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Abstract

In this paper, we advocate for two stages in a neural network’s decision making
process. The first is the existing feed-forward inference framework where patterns
in given data are sensed and associated with previously learned patterns. The
second stage is a slower reflection stage where we ask the network to reflect on its
feed-forward decision by considering and evaluating all available choices. Together,
we term the two stages as introspective learning. We use gradients of trained neural
networks as a measurement of this reflection. A simple three-layered Multi Layer
Perceptron is used as the second stage that predicts based on all extracted gradient
features. We perceptually visualize the post-hoc explanations from both stages to
provide a visual grounding to introspection. For the application of recognition,
we show that an introspective network is 4% more robust and 42% less prone to
calibration errors when generalizing to noisy data. We also illustrate the value
of introspective networks in downstream tasks that require generalizability and
calibration including active learning, out-of-distribution detection, and uncertainty
estimation. Finally, we ground the proposed machine introspection to human
introspection for the application of image quality assessment.

1 Introduction

Introspection is the act of looking into one’s own mind (1). Classical introspection has its roots in
philosophy. Locke (2), the founder of empiricism, held that all human ideas come from experience.
This experience is a result of both sensation and reflection. By sensation, one receives passive
information using the sensory systems of sight, sound, and touch. Reflection is the objective
observation of our own mental operations. Consider the toy example in Fig. 1. Given an image
x and an objective of recognizing x, we first sense some key features in the bird. These features
include the color and shape of the body, feathers and beak. The features are chosen based on our
existing notion of what is required to contrast between birds. We then associate these features with
our existing knowledge of birds and make a coarse decision that x is a spoonbill. This is the sensing
stage. Reflection involves questioning the coarse decision and asking why x cannot be a Flamingo,
Crane, Pig or any other class. If the answers are satisfactory, then an introspective decision that x is
indeed a spoonbill is made. The observation of this reflection is introspection.

In this paper, we adopt this differentiation between sensing and reflection to advocate for two-
stage neural network architectures for perception-based applications. Specifically, we consider
classification. The sensing stage is any existing feed-forward neural network including VGG (3),
ResNet (4), and DenseNet (5) architectures among others. These networks sense patterns in x and
make a coarse feed-forward decision, ŷ. The second stage examines this decision by reflecting on the
introspective question ‘Why ŷ, rather than yI?’ where yI is any introspective class that the sensing
network has learned. Note that there is no external intervention or new information that informs
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Figure 1: Example of the introspection process. The visual post-hoc explanations are from Grad-
CAM (6) framework using the proposed features. Additional heatmaps along with the generation
process is provided in Appendix A. The written text is for illustrative purpose only.

the reflection stage. Hence, the introspective features are post-hoc in the sense that they are not
causal answers to the introspective questions but rather, are the network’s notion of the answers. This
is inline with the original definition of introspection which is that introspection is the observation
of existing knowledge reflected upon by the network. These post-hoc introspective features are
visualized using Grad-CAM (6) in the reflection stage of Fig. 1.

The challenge that we address in this paper is in defining the reflection stage in terms of neural
networks. The authors in (7), utilize the same intuition to construct a reflective stage composed
of explanations. However, when the train and test distributions are dissimilar, the predictions and
hence the explanations are incorrect. We overcome this by considering alternative questions for the
explanation. Consider any dataset with N classes. A network trained on this dataset will have N
possible introspective questions and answers, similar to the ones shown in Fig. 1. Our goal is to
implicitly extract features that answer all N introspective questions without explicitly training on
said features. This involves 1) implicitly creating introspective questions, 2) answering the posed
questions to obtain introspective features, and 3) predicting the output ỹ from the introspective
features. We show that gradients w.r.t network parameters store notions about the difference between
classes and can be used as introspective features. We use an MLP termed H(·), as our introspective
network that combines all features to predict ỹ. A limitation of the proposed method is the size of N
which is discussed in Sections 3.

We show that the introspective prediction ỹ is robust to noise. An intuition for this robustness is that
not only should the network sense the feed-forward patterns, it must also satisfy H(·)’s N notions of
difference between classes. Hence, during inference, we extract N additional features that inform the
introspective prediction ỹ. The main contributions of this paper are the following:

1. We define implicit introspective questions that allow for reflection in a neural network. This
reflection is measured using loss gradients w.r.t. network parameters across all possible
introspective classes in Section 3.

2. We provide a methodology to efficiently extract introspective loss gradients and combine
them using a second H(·) MLP network in Section 4.

3. We illustrate H(·)’s robust and calibrated nature in Section 6. We validate the effectiveness
of this generalization in downstream applications like active learning, out-of-distribution
detection, uncertainty estimation, and Image Quality Assessment in Appendix D.

2 Background
2.1 Introspective questions, features, and network
Introspective questions The choice of ‘Why ŷ, rather than yI ’? is not arbitrary. The authors
in (8) describe three questions that complete post-hoc explanations - correlation, counterfactual,
and contrastive questions. These questions together allow for an alternate form of reasoning within
neural networks called abductive reasoning. The sensing network predicts based on correlations.
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Since, we do not intervene within the data during the reflection stage, counterfactual questions cannot
be answered. Hence, we use contrastive questions as our introspective questions. Further details
regarding abductive reasoning and our choice of question is provided in Appendix A.

Gradients as Introspective Features The gradients from a base network have been utilized
in diverse applications including post-hoc visual explanations (6; 9; 10), adversarial attacks (11),
uncertainty estimation (12), anomaly detection (13; 14), and saliency detection (15) among others.
Fisher Vectors use gradients of generative models to characterize the change that data creates within
features (16). (17) uses gradients of parameters to characterize the change in manifolds when new
data is introduced to an already trained manifold. Our framework uses the intuition from (17) to
characterize changes for a datapoint that is perceived as new, due to it being assigned an introspective
class yI , that is different from its predicted class ŷ. In (18), the authors view the network as a
graph and intervene within it to obtain holographic features. Our introspective features are also
holographic in the sense that they characterize the change between ŷ and yI without changing the
network. However, our features do not require interventions that become expensive with scale.

Two-stage networks The usage of two-stage approaches to inference in neural networks is not new.
In (7), the authors extract Grad-CAM explanations from feed-forward networks to train a reflective

stage. However, our framework involves reflecting on all contrastive questions rather than correlation
questions. The authors in (19) propose SimCLR, a self-supervised framework where multiple data
augmentation strategies are used to contrastively train an overhead MLP. The MLP provides features
which are stored as a dictionary. This feature dictionary is used as a look-up table for new test data.
In this paper, we use gradients against all classes as features and an MLP H(·), to predict on these
features. (20) and (21) consider all classes in a conditional maximum likelihood estimate on test data
to retrain the model. These works differ from ours in our usage of the base sensing network. (22)
uses gradients and activations together as features and note that the validity of gradients as features is
in pretrained base networks rather than additional parameters from the two-stage networks. This adds
to our argument of using two-stage networks but with loss gradients against introspective classes.

2.2 Feed-forward Features
For the application of recognition, a sensing neural network f(·) is trained on a distribution X to
classify data into N classes. The network learns notions about data samples when classifying them.
These notions are stored as network weights W . Given a data sample x, f(x) is a projection on the
network weights. Let yfeat be the logits projected before the final fully connected layer. In the final
fully connected layer fL(·), the parameters WL can be considered as N filters each of dimensionality
dL�1 ⇥ 1. The output of the network ŷ is given by,

yfeat = fL�1(x), 8y 2 <N⇥1,

ŷ = argmax(WT
L yfeat), 8WL 2 <dL�1⇥N , fL�1(x) 2 <dL�1⇥1.

(1)

Here ŷ is the feed-forward inference and yfeat are the feed-forward features. In this paper, we
compare our introspective features against feed-forward features. Since introspection occurs after
f(·), all our results are plug-in on top of existing f(·).

3 Introspective Features
In this section, we describe introspective features and implicitly extract them using the sensing
network. We then analyze them for sparsity, efficiency, and robustness.
Definition 3.1 (Introspection). Given a network f(·), a datum x, and the network’s prediction

f(x) = ŷ, introspection in f(·) is the measurement of change induced in the network parameters

when a label yI is introduced as the label for x. This measurement is the gradient induced by a loss

function J(yI , ŷ), w.r.t. the network parameters.

This definition for introspection is in accordance with the sensing and reflection stages in Fig. 1. The
network’s prediction ŷ is the output of the sensing stage and the change induced by an introspective
label, yI , is the network reflecting on its decision ŷ as opposed to yI . Note that introspection can
occur when ŷ is contrasted against any trained label yI , I 2 [1, N ]. For instance, in Fig. 1, the
network is asked to reflect on its decision of spoonbill by considering other yI that x can take -
flamingo, crane, or pig. These results are extracted from ImageNet (23) and hence, I 2 [1, 1000].
Additional visual introspective saliency maps similar to Fig. 1 are provided in Appendix A.
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Figure 2: For the input image on the left, the rWLJ(yI , 5) are shown on the right. Each image is a
visualization of the 50⇥ 10 gradient matrix. All images are sparse except in the prediction row 5 and
introspective question row i.

Reflection is the empirical risk that the network has predicted x as ŷ instead of yI . Given the network
parameters, this risk is measured through some loss function J(yI , ŷ). yI is a one-hot vector with
a one at the Ith location. The change that is induced in the network is given by the gradient of
J(yI , ŷ) w.r.t. the network parameters. For an N -class classifier, there are N possible introspective
classes and hence N possible gradients each given by, rI = rWJ(yI , ŷ), I 2 [1, N ]. Here, rI are
the introspective features. Since we introspect based on classes, we measure the change in network
weights in the final fully connected layer. Therefore, the introspective features are given by,

rI = rWLJ(yI , ŷ), I 2 [1, N ], rI 2 <dL�1⇥N (2)

where WL are the network weights for the final fully connected layer. Note that the final fully
connected layer from Eq. 1 has a dimensionality of <dL�1⇥N . For every x, Eq. 2 is applied N times
to obtain N separate rI . We first analyze these features.

3.1 Sparsity and Robustness of Introspective Features

Consider rI in Eq. 2. Each rI is a dL�1 ⇥N matrix. Expressing gradients in rI separately w.r.t. the
different filters in WL, we have a row-wise concatenated set of gradients given by,

rI = [rWL,1J(yI , ŷ);rWL,2J(yI , ŷ);rWL,3J(yI , ŷ) . . .rWL,NJ(yI , ŷ)] (3)

where each WL,j 2 <dL�1⇥1 and rI 2 <dL�1⇥N2

. For all data x 2 X the following lemma holds:
Lemma 1. Given a unique ordered pair (x, ŷ) and a well-trained network f(·), the gradients for a

loss function J(yI , ŷ) w.r.t. classes are pairwise orthogonal under the second-order Taylor series

approximation, each class paired with the predicted class.

Proof. Provided in Appendix B.1.

Sparsity Lemma 1 states that backpropagating class yI does not provide any information to WL,j , j 6=
I and hence there is no need to use rWL,jJ(yj , ŷ), j 6= i as features when considering yI . The proof
is provided in Appendix B.1. rWJ(yI , ŷ) for an introspective class reduces to,

rWJ(yI , ŷ) = �rW yI +rW log
✓
1 +

yŷ
2

◆
. (4)

where yŷ is the logit associated with the predicted class. We demonstrate the sparsity of Eq. 4 in
Fig. 2. A two-layer CNN is trained on MNIST (24) dataset with a test accuracy exceeding 99%. This
satisfies the condition for Lemma 1 that f(·) is well-trained. The final fully connected layer in this
network has a size of 50 ⇥ 10. We provide an input image x of number 5 to a trained network as
shown in Fig. 2. The network correctly identifies the image as a 5. We then backpropagate the
introspective class 0 using J(5, 0) with ŷ = 5 and yI = 0. This answers the question ‘Why 5, rather

4



Figure 3: Introspective Learning process. Once rx for all images in the dataset are generated, an
introspective network H(·) is trained. During testing, the noisy image is passed through sensing
network f(·), extraction module to generate rx and finally through the introspective network H(·).

than 0?’. The gradient features in the final fully connected layer are the same dimensions as the
final fully connected layer, 50⇥ 10 or more generally O(dL�1 ⇥N). This matrix is displayed as a
normalized image in Fig. 2. Yellow scales to 1 and blue is �1 while green is 0. It can be seen that
the only values present in the matrix are negative at WL,0, in blue, and positive in WL,5, in yellow.
This validates Eq. 5 that for a fully-trained network the only values, and hence the only information,
required from WL for I = 0 is rWL,0 . We show the matrix rWL when I = 0, 1, 2, 4, 5, 6. The
difference among all matrices is the location of the negative values that exist at rWL,I for different
values of I .

Robustness Eq. 4 motivates the generalizable nature of introspective features. Consider some noise
added to x. To change the prediction ŷ, the noise must sufficiently decrease yŷ from Eq. 4 and
increase the closest logit value, yI , to change the prediction. Hence, it needs to change one orthogonal
relationship. However, by constraining our final prediction ỹ on N such features, the noise needs
to change the orthogonal relationship between N pairwise logits. This motivates an introspective
network H(·) that is conditioned on all N pairwise logits.

3.2 Efficient Extraction of Introspective Features

From Lemma 1, the introspective feature is only dependent on the predicted class ŷ and the introspec-
tive class yI making their span orthogonal to all other gradients. Hence,

rI = rWL,IJ(yI , ŷ), I 2 [1, N ], rI 2 <dL�1⇥1 (5)

Building on Lemma 1, we present the following theorem.
Theorem 1. Given a unique ordered pair (x, ŷ) and a well-trained network f(·), the gradients

for a loss function J(yI , ŷ), I 2 [1, N ] w.r.t. classes when yI are N orthogonal one-hot vectors is

equivalent to when yI is a vector of all ones, under the second-order Taylor series approximation.

Proof. Provided in Appendix B.2.

The proof follows Lemma 1. Theorem 1 states that backpropagating a vector of all ones (1N ) is
equivalent to backpropagating N one-hot vectors with ones at orthogonal positions. This reduces the
time complexity from O(N) to a constant O(1) since we only require a single pass to backpropagate
1N . Hence, our introspective feature is given by,

rx = rWLJ(1N , ŷ), rx 2 <dL�1⇥N , 1N = 1N⇥1 (6)

Note the LHS is now rx instead of rI from Eq. 5. The final introspective feature is a matrix of the
same size as WL extracted in O(1) time with a space complexity of O(dL�1 ⇥N). rx is vectorized
and scaled between [�1, 1] before being used in Sections 4 and 6 as introspective features. This
procedure is illustrated in Fig. 3
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4 Introspective Network
Once rx are extracted using Eq. 6, the introspective label ỹ from Fig. 3 is given by ỹ = H(rx)
where H(·) is an MLP. In this section, we analyze H(·). From Fig. 3, f(·) is any existing trained
network used to obtain introspective features rx. It is trained to predict the ground truth y given any
x. Based on the assumption that H(rx) = E(y|f(x)) and hence expectation of y �H(rx) is 0, the
loss function can be decomposed as,

E[(f(x)� y)2] = E[(f(x)�H(rx))
2)] + E[(H(rx)� y)2)]. (7)

Note that since the goal is to predict y given x, H(rx) = E(y|f(x)) is a fair assumption to make.
Substituting for f(x) in Eq. 7, and using variance decomposition of y onto f(x), we have,

E[(ŷ � y)2] = Var(ŷ)� Var(H(rx)) + E[(H(rx)� y)2]. (8)

This decomposition is adopted from structured calibration techniques. A full derivation is presented
in (25). The first term Var(ŷ) is the the variance in the prediction from f(·). This term is the precision
of f(·) and is low for a well trained network. The third term is the MSE function between the
introspective network H(·) and the ground truth. It is minimized while training the H(·) network.
The second term is the variance of the network H(·), given features rx. Note that minimizing
Eq. 8 can occur by maximizing Var(H(rx)). We use a fisher vector interpretation from (17) to
analyze Var(H(rx)). If H(·) is a linear layer with parameters WH, the Var(H(rx)) term reduces to
WT

H
WH⇥Var(rx) / Tr(rTx⌃�1rx) where ⌃ is the covariance matrix. ⌃ is a gaussian approximation

for the shape of the manifold. Generalizing it to a higher dimensional manifold and replacing ⌃ with
F , we have,

Var(H(rx)) = Tr(rTx F
�1rx), (9)

Var(H(rx)) =
NX

j=1

rTj F
�1rj . (10)

The RHS of Eq. 10 is a sum of fisher vectors taken across all possible labels.

When do introspective networks provide robustness? We use Eq. 10 to analyze introspective
learning usage. Specifically, we consider two cases: When input x is taken from the training
distribution X , and when it is taken from a noisy distribution X 0.

1. When a sample x 2 X is provided to a network f(·) trained on X , all rj , j 6= ŷ in Eq. 10
tend to 0. The RHS reduces to rTŷ F

�1rŷ. rŷ is a function of f(x) only and hence adds no
new information to the framework. The results of H(·) remain the same as f(·). In other
words, given a trained ResNet-18 on CIFAR-10, the results of feed-forward learning will be
the same as introspective learning on CIFAR-10 testset.

2. When a new sample x0 62 X is provided to a network f(·) trained on X , a fisher vector
based projection across labels is more descriptive compared to a feed-forward approach.
The N gradients in Eq. 10 add new information based on how the network needs to change
the manifold shape F to accommodate the introspective gradients. Hence, given a distorted
version of CIFAR-10 testset, our proposed introspective learning generalizes with a higher
accuracy while providing calibrated outputs from Eq. 8. We empirically illustrate these
claims in Section 6. We motivate other applications including active learning, Out-Of-
Distribution (OOD) detection, uncertainty estimation, and Image Quality Assessment (IQA)
that are dependent on generalizability and calibration in Section 5.

5 Related Works for Considered Applications

Augmentations and Robustness The considered rx features from Eq. 6 can be considered as
feature augmentations. Augmentations, including SimCLR (19), Augmix (26), adversarial augmen-
tation (27), and noise augmentations (28) have shown to increase robustness of neural networks.
We use introspection on top of non-augmented and augmented (Section 6) networks and show that
our proposed two-stage framework increases the robustness to create generalizable and calibrated
inferences which aids active learning and out-of-distribution (OOD) detection. The same framework
that robustly recognizes images despite noise can also detect noise to make an out-of-distribution
detection.
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Confidence and Uncertainty The existence of adversarial images (11) heuristically decouples
the probability of neural network predictions from confidence and uncertainty. A number of works
including (29) and (30) use bayesian formulation to provide uncertainty. However, in downstream
tasks like active learning and Out-Of-Distribution (OOD) detection applications, existing state-of-the-
art methods utilize softmax probability as confidences. This is because of the simplicity and ease of
numerical computation of softmax. In active learning, uncertainty is quantified by the entropy (31),
least confidence (31), or maximum margin (32) of predicted logits, or through extracted features in
BADGE (33), and BALD (34). In OOD detection, (35) proposes Maximum Softmax Probability
(MSP) as a baseline method by creating a threshold function on the softmax output. (36) proposes
ODIN and improves on MSP by calibrating the network’s softmax probability using temperature
scaling (37). In this paper, we show that the proposed introspective features are better calibrated than
their feed-forward counterparts. Hence existing methods in active learning and OOD detection have a
superior performance when using H(·) to make predictions.
Human Introspection We are unaware of any direct application that tests visual human introspec-
tion. In its absence, we choose the application of Full-Reference Image Quality Assessment (FR-IQA)
to connect machine vision with human vision. The goal in FR-IQA is to objectively estimate the
subjective quality of an image. Humans are shown a pristine image along with a distorted image
and asked to score the quality of the distorted image (38). This requires reflection on the part of
the observers. We take an existing algorithm (39) and show that introspecting on top of this IQA
technique brings its assessed scores closer to human scores.

6 Experiments

Across all applications except in Ablation studies in Table 9, we use a 3-layered MLP with sigmoid
activations as H(·). The structure is presented in Appendix C.1. We first define robustness and
calibration in the context of this paper.
Robustness In this paper, without loss of consistency with related works, we say that the network
trained on distribution X is robust if it correctly predicts on a shifted distribution X 0. The difference
in data distributions can be because of data acquisition setups, environmental conditions, distortions
among others. We use CIFAR-10 for X and two distortion datasets - CIFAR-10C (27) and CIFAR-
10-CURE (40) as X 0. Generalization is measured through performance accuracy.
Calibration Given a data distribution x 2 X , belonging to any of y 2 [1, N ], a neural network
provides two outputs - the decision ŷ and the confidence associated with ŷ, given by p̂. Let p be the
true probability empirically estimated as p = p̂i, 8i 2 [1,M ]. Then calibration is given by (37),

P(y = ŷ|p = p̂) = p (11)

Calibration measures the difference between the confidence levels and the prediction accuracy. To
showcase calibration we use the metric of Expected Calibration Error (ECE) as described in (37).
The network predictions are placed in 10 separate bins based on their prediction confidences. Ideally,
the accuracy equals the mid-point of confidence bins. The difference between accuracy and mid-point
of bins, across bins is measured by ECE. Lower the ECE, better calibrated is the network.
Datasets and networks CIFAR-10C consists of 950, 000 images whose purpose is to evaluate the
robustness of networks trained on original CIFAR-10 trainset. CIFAR-10C perturbs the CIFAR-10
testset using 19 distortions in 5 progressive levels. Hence, there are 95 separate X 0 distributions to
test on with each X 0 consisting of 10000 images. Note that we are not using any distortions or data
from CIFAR-10C as a validation split during training. The authors in (40) provide realistic distortions
that they used to benchmark real-world recognition applications including Amazon Rekognition and
Microsoft Azure. We use these distortions to perturb the test set of CIFAR-10. There are 6 distortions,
each with 5 progressive levels. Of these 6 distortions - Salt and Pepper, Over Exposure, and Under
Exposure noises are new compared to CIFAR-10C. We train four ResNet architectures - ResNet-18,
34, 50, and 101 (4). All four ResNets are evaluated as sensing networks f(·). The training procedure
and hyperparameters are presented in Appendix C.1.
Testing on CIFAR-10 testset The trained networks are tested on CIFAR-10 testset with accuracies
91.02%, 93.01%, 93.09%, and 93.11% respectively. Next we extract rx on all training and testing
images in CIFAR-10. H(·) is trained using rx from the trainset using the same procedure as f(·).
When tested on rx of the testset, the accuracy for ResNets-18,34,50,101 is 90.93%, 92.92%, 93.17%,
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Figure 4: Scatter plot with performance accuracy vs expected calibration error. Ideally, networks are
in top left. Introspectivity increases performance accuracy while decreasing calibration error.

Figure 5: (a) ResNet-18 on CIFAR-10C. (b) Expected calibration error across 5 challenge levels in
brightness and saturate distortions. Note that both these distortions do not affect the performance of
the network and their feed-forward accuracy is high. The improvement in accuracy is statistically
insignificant. However, introspection decreases the ECE across challenge levels.

and 93.03%. Note that this is similar to the feed-forward results. The average ECE of all feed-
forward and introspective networks is 0.04. Hence, when the test distribution is the same as training
distribution there is no change in performance.
Testing on CIFAR-10C and CIFAR-10-CURE The results of all networks averaged across
distortions in both the datasets are shown in Fig. 4. Note that in each case, there is a shift leftward
and upward indicating that the performance improves while the calibration error decreases. In the
larger CIFAR-10C dataset, the introspective ResNet-18 performs similar to ResNets-34 and 50 in
terms of accuracy while beating them both in calibration. A more fine-grained analysis is shown in
Fig. 5 for ResNet-18. The blue bars in Fig. 5a) represent the feed-forward accuracy. The red bars are
the introspective accuracy gains over the feed-forward accuracy. Among 7 of the 19 distortions, the
accuracy gains are over 5%. In Appendix C.2.1, we see that the gains are higher when the distortions
are higher. Introspection performs well on blur-like distortions while struggling with distortions
that disrupt the lower level characteristics of the image like brightness, contrast, and saturate. This
can be attributed to the fact that rx are derived from the last layer of f(·) and are missing low-level
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statistics that are filtered out by network in the initial layers. However, in Fig. 5b), we show ECE
for brightness and saturate distortions across all 5 distortion levels - higher the level, more is the
distortion affecting X 0. It can be seen that while the ECE for feed-forward networks increases across
levels, the ECE for introspective networks decrease. Hence, even when there are no accuracy gains to
be had, introspection helps in calibration.
Plug-in results of Introspection Note that there are a number of techniques
proposed to alleviate a neural network’s robustness challenges against distortions.

Table 1: Introspecting on top of existing
robustness techniques.

METHODS ACCURACY

RESNET-18 FEED-FORWARD 67.89%
INTROSPECTIVE 71.4%

DENOISING FEED-FORWARD 65.02%
INTROSPECTIVE 68.86%

ADVERSARIAL TRAIN (27) FEED-FORWARD 68.02%
INTROSPECTIVE 70.86%

SIMCLR (19) FEED-FORWARD 70.28%
INTROSPECTIVE 73.32%

AUGMENT NOISE (28) FEED-FORWARD 76.86%
INTROSPECTIVE 77.98%

AUGMIX (26) FEED-FORWARD 89.85%
INTROSPECTIVE 89.89%

The authors in (28) show that finetuning VGG-16 us-
ing blurry training images increases the performance
of classification under blurry conditions. (41) propose
utilizing distorted virtual images to boost performance
accuracy. The authors in (27) use adversarial images
to augment the training data. All these works require
knowledge of distortion or large amounts of new data
during training. Our proposed method can infer intro-
spectively on top of any existing f(·) enhanced using
existing methods. In Table 1, we show results of intro-
spection as a plug-in approach on top of existing tech-
niques. In all methods, introspection outperforms its
feed-forward counterpart. While introspecting on top of
Augmix, trained on WideResNet (26) provides insignif-
icant recognition accuracy gains, introspection reduces
ECE of Augmix network by 43.33%. In Appendix C.2,
we show performance on top of (28) and (27) of 6.8%

on Level 5 distortions. In Appendix C.3, we analyze SimCLR and show that introspecting on the
self supervised features increases its CIFAR-10C performance by about 6% on ResNet-101. A
number of ablation studies including analysis of structure of H(·), loss functions, distortion levels on
performance accuracy and ECE are shown in Appendix C.4. Moreover, we examine introspection
when X 0 is domain shifted data from Office (42) dataset in Appendix C.6.1.
Downstream Applications We consider four downstream applications: Active Learning, Out-of-
Distribution detection, Uncertainty estimation, and Image Quality Assessment (IQA) to demonstrate
the validity of introspection. Similar to recognition experiments, in all considered applications there
is a distributional difference between train and testset. We show results that conform to Eq. 10. We
show statistically significant introspective IQA results in Appendix D.3 and Table 13, and uncertainty
estimation results in Appendix D.4.

Active Learning The goal in active learning is to decrease the test error in a model by choosing
the best samples from a large pool of unlabeled data to annotate and train the model. A number of
strategies are proposed to query the best samples. A full review of active learning and query strategies
are given in (43). Existing active learning strategies define best samples to annotate as those samples
that the model is either most uncertain about. This uncertainty is quantified by either entropy (31),
least confidence (31), maximum margin (32), or through extracted features in BADGE (33), and
BALD (34). We show the results of ResNet-18 and 34 architecture in Table 2. Implementations of all
query strategies in Table 2 are taken from the codebase of (33) and reported as Feed-Forward results.
Note that the query strategies act on f(·) to sample images at every round. Instead of sampling on
f(·), all query strategies sample using H(·) in the Introspective results. The training, testing, and all
strategies are the same as Feed-Forward from (33). Doing so we find similar results as recognition -
on the original testset the active learning results are the same while there is a gain across strategies on
Gaussian noise testset from CIFAR-10C. Note that the results shown are averaged over 20 rounds
with a query batch size of a 1000 and initial random choice - which were kept same for f(·) and H(·)
- of 100. Further details, plots, and variances are shown in Appendix D.1.
Out-of-distribution Detection The goal of Out-Of-Distribution (OOD) detection is to detect those
samples that are drawn from a distribution X 0 6= X given a fully trained f(·). A number of techniques
are proposed to detect out-of-distribution samples. The authors in (35) propose Maximum Softmax
Probability (MSP) as a baseline method by creating a threshold function on the softmax output. The
authors in (36) propose ODIN and improved on MSP by calibrating the network’s softmax probability
using temperature scaling (37). In this paper, we illustrate that applying existing methods when
applied on H(·), their detection performance is greater than if they were applied on the feed-forward
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Table 2: Recognition accuracy of Active Learn-
ing strategies.

Methods Architecture Original Testset Gaussian Noise

R-18 R-34 R-18 R-34

Entropy (31) Feed-Forward 0.365 0.358 0.244 0.249
Introspective 0.365 0.359 0.258 0.255

Least (31) Feed-Forward 0.371 0.359 0.252 0.25
Introspective 0.373 0.362 0.264 0.26

Margin (32) Feed-Forward 0.38 0.369 0.251 0.253
Introspective 0.381 0.373 0.265 0.263

BALD (34) Feed-Forward 0.393 0.368 0.26 0.253
Introspective 0.396 0.375 0.273 0.263

BADGE (33) Feed-Forward 0.388 0.37 0.25 0.247
Introspective 0.39 0.37 0.265 0.260

Table 3: Out-of-distribution Detection of exist-
ing techniques compared between feed-forward
and introspective networks.

Methods OOD FPR Detection AUROC
Datasets (95% at TPR) Error

# # "

Feed-Forward/Introspective

MSP (35)
Textures 58.74/19.66 18.04/7.49 88.56/97.79
SVHN 61.41/51.27 16.92/15.67 89.39/91.2
Places365 58.04/54.43 17.01/15.07 89.39/91.3
LSUN-C 27.95/27.5 9.42/10.29 96.07/95.73

ODIN (36)
Textures 52.3/9.31 22.17/6.12 84.91/91.9
SVHN 66.81/48.52 23.51/15.86 83.52/91.07
Places365 42.21/51.87 16.23/15.71 91.06/90.95
LSUN-C 6.59/23.66 5.54/10.2 98.74/ 95.87

f(·). The code for OOD detection techniques are taken from (44) along with all hyperparameters
and the training regimen for their reported DenseNet (5) architecture. The temperature scaling
coefficient for ODIN is set to 1000. Note that we do not use temperature scaling on H, to illustrate
the effectiveness of our method. We use three established metrics to evaluate OOD detection - False
Positive Rate (FPR) at 95% True Positive Rate (TPR), Detection error, and AUROC. Ideally, AUROC
values for a given method is high while the other two metrics are low. We use CIFAR-10 as our
in-distribution dataset and use four OOD datasets - SVHN (45), Describable Textures Dataset (46),
Places 365 (47), and LSUN (48). The results are presented in Table 3. Note that among the four
datasets, textures and SVHN are more out-of-distribution from CIFAR-10 than the natural image
datasets of Places365 and LSUN. The results of the introspective network is highest on Textures DTD
dataset and gets progressively worse among the natural image datasets. Further analysis on networks
and methods, along with their training regimen is provided in Appendix D.2.

7 Discussion and Conclusion
Limitations and future work The paper illustrates the benefits of utilizing the change in model
parameters as a measure of model introspection. In Section 3.2, we accelerate the time complexity to
O(1). However, the space complexity is still dependent on N . The paper uses an MLP for H(·) and
constructs rx by vectorizing extracted gradients. For datasets with large N , usage of rx as a vector
is prohibitive. Hence, a required future work is to provide a method of combining all N gradients
without vectorization. Also, our implementation uses serial gradient extraction across images. This is
non-ideal since the available GPU resources are not fully utilized. A parallel implementation with
per-sample gradient extraction (49) is a pertinent acceleration technique for the future.

Broader and Societal Impact In his seminal book in 2011 (50), Daniel Kahneman outlines two
systems of thought and reasoning in humans - a fast and instinctive ‘system 1’ that heuristically
associates sensed patterns followed by a more deliberate and slower ‘system 2’ that examines and
analyzes the data in context of intrinsic biases. Our framework derives its intuition based on these
two systems of reasoning. The introspective explanations can serve to examine the intrinsic notions
and biases that a network uses to categorize data. Note that the network H(·) obtains its introspective
answers through f(·). Hence, similar to the ‘system 2’ reasoning in humans, any internal bias present
in f(·) only gets strengthened in H(·) through confirmation bias. The framework will benefit from
a human intervention between f(·) and H(·) in sensitive applications. One way would be to ask
counterfactual questions by providing an established counterfactual and asking the network to reflect
based on that. While the introspective framework will remain the same, the features will change.

Conclusion We introduce the concept of introspection in neural networks as two separate stages
in a network’s decision process - the first is making a quick assessment based on sensed patterns in
data and the second is reflecting on that assessment based on all possible decisions that could have
been taken and making a final decision based on this reflection. We show that doing so increases the
generalization performance of neural networks as measured against distributionally shifted data while
reducing the calibration error of neural networks. Existing state-of-the-art methods in downstream
tasks like active learning and out-of-distribution detection perform better in an introspective setting
compared to a feed-forward setting especially when the distributional difference is high.
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