood and brier score, to measure uncertainty. A detailed review of
these measures is presented in (71). For all methods, we use the same base Resnet-18 trained on the
undistorted images from Section 6 as our architecture. A rotated version of CIFAR-10 testset is used
to determine uncertainty. For every image there are 16 rotated versions of the same image. Hence,
there are 160, 000 images in the testset. The results are presented in Table 14. The ensemble method
outperforms all other techniques both interms of accuracy as well as uncertainty. However, the
proposed introspective technique performs comparably to bayesian techniques among the uncertainty
metrics while beating them in recognition accuracy. It outperforms TENT among both recognition
accuracy and uncertainty metrics.

E Appendix: Reproducibility Statement

The paper uses publicly available datasets to showcase the results. Our introspective learn-
ing framework is built on top of existing deep learning apparatus - including ResNet
architectures (4) (inbuilt PyTorch architectures), CIFAR-10C data (27) (source code at
https://zenodo.org/record/2535967#.YLpTF-1KhhE), calibration ECE and MCE met-
rics (37) (source code at https://github.com/markus93/NN_calibration), out-of-distribution
detection metrics, and codes for existing methods were adapted from (44) (source code at
https://github.com/jfc43/robust-ood-detection), active learning methods and their codes
were adapted from (33) (source code at https://github.com/JordanAsh/badge), Grad-CAM
was adapted from (6) (code used is at https://github.com/adityac94/Grad_CAM_plus_plus).
Our own codes will be released upon acceptance. The exact training hyperparameters for f(·) and
H(·), and all considered H(·) architectures are shown in Appendix C.1. Extensive ablation studies
on H(·) are shown in C.4.

31


	Introduction
	Background
	Introspective questions, features, and network
	Feed-forward Features

	Introspective Features
	Sparsity and Robustness of Introspective Features
	Efficient Extraction of Introspective Features

	Introspective Network
	Related Works for Considered Applications
	Experiments
	Discussion and Conclusion
	Appendix : Introspection, Reasoning, and Explanations
	Appendix : Proofs
	Proof for Lemma 1
	Proof for Theorem 1
	Tradeoff in Eq. 8
	Fisher Vector Interpretation

	Appendix : Additional Results on Recognition and Calibration
	Structure of H() and training details
	Introspective Accuracy Gain and Calibration Error Studies
	Level-wise Recognition on CIFAR-10C
	Distortion-wise and Level-wise Recognition on CIFAR-10C
	Introspection as a plug-in on top of existing techniques
	Expected Calibration Error (ECE)

	SimCLR and Introspection
	Ablation Studies
	Effect of Loss functions
	Effect of H()

	Introspective accuracy across training epochs
	Results on large images
	Domain Adaptation on Office dataset
	Domain Adaptation on Vis-DA dataset


	Appendix: Downstream Applications
	Active Learning
	OOD
	Image Quality Assessment
	Uncertainty

	Appendix: Reproducibility Statement

