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Abstract

A common lens to theoretically study neural net architectures is to analyze the func-
tions they can approximate. However, the constructions from approximation theory
often have unrealistic aspects, for example, reliance on infinite precision to memorize
target function values. To address this issue, we propose a formal definition of statisti-
cally meaningful approximation which requires the approximating network to exhibit
good statistical learnability. We present case studies on statistically meaningful ap-
proximation for two classes of functions: boolean circuits and Turing machines. We
show that overparameterized feedforward neural nets can statistically meaningfully
approximate boolean circuits with sample complexity depending only polynomially
on the circuit size, not the size of the approximating network. In addition, we show
that transformers can statistically meaningfully approximate Turing machines with
computation time bounded by T , requiring sample complexity polynomial in the
alphabet size, state space size, and logpT q. Our analysis introduces new tools for gen-
eralization bounds that provide much tighter sample complexity guarantees than the
typical VC-dimension or norm-based bounds, which may be of independent interest.

1 Introduction

Dating back to the seminal works on universal approximation [16, 25, 40, 31], a common way to
theoretically study neural nets has been through their expressivity, which measures the ability of
neural nets to approximate well-behaved functions. This perspective has shaped how researchers
perceive different types of deep learning architectures: a basic way to theoretically justify new
architectures is to study their approximation capabilities. This has led to a number of analyses studying
universal approximation capabilities for various widely-used architectures, such as recurrent neural
nets (RNNs) [47], graph neural nets [46], convolutional networks [3, 64, 59], residual networks [32],
transformers [61], and neural ODEs [51, 63].

However, approximation theoretic results often misalign with more meaningful end-to-end guaran-
tees, because models constructed in the literature often exhibit unrealistic properties. For exam-
ple, a common technique in the universal approximation literature is to rely strongly on infinite-
precision weights and activations, or exponentially many parameters to encode the desired function
values [25, 16, 31, 32, 61, 44]. This issue even arises outside of universal approximation, e.g., various
papers demonstrate the ability of RNNs and transformers to simulate various computational models
such as Turing machines and automata, but require strong reliance on arbitrary precision [48, 42, 29, 9].
Infinite precision can inflate the expressivity of an architecture (function class) in a unrealistic and
misleading way: for example, finite width RNNs with infinite precision can simulate Turing machines,
but finite-precision, finite-width RNNs cannot. This is implied by streaming lower bounds [1] – any
finite-precision, finite-width RNN induces a finite-space streaming algorithm corresponding to running
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the RNN on the inputs. However, streaming lower bounds tell us that finite-space streaming algorithms
are not powerful enough to simulate Turing machines, and hence finite-precision, finite-width RNNs
cannot either. As another example, Park et al. [41] exploit infinite precision in the parameters to show
that a neural net with parameter count sublinear in n can memorize n arbitrary input-label pairs. How-
ever, a simple counting argument reveals that this result cannot be proven using finite precision networks
– there are 2n input-labeling pairs, but only 2opnq finite precision networks with opnq parameters.

More broadly, the ideal theoretical perspective should consider not only whether target functions
can be expressed, but also whether the approximating functions can plausibly be obtained by fitting
a neural network to a finite training sample, as is the case in practical deep learning settings. The latter
question can be decomposed into studying optimization and generalization. Unfortunately, a rigorous
analysis of optimization is unresolved even for simple two-layer nets [35, 33]. Global optimization
analyses such as NTK do exist [18, 26], but there is a large body of theoretical and empirical work
showing that neural networks can generalize much better than NTK analyses can hope to prove [20, 57].
Generalization is more tractable, so we propose to study expressivity and generalization together.

Towards studying more meaningful notions of approximation, this work proposes statistically
meaningful (SM) approximation. This definition requires not only the existence of an approximating
network, but also that it has good statistical properties. Consider a setting where the aim is to fit
the target function G using the approximating family F and a finite sample of training data. SM
approximation requires existence of a loss whose empirical risk minimizer in F leads to a model with
low approximation error in fittingG. We define the sample complexity of the approximation as the
number of training samples needed to guarantee ε approximation error and study SM approximation
with low sample complexity bounds. SM approximation essentially eliminates statistical concerns
about fitting the target function with a finite sample (optimization concerns can remain).

We present two case studies on SM approximation. First, we demonstrate that overparameterized
feedforward neural nets can SM approximate boolean circuits with a low sample complexity that
depends only on the intrinsic circuit size. Though it is simple to construct neural nets to approximate
boolean circuits, bounding the sample complexity of the approximation is challenging. For example,
standard norm-based generalization bounds for the naive construction scale exponentially in
depth [5, 6]. Furthermore, VC dimension-based bounds would scale polynomially in the number of
parameters in the network [23], which is problematic because for practical optimization concerns,
neural nets are typically overparameterized in terms of width [62]. In contrast, our sample complexity
bound for SM approximation depends only on the intrinsic circuit size, up to logarithmic factors.

Our second case study is on SM approximating Turing machines with transformers. We consider
a class of Turing machines with bounded computation time T and construct encoder-decoder
transformers [53] which SM approximate these Turing machines. The sample complexity of the
approximation depends on a polynomial in logT and the sizes of the state space and the alphabet of the
Turing machine. Though constructions for approximating Turing machines from prior work [48, 42, 9]
have not been formally studied from a sample complexity perspective, existing bounds would depend
at least linearly on T . Furthermore, our construction only uses loglogT precision, compared to at
least logT in prior works, resulting in the exponential improvement in the sample complexity.

Proving sample complexity guarantees for our SM approximation results is nontrivial and requires
additional insights. To obtain our sample complexity bounds, we leverage a recent generalization
bound which depends on data-dependent Lipschitzness [56]. We develop theoretical tools to convert
a broad class of neural nets, with possibly large Lipschitzness, into ones with small Lipschitzness
on the training data, by introducing a number of new layers that is linear in depth. Our result applies
to neural nets where each entry in the hidden representations on the training data takes values from
a finite set (e.g., binary entries), and may be of independent interest.

In summary, our conceptual contribution is to propose a new notion of statistically meaningful
approximation, intended to provide more meaningful guarantees by requiring that the approximating
family have good statistical learnability. Technically, 1) we prove that feedforward neural nets can
meaningfully approximate boolean circuits with sample complexity that depends polynomially on
the width and depth of the circuit; and 2) we show that transformers can meaningfully approximate
Turing machines with sample complexity logarithmic in the computation time.

1.1 Related works

Classifical approximation theory for neural networks has a long history. Hornik et al. [25], Cybenko
[16], and Leshno et al. [31] show that neural nets with one hidden layer are universal approximators
but require the hidden layer size to grow exponentially in input dimension. Barron [4] uses the Fourier
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transform to write target functions as infinite-width networks and subsamples neurons to obtain widths
which depend only on target function properties. Lee et al. [30], Ji et al. [27] prove recent related
developments in this direction of universal approximation.

Many works study benefits of deep networks over shallow ones [8, 2, 50, 19, 17, 11, 10]. Bengio and
Delalleau [8] show separation for exact representation, whereas Telgarsky [50] shows separation for ap-
proximate representations with univariate inputs. Eldan and Shamir [19] demonstrate high-dimensional
functions that can be approximated by two-layer polynomial-sized neural networks, but cannot be
approximated by one-layer neural nets with subexponential hidden units. Via reduction to certain com-
plexity theoretic questions, Vardi and Shamir [52] show that proving constant depth separations may be
hard. Malach et al. [34] analyze the relationship between optimization and approximability, showing in
various settings that deeper networks cannot be optimized if shallow networks cannot approximate them.
This demonstrates that depth separation results [50] from approximation theory can be misleading since
gradient descent anyways cannot optimize the deep networks used to construct the approximation.

Another area of study is on the ability of deep networks to memorize training data [62, 60, 41, 54]. Yun
et al. [60] show that Θpnqparameters are sufficient to memorize Θpnq training points for ReLU nets with
at least 3 layers, and Park et al. [41] reduce the parameter requirement to sublinear in n. Similar results
have been proven for residual architectures [22] and convolutional nets [39]. Bartlett et al. [7] analyze the
VC-dimension of neural nets, leading to bounds on the parameter count needed to fit training data. Other
works study expressivity via connections to tensor approximation and sum-product networks [14, 15].

There is a long line of work on studying the ability of neural nets to recognize and represent formal
languages. The seminal work of Siegelmann and Sontag [48] shows that RNNs are Turing complete
but leverages infinite precision in the hidden activations. Chen et al. [12] extend this result to ReLU
activations and study implications in language modeling. Many variants of transformers are shown
to be Turing-complete, but these constructions also rely on arbitrary precision [42, 9]. Recent works
have also proven results for generating or recognizing formal languages with finite-precision neural
nets [58, 29, 24], but these results do not consider Turing machines or analyze statistical properties of
their constructions. Concurrent work [13] proves Turing completeness of RNNs with finite precision,
relying on a dynamically growing memory module in the architecture (which serves the same purpose as
the long decoder sequences in our Transformer construction). However, they do not analyze statistical
properties, which requires additional complications in both the construction and statistical analysis.

1.2 Notation

Let f ˝ g denote the composition of functions f and g. For a family of functions G, let
f ˝G fi tf ˝g : g P Gu denote the family of compositions between f and functions in G. For a set S
and function f :SÑY , let fpSq denote the set tfpsq :sPSuĎY . We use 1d to denote the all-one’s
vector in d dimensions, with the subscripted omitted if clear. For iPrds, we let 1dpiq denote the one-hot
embedding in d-dimensions, which is 1 at index i and 0 everywhere else. We use the notation rOp¨q to
hide poly-logarithmic factors in the argument. The notationÀ,Á indicates the existence of a constant
factor such that the inequality holds, and— denotes that theÁ andÀ relations simultaneously hold. We
use polyp¨q to indicate the existence of a polynomial in the argument which makes the equation true. For
a set A (e.g., the set of alphabet symbols for a Turing machine) let A˚ denote the set of all sequences of
elements ofA, where sequence length can vary. LetP denote a distribution over a space of inputsX . Let
ξ1,...,ξn ben i.i.d. Rademacher variables sampled from t´1,`1u. The expectedn-sample Rademacher
complexity of F on P is as follows: Radn,P pFqfiE

pxiqni“1
i.i.d
„ P

“

Eξ1,...,ξn
“

supFPF
1
n

řn
i“1ξiF pxiq

‰‰

,

where pxiqni“1 denotes n i.i.d. samples from P .

2 Statistically meaningful approximation

We consider settings where we wish to approximate every memberG in a real-valued function class
G with some function F in function class F . Functions in both G and F map input space X to R. In
this work, F is some family of neural networks. Fix a loss ` :RˆRÑr0,1s. The classical notion of
ε-approximation [43] is as follows:

Definition 2.1 (Classical ε-approximation). We say a function class F ε-approximates a function
class G with respect to loss ` and input distribution P , if for any givenGPG, there exists F PF such
that Ex„P r`pF pxq,Gpxqqsďε.
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The issue with this classical notion of approximation is that it allows solutions which use infinite preci-
sion (or other potential unrealistic characteristics). Because of these drawbacks, even ifF approximates
G, it does not mean that we can use F to fit the target function from G with a good sample complexity.

This work studies a stronger notion of approximation, statistically meaningful (SM) approximation,
to eliminate statistical issues with fittingG on a finite sample. SM-approximation requires that G is
learnable via empirical risk minimization using models from F , when data is generated from P .

Definition 2.2 (ε-SM-approximation). We say a function class F ε-SM-approximates a function class
G with respect to evaluation loss ` and input distribution P with sample complexity n if there exists
a surrogate loss s` :FˆXˆRÑr0,1s such that for any givenGPG, the following holds:

With probability 0.99 over the randomness of n examples pxiqni“1 drawn from P , the empirical risk
minimizer of s`, pF fiargminFPF

1
n

řn
i“1

s`pF,xi,Gpxiqq, approximatesG: Ex„P r`p pF pxq,Gpxqqsďε.

Definition 2.2 requires that the empirical risk minimizer of s` overF on a finite sample pxi,Gpxiqqni“1 is
guaranteed to ε-approximateG on the population. Note that the surrogate loss s` and evaluation loss ` can
differ, and that s` takes the modelF as an argument, allowing the empirical risk to include regularization.

Though Definition 2.2 may be reminiscent of PAC-learnability, there is a major conceptual difference:
SM approximation unifies expressivity and generalization, whereas PAC-learnability is only concerned
with generalization. For example, in the realizable PAC-learning case, there is no notion of an
approximating family F – the setting only cares about fundamental learnability of G. Furthermore,
in agnostic PAC-learning (non-realizable) settings, the main focus is achieving a low loss relative to the
best function in the hypothesis class. In contrast, SM approximation also requires proving that the best
function in F achieves near-zero loss, whereas there is no such requirement in PAC-learning settings.

2.1 Background and tools

To prove SM-approximation guarantees, Definition 2.2 requires a loss surrogate s` such that the
empirical risk minimizer of s` on the training data can approximate functions in G. The following
proposition, which is motivated by classical generalization theory, provides several conditions on
s`which lead to SM-approximation guarantees.

Proposition 2.3. For loss function ` :RˆRÑr0,1s and input distribution P , suppose there exists
a surrogate loss s` :FˆXˆRÑr0,1s satisfying the following properties:

1) For all F PF , xPX , yPR, s`pF,x,yqě`pF pxq,yq.

2) For anyGPG, consider the function class LGfi tx ÞÑ s`pF,x,Gpxqq :F PFu. Then the n-sample
Rademacher complexity of LG is bounded: Radn,P pLGqďε.

3) For anyGPG, there exists F PF with small surrogate loss: Ex„P rs`pF,x,Gpxqqsďε.

Then, the function class F O
´

ε` 1?
n

¯

-SM-approximates G with respect to loss ` and input distribution
P with sample complexity n.

By Proposition 2.3, it suffices that s` upper bounds the target loss ` and has low complexity, and
F approximates G with respect to ps`,P q in the classical sense. The proof follows from standard
techniques for bounding generalization based on Rademacher complexity and is provided in Section A.

All-layer margin loss. We introduce one particular construction for s` used in subsequent sections,
which is motivated by the all-layer margin generalization bound proposed by [56]. This bound is based
on data-dependent Lipschitzness measures [36, 55], and can provide stronger guarantees than classical
norm-based bounds [37, 6, 38, 21].

We focus on the binary classification setting, whereGpxqPt0,1u, and study approximation with respect
to the 0-1 loss `0-1pz,yqfi1ppy´0.5qzď0qwhere yPt0,1u is assumed to be a binary label, and the aim
is to output a negative prediction z for y“0 and positive for y“1. We consider a family of functions F
parameterized by p-dimensional parameters θPΘĎRp, such that F“tx ÞÑF px,θq :θPΘu, where we
abuse notation and letF denote a general parameterized functionF :XˆRpÑR. We sometimes use θ
to identify an element of F . Throughout the paper, we define Θ as a set with }¨}1-norm bounded by α:
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}θ}1ďα, @θPΘ. We define the parameter-based all-layer margin ρF :RpˆXˆt0,1uÑR as follows:

ρF pθ,x,yqfimin
δ
}δ}2

subject to py´0.5q¨F px,θ`δqď0
(2.1)

We omit F from the subscript of ρwhen it is clear from context. This quantity measures the stability
of the model around an input x in parameter space. As is the case for the standard output margin, a
larger all-layer margin, or better stability, tends to imply better generalization.

We modified the definition in [56] to consider perturbations δ in parameter space, whereas Wei and
Ma [56] consider perturbations to the hidden layers. The parameter-space formulation is simpler and
subsumes the results in [56]. Our formulation also accounts for weight sharing, which is important
for our Turing machine results, whereas the formulation of [56] could not.

A key and immediate property of the all-layer margin is that it is strictly positive if and only if F px,θq
predicts the correct label. We can leverage this property to construct a surrogate loss. For some
parameter γ intended to lowerbound the all-layer margins, we define the loss s`γ as follows:

s`γpθ,x,yq“

$

&

%

1 if ρpθ,x,yqď0

1´ ρpθ,x,yq
γ if 0ăρpθ,x,yqďγ

0 if ρpθ,x,yqěγ
(2.2)

Note that s`γ composes the classical ramp loss, which is used to prove margin-based generalization
complexity bounds, with the value of the all-layer margin. By our construction, it immediately follows
that s`γpθ,x,Gpxqqě`0-1pF px,θq,Gpxqq, as is required of a surrogate loss.

We show that to obtain sample complexity bounds for SM-approximation ofG in a classification setting,
it suffices to prove that functions in F can fit labels ofGPG with large all-layer margin. Our argument
uses s`γ as the loss surrogate in the definition of SM approximation. Though s`γ is computationally
intractable to optimize, Wei and Ma [56] demonstrate that heuristically minimizing s`γ also leads to
improved generalization empirically.

Lemma 2.4. Fix any parameterized function F :XˆRpÑR, and define Fαfitx ÞÑF px,θq :θPΘu,
where we assume ΘĎRp is such that }θ}1ďα for all θPΘ. Fix εě0. Suppose that for allGPG, there
exists θPΘ such that the following holds:

Ex„P r1pρF pθ,x,Gpxqqăγqsďε (2.3)

Then,Fα ε-SM-approximates G with respect to p`0-1,P qwith sample complexity rO
´

1
ε2

´

α2logppq
γ2 `1

¯¯

.

Here rO hides poly-logarithmic factors in the arguments, in this case, polylogpα
2logppq
γ2ε2 q factors. The

proof follows [56] and is deferred to Section A. In Section A, we also state a generalization bound
for 0-1 loss based on (2.1), which may be of independent interest. We use (2.2) and Lemma 2.4 to
prove that neural nets can SM-approximate Boolean circuits and Turing machines.

3 SM approximation of Boolean circuits with feedforward nets

This section shows that feedforward neural nets can SM-approximate Boolean circuits with sample
complexity that depends polynomially on the size of the circuit. A boolean circuitG :t0,1umÑt0,1u
on m inputs bits is described by a directed acyclic graph, with vertices of this graph referred to as
“gates”. The graph contains m input gates of indegree 0, which are identified with the input bits.
The remaining gates each compute a boolean function taking values at their parents as arguments,
and a designated output gate produces the output of the entire circuit. We consider boolean circuits
consisting of AND, OR, and NOT gates, which compute the corresponding boolean functions on 2,
2, and 1 inputs, respectively and are sufficient to compute any boolean function [45]. We also allow
identity (ID) gates, which take 1 input and output the same value.

We consider layered circuits, where we can partition the gates into layers such that the only edges
in the graph occur from gates in layer i to gates in layer i`1 for some i. Note that we can transform
any boolean circuit into a layered one by adding ID gates. Letting q denote the number of layers and
r the maximum number of gates in any layer, we say that the circuit has depth q and width r. We say
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that a circuit with s total gates has size s. Our convention will be that the set of input gates is considered
a layer, so rěm. We consider the following class of boolean circuits:

Gq,r,s“tG :t0,1umÑt0,1u :G computed by circuit with depth q, size s, and width ru
We will approximate Gq,r,s using a family of width w, depth d feedforward ReLU nets pa-
rameterized by linear weights and biases θ “ pW0, b0, ... , Wd, bdq computed as follows:
Fw,dpx, θq “ WdφpWd´1φp¨¨¨ φpW0x ` b0q ¨¨¨ q ` bd´1q ` bd, where all intermediate layers
have widthw for simplicity andφ denotes the coordinate-wise ReLU activation. The weight parameters
are set so that for 1ď iď d´ 1, Wi P Rwˆw, W0 P Rwˆm, and Wd P R1ˆw. The bias parameters
are such that bi PRw for 0ď iďd´1, and bd PR. To control the sample complexity, we restrict our
attention to parameters with total }¨}1-norm bounded by α, giving the following function class:

Fw,d,α“tx ÞÑFw,dpx,θq :}θ}1ďαu

The following theorem states that feedforward neural nets can statistically meaningfully approximate
boolean circuits with sample complexity polynomial in the circuit size.
Theorem 3.1. Consider the class Gq,r,s of size-s,width-r, and depth-q layered boolean circuits, and
the class Fw,d,α of neural nets above. SupposewÁr, α—s, and d—q.

Then, for all εą0 and any input distributionP over t0,1um, Fw,d,α ε-SM-approximates G with respect

to p`0-1,P qwith sample complexity polypsq rO
´

logpwdq
ε2

¯

.

We note that the bound in Theorem 3.1 only scales logarithmically in the widthw of the network, even
ifw is arbitrarily greater than the circuit width r. This ensures that even heavily overparameterized
nets will have low sample complexity of the approximation.

For this setting, the all-layer margin loss in (2.2) is essential for proving tight sample complexity
bounds, as other surrogate losses s`would give weaker results. For example, if we choose `0-1 as the
surrogate loss, VC-dimension bounds [23] imply that Fw,d,α statistically meaningfully approximates
Gq,r,s with sample complexity scaling in polypwqq under the conditions of Theorem 3.1. This suffers
a polynomial dependence on the overparameterized widthw, which is not ideal for realistic settings,
where neural nets are often wider than necessary to facilitate optimization. In contrast, our dependence
onw is logarithmic. Another possible surrogate loss is the output margin-based ramp loss, which can
be used to prove norm-based sample complexities [6]. However, these bounds depend on

śd
i“1}Wi}op

(or related quantities), which would be exponentially large in d for the naive construction in Section 3.1.

3.1 Proof sketch for Theorem 3.1

There are two key steps in the proof. First, given any layered circuitGPG, we construct a neural net
that directly simulatesG by computing the layers ofG one-by-one, which is simple to do by directly
constructing ReLU and linear layers to simulate the AND, OR, NOT, and ID gates.
Lemma 3.2. In the setting of Theorem 3.1, letG denote the layered boolean circuit, which we aim to
compute using a neural net. Let gi :t0,1uri´1Ñt0,1uri denote function computed between the i´1-th
and i-th layers ofG, which we assume have ri´1 and ri gates, respectively, soG“gq´1˝¨¨¨˝g1.

Then there exist functions f1,...,fq´1, where each fi is computed by a feedforward ReLU net with two
linear and activation layers, such that for all iPrq´1s and xPt0,1um, fi˝¨¨¨˝f1pxq“gi˝¨¨¨˝g1pxq.
Thus, the composition F p¨,θqfi fq´1 ˝¨¨¨˝f1 satisfies F px,θq “Gpxq for all x P t0,1um. Note that
we omitted the dependency of fq´1,...,f1 on parameters θ for simplicity.

Lower bounding all-layer margin. The next step for proving SM-approximation is to construct a
loss s` so that the empirical risk minimizer of s` on the training data has good sample complexity. This
crucially requires the all-layer margin tool developed in Section 2.1, as other complexity measures
(e.g. norm-based) would not give good sample complexity bounds.

Recall that the all-layer margin ρF pθ, x, Gpxqq measures the stability of the output F px, θq to
perturbations in to θ, and, by Lemma 2.4, it suffices to show that F has large all-layer margin on
x P t0,1um. Unfortunately, we cannot guarantee that the naive construction from Lemma 3.2 has
large all-layer margin without further modifications. To remedy this issue, Theorem D.6 introduces
a generic way to convert the model F p¨,θq, with possibly small all-layer margin on xPt0,1um, into
a new architecture and parameter set F 1p¨,θ1q, with provably large all-layer margin on xPt0,1um, such
that F 1px,θ1q“F px,θq on all inputs x P t0,1um. The construction relies on introducing new layers
to F to obtain F 1 and increases the total number of layers by only a constant factor. This step of the
proof is formally stated in the following lemma.
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Lemma 3.3. In the setting of Lemma 3.2, let F p¨,θq“fq´1˝¨¨¨˝f1 be the neural net with parameters
θ constructed to compute the circuit G. There exist “correction functions” ζ1,...,ζq´2, where ζi is
computed by a neural net with two activation and linear layers, such that the composition F 1p¨,θ1qfi
fq´1˝ζq´2˝fq´2˝¨¨¨˝ζ1˝f1 has large all-layer margin:ρF 1pθ1,x,Gpxqqě 1

polypsq for all xPt0,1um.
Here θ1 denotes the collection of all parameters, and dependency of fi,ζi on θ1 is omitted for simplicity.

We convey the core intuitions for Lemma 3.3 in a simplified toy setting as follows. Consider the
case where we start with an initial architecture f computing fpx,pW1,...,Wdqq“

´

śd
i“1Wi

¯

x´0.5,
whereWi PR. In this simplified setting, we considerWi“1 @i. For input x“1 and target y“1, the
all-layer margin is small: ρf pp1,...,1q,1,1qÀ 1?

d
, where the architecture is in the subscript. Indeed,

choosing δi“ 3
d , we have fp1,p1´ 3

d ,...,1´
3
d qq“ p1´

3
d q
d´0.5« expp´3q´0.5ă0. Thus, by the

definition of all-layer margin, ρf pp1,...,1q,1,1qď
a

ř

iδ
2
i À

1?
d

.

Now we will insert ReLU layers in f to increase the all-layer margin to Ωp1q. We use ReLU layers
to implement the round function, which has the key property that roundpzq“1 @zě2{3.

Proposition 3.4. For any zPR, we can implement the function roundpzq“

$

&

%

0 if ză1{3
3x´1 if 1{3ďză2{3
1 if zě2{3

via a feedforward ReLU net, as follows: roundpzq“3φpz´1{3q´3φpz´2{3q.

We consider the following function rf , which inserts round between every layer in f :

rfpx,pW1,...,Wdqq“ roundpWdroundpWd´1¨¨¨roundpW1xq¨¨¨qq´0.5 (3.1)

For this demonstration, we ignore the parameters of round, though the actual proof considers them.
The following claim shows that (3.1) preserves the output of f while increasing the all-layer margin:

Claim 3.5. In the setting above, rfp1,p1,...,1qq“fp1,p1,...,1qq and ρ
rf pp1,...,1q,1,1qě

1
3 .

This reflects a significant increase in the all-layer margin, while only increasing depth by a constant
factor. The proof is simple: we observe that if δi ď 1

3 for all i, the function output will not change
because roundpzq“1 @zě 2

3 . This immediately gives the all-layer margin lower bound 1
3 .

To apply this construction more generally, we note that round corrects errors in previous layers.
In the more general setting, we insert “correction functions” ζ between each layer satisfying the
key property that ζph1q “ h if h is the intended output of the layer and h1 is any perturbed value
satisfying }h1´h}2ď 1

3 . Since intended outputs of layers in the function constructed by Lemma 3.2
are binary-valued in t0,1uw because F simulates a boolean circuit, we can simply apply the function
round constructed in Proposition 3.4 elementwise as the correction function. By the construction,
this can be implemented by adding two additional feedforward ReLU layers per correction function.
Following the intuition for Claim 3.5, we prove that inserting these correction functions guarantees
a large all-layer margin (Theorem D.6) on all xPt0,1um. This leads to the proof of Lemma 3.3. We
can complete the proof of Theorem 3.1 by invoking Lemma 2.4, as shown in Section B.

4 SM approximation of Turing machines with transformers

In this section, we show that transformers SM-approximate Turing machines with computation time
bounded by T , using sample complexity polynomial in logpT q and the state space and alphabet sizes of
the Turing machine. Constructions from prior work would require the approximation sample complexity
to be linear in T [48, 12, 42, 9]. Thus, we obtain an exponential improvement in the dependency on T .

We briefly describe a Turing machine; see [49] for a more thorough survey. A Turing machine is a
model for computation specified by a tuple pZ,A,S,Ztermq containing a set of states Z , a tape alphabet
A, a transition function S :ZˆAÑZˆAˆt´1,`1u, and set of terminal states Zterm indicating
accept or reject. For simplicity, we assume the Turing machine has a single tape, as any single-tape
Turing machine can simulate a multi-tape one with only quadratic increase in runtime [49]. Given
an input xPA˚ recorded on the left-most part of the tape, the Turing machine performs computation
in a sequence of timesteps. In each timestep, the machine determines the next state, symbol to write,
and direction to move the head via the transition function.
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We let TMpZ,A,S,Ztermq denote the function computed by the Turing machine, which produces an
output in t0,1u (if the machine halts). Fixing the alphabet A, we consider the class of binary functions
computed by Turing machines with at most k states terminating in T steps:

Gk,T fitx ÞÑTMpZ,A,S,Ztermqpxq : |Z|ďk, and @xPX ,TMpZ,A,S,Ztermq terminates in T steps u (4.1)

Note that we can assume the input sequences x also have length at most T , as this is the maximum com-
putation time of the Turing machine and the maximum amount of symbols the Turing machine can read.

4.1 Transformer architecture for SM-approximating Turing machines

We study approximation of G with a family of architectures consisting of both an encoder and decoder
component [53], described as follows. The encoder architecture is simple and only performs an embed-
ding of the input symbols, using learnable symbol embeddingsE PRwˆ|A| and fixed positional encod-
ings βp1q,βp2q,...PRw. Given input xPA˚ withm symbols, the encoder producesm output vectors
in Rw via Encipx,Eq“E:,xi`βpiq, where Enci denotes the output of the encoder at the i-th position.

The decoder iteratively computes an output, running for T steps. We define a transformer layer of the
decoder as a sequence of modules consisting of decoder self-attention, followed by encoder-decoder
attention, followed by three feedforward ReLU layers.

Attention layers. Attention layers consist of key, value, and query functionsK,V,Q, each, computing
a linear transformation. We omit parameters here for simplicity. For a single decoder timestep, the
attention layer takes two types of inputs: a sequence of previously-computed representations h1,...,hi,
and a current input representation h1. The layer applies the key, value, and query functions as follows:

τ0,τ1,...,τi“Qph
1qJK0,Qph

1qJKph1q,...,Qph
1qJKphiq

v0,v1,...,vi“V0,V ph1q,...,V phiq

where K0 and V0 are fixed “null” key and value vectors which are learned parameters of the layer.
Letting J denote the set of indices tj : τj “maxtτ0,...,τiuu, the attention layer performs hard-max
attention [42] to compute the output, as follows: Attnph1,ph1,...,hiqq“h

1` 1
|J |

ř

jPJ vj .

Our theory also applies to the standard softmax attention used in practice, but we focus on the
hard-max case for a simpler proof. Let hpjqt denote the representation computed by the j-th layer
of the decoder at timestep t. At timestep i, decoder self-attention at the pj`1q-th layer computes
Attnphpjqi ,ph

pjq
1 ,...,h

pjq
i qq. Letting e1,...,em denote the encoder outputs, encoder-decoder self-attention

at the pj`1q-th layer and i-th step would compute Attnphpjqi ,pe1,...,emqq.

Transformer layers. We use feedforward layers which apply 3 standard ReLU layers, as follows:
FFphq“φpW3φpW2φpW1h`b1q`b2q`b3q. Our theory also allows for residual feedforward layers,
and the architecture here is chosen mainly to simplify the construction.

A transformer layer applies these constructions in sequence. Letting Hpjqi “ ph
pjq
1 ,...,h

pjq
i q denote

the output after the j-th transformer layer for timesteps 1ď tď i, and θpjq the parameters, we compute

h
pj`1,decq
i “Attnphpjqi ,H

pjq
i ,θ(j + 1, dec-attn)q

h
pj`1,encq
i “Attnphpj`1,decq

i ,pe1,...,emq,θ
(j + 1, enc-attn)q

Trphpjqi ,H
pjq
i ,pe1,...,emq,θ

pj`1qq“FFphpj`1,encq,θpj + 1, ffqq

Note that we included the explicit dependence of the attention layers on the parameters for
completeness. We now set hpj`1q

i “Trphpjqi ,H
pjq
i ,pe1,...,emq,θ

pj`1qq.

Decoder outputs. We considerd-layer decoders, so oifih
pdq
i denotes the output of the decoder at time i,

which is also inputted to the decoder at time i`1 as follows: hp0qi`1“h
pdq
i `βpi`1q. The initial decoder

input hp0q0 is a trainable parameter. The decoder runs for a fixed number of timesteps T 1 and outputs pre-
diction θJclsh

pdq
T 1 . For simplicity, we assume T 1“T , the computation time of the Turing machine family.

Note that our architecture allows long (length T ) decoding sequences, whereas typical architectures
in practice use decoding sequences with roughly the same length as the input [53]. The architecture
we study is similar to ones studied by [42, 9].
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We use x ÞÑ Fw,d,T px, θq to denote the described transformer architecture with parameters θ,
w-dimensional hidden layers, d transformer layers in the decoder, and T decoder steps. This leads to
the following class of transformer functions: Fw,d,α,T “tx ÞÑFw,d,T px,θq :}θ}1ďαu. The following
theorem states that this class of transformers SM-approximates the Turing machine family G defined
in (4.1) with sample complexity polynomial in logT , k and |A|.
Theorem 4.1. In the setting above, consider the class G of functions computed by Turing machines
with at most k states, alphabet A, and computation time bounded by T steps for inputs xPX . Suppose
thatwÁk|A|`logT , d— logT , and α“polypk,|A|,logT q.

Then, for all εą0 and any input distribution P over X , Fw,d,α,T ε-SM-approximates G with respect

to p`0-1,P qwith sample complexity polypk,|A|,logT q rO
´

logpwdq
ε2

¯

.

As with Section 3, we set the surrogate loss s` in Definition 2.2 to be the all-layer margin loss defined
in Section 2.1. Commonly-used alternatives for the surrogate loss would not suffice for either our
construction or ones in prior work [48, 12, 42, 9]. First, the VC dimension of Fw,d,α,T is at least
ΩpwT q. This is because transformer architectures which contain a decoder component can express
RNNs, which by lower bounds have VC dimension at leastwT [28]. This indicates that using `0-1 as
the surrogate loss would lead to sample complexities that are suboptimal in both the overparameterized
widthw and the computation T . Second, the correct norm-based Rademacher complexity bound to
use for transformers is unclear; however, the RNN-based equivalent would scale with the T -th power
of some parameter norm, or exponentially in T . Thus, as in Section 3, the all-layer margin surrogate
loss (2.2) is essential for obtaining our sample complexity bounds.

4.2 Proof sketch for Theorem 4.1

Following Lemma 2.4, our goal is to construct a transformer which can simulate Turing machines with
large all-layer margin, namely, Ω

´

1
polypk,|A|,logT q

¯

. The fundamental limitation of prior work [42]

towards attaining this is that the positional embeddings are required to store values as small as 1
polypT q .

Our construction cannot afford to rely on values this small – informally, if the construction relies
on the exact values of these small entries, then the all layer margin would be at most 1

polypT q because
perturbing the layer by the small entries could change the prediction. Instead, we propose using Binpiq,
the binary encoding of i in rlogT s bits, as the positional encoding for timestep i. This allows us to
use unique positional encodings for each timestep which do not rely on arbitrary precision.

We describe the construction. Fix a Turing machineGPG. We first require notation to describe the
computation ofG. For input xPX , let zipxq, aipxq denote the Turing machine state and symbol under
the tape head at the end of step i. We let lipxq denote the location of the Turing machine head at the
conclusion of step i. During the timestep, the Turing machine computes Spzi´1pxq,ai´1pxqq, writes a
new symbol under the head at location li´1pxq, and moves the head either left or right. Let uipxq denote
the symbol written during timestep i, and qipxqPtleft,rightu the movement direction of the head.

Following [42] with several key modifications, we simulate the Turing machine using the transformer
as follows. Each timestep will maintain the invariance that oi contains an encoding of zipxq,aipxq,
and lipxq. Given that this invariance holds until timestep i, the transformer simulates timestep i`1
of the Turing machine with the following steps:

1) Use feedforward layers to apply transition S on zipxq and aipxq, which can be read from
oi, to obtain zi`1pxq, ui`1pxq, and movement direction qi`1pxqPtleft, rightu.

2) Using feedforward layers, compute li`1pxq from qi`1pxq and the encoding of lipxq in oi.
3) Compute ai`1pxq. We use decoder self-attention to search over past timesteps which wrote

to li`1pxq. Our aim is to find ui1pxq, where i1 “maxtj ď i`1 : lj´1pxq “ li`1pxqu. We
implement a binary search over past timesteps j, which is needed to find the largest jď i`1
where lj´1pxq “ li`1pxq. The binary search is performed over the bits of i1 and can be
implemented with OprlogT sq decoder self-attention layers, and the construction ensures
large all-layer margin.

4) If no such i1 from the previous timestep existed, we check whether li`1pxq contained an input
symbol using encoder-decoder attention and copy this input symbol if so.

5) If no symbols were found in 3) or 4), li`1pxq must contain the blank symbol (meaning
it wasn’t visited yet by the head). Thus, we have computed ai`1pxq, so we have all the
information needed to compute the new embedding oi`1.
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To lower bound the all-layer margin of the constructed transformer, we use Theorem D.6, which
requires existence of a “correction function” which can correct outputs in previous layers. Since we
construct a network with intermediate layer entries in t0,1u, we can use the same correction function
as Section 3.1, which rounds to the nearest bit. The full proof is provided in Section C.

5 Conclusion

This work proposes a new definition of approximation, statistically meaningful approximation, which
ensures that the approximating family not only has sufficient expressivity, but also exhibits good
statistical learnability. Towards a first analysis with this definition, we show approximability of two
function classes: boolean circuits and Turing machines, with strong sample complexity guarantees
depending only on the intrinsic properties of these function classes. There are several interesting
directions to extend our study of statistically meaningful approximation. Examples include proving
more upper and lower bounds for statistically meaningful approximation for different target functions
and neural net architectures, and using our definition as a lens to compare architectures.

Limitations

One potential limitation is that the “correction function” machinery discussed in Lemma 3.3 relies on
the discrete nature of boolean circuits and Turing machines, and so additional work and insight would
be required to prove analogous SM-approximation results for continuous functions. One important
property of discrete functions, which we suspect may be leveraged more generally, is that it is easy to
correct errors in intermediate computations of discrete functions (by rounding). It would be interesting
to see whether this property has a continuous analog which can be analyzed.
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[42] J. Pérez, J. Marinković, and P. Barceló. On the turing completeness of modern neural network
architectures. arXiv preprint arXiv:1901.03429, 2019.

[43] M. J. D. Powell et al. Approximation theory and methods. Cambridge university press, 1981.
[44] A. Sannai, Y. Takai, and M. Cordonnier. Universal approximations of permutation invari-

ant/equivariant functions by deep neural networks. arXiv preprint arXiv:1903.01939, 2019.
[45] J. Savage. Models of computation - exploring the power of computing. 1998.
[46] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. Computational capa-

bilities of graph neural networks. IEEE Transactions on Neural Networks, 20(1):81–102, 2008.
[47] A. M. Schäfer and H.-G. Zimmermann. Recurrent neural networks are universal approximators.

International journal of neural systems, 17(04):253–263, 2007.
[48] H. T. Siegelmann and E. D. Sontag. On the computational power of neural nets. Journal of

computer and system sciences, 50(1):132–150, 1995.
[49] M. Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA, third

edition, 2013. ISBN 113318779X.
[50] M. Telgarsky. benefits of depth in neural networks. In V. Feldman, A. Rakhlin, and O. Shamir,

editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine
Learning Research, pages 1517–1539, Columbia University, New York, New York, USA, 23–26
Jun 2016. PMLR. URL http://proceedings.mlr.press/v49/telgarsky16.html.

[51] T. Teshima, K. Tojo, M. Ikeda, I. Ishikawa, and K. Oono. Universal approximation property
of neural ordinary differential equations. arXiv preprint arXiv:2012.02414, 2020.

[52] G. Vardi and O. Shamir. Neural networks with small weights and depth-separation barriers.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 19433–19442. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
e1fe6165cad3f7f3f57d409f78e4415f-Paper.pdf.

[53] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

[54] R. Vershynin. Memory capacity of neural networks with threshold and relu activations. arXiv
preprint arXiv:2001.06938, 2020.

[55] C. Wei and T. Ma. Data-dependent sample complexity of deep neural networks via lipschitz
augmentation. arXiv preprint arXiv:1905.03684, 2019.

[56] C. Wei and T. Ma. Improved sample complexities for deep networks and robust classification
via an all-layer margin. arXiv preprint arXiv:1910.04284, 2019.

[57] C. Wei, J. D. Lee, Q. Liu, and T. Ma. Regularization matters: Generalization and optimization of
neural nets vs their induced kernel. Advances in Neural Information Processing Systems, 32, 2019.

[58] G. Weiss, Y. Goldberg, and E. Yahav. On the practical computational power of finite precision
rnns for language recognition. arXiv preprint arXiv:1805.04908, 2018.

[59] D. Yarotsky. Universal approximations of invariant maps by neural networks. Constructive
Approximation, pages 1–68, 2021.

12

http://proceedings.mlr.press/v49/telgarsky16.html
https://proceedings.neurips.cc/paper/2020/file/e1fe6165cad3f7f3f57d409f78e4415f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e1fe6165cad3f7f3f57d409f78e4415f-Paper.pdf


[60] C. Yun, S. Sra, and A. Jadbabaie. Small relu networks are powerful memorizers: a tight analysis
of memorization capacity. arXiv preprint arXiv:1810.07770, 2018.

[61] C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar. Are transformers universal
approximators of sequence-to-sequence functions? arXiv preprint arXiv:1912.10077, 2019.

[62] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

[63] H. Zhang, X. Gao, J. Unterman, and T. Arodz. Approximation capabilities of neural odes
and invertible residual networks. In International Conference on Machine Learning, pages
11086–11095. PMLR, 2020.

[64] D.-X. Zhou. Universality of deep convolutional neural networks. Applied and computational
harmonic analysis, 48(2):787–794, 2020.

13


