
Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Appendix Section 5.4.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Appendix

Section A.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results (either in the supplemental material or as a URL)? [Yes] Provided with the supple-
mentary materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] See Appendix D.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [Yes] See Appendix D.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 2
(b) Did you mention the license of the assets? [No] All licences MIT.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] Used datasets are either synthetic or popular standard datasets.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] Used datasets are either synthetic or popular standard
datasets.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if applica-

ble? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review Board

(IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount spent on

participant compensation? [N/A]

14

A Negative Societal Impacts

Our work aims to defend self-supervised models against model stealing attacks. Since we are directly
defending models and aim to provide attribution, any negative societal impacts of our work are
minimal. One potentially negative impact could be if the t-test result is inconclusive about a stolen
model being stolen or if it incorrectly identifies an independent model as stolen. However, as shown
from our results, we are consistently able to differentiate correctly between stolen and independent
models and can use our metrics to further reinforce the results from dataset inference. In terms of
data and model access, we assume that the victim or a trusted third party, such as law enforcement, is
responsible for running the dataset inference so that there are no privacy-related concerns.

B Protocol for Dataset Inference

We design the following protocol for Dataset Inference:

1. Select a third-trusted party as an arbitrator for the ownership resolution.

2. Arbitrator ensures that the train and validation sets are IID (from the same distribution) by
combining the train and test sets followed by a random split into the training set for the defended
model and the private validation set used for dataset inference.

3. Specification of the number of data points used for dataset inference: use all the data points from
the validation set and the equivalent number of data points from the train set.

C More Related Work

C.1 Membership Inference

EncoderMI [30] leverages the finding that an image encoder overfits to its pre-training dataset and
returns more similar embeddings for pairs of augmented pre-training data points than for points
not in the pre-training set. EncoderMI assumes some data points to be assessed as members and
a shadow dataset as inputs. The first step is to create n augmentations of a point from the shadow
dataset and compute for it

�n
2

�
(pair-wise) similarity scores using the embeddings extracted from a

shadow encoder, which is trained on the shadow dataset. The scores form the membership feature
vector for a given shadow data point. After labeling each such point as member or non-member, the
membership features and the corresponding labels are used to train an inference classifier to infer if a
given data point was a member or non-member of a target encoder. The early stopping is investigated
as a mitigation defense against EncoderMI. The defense can reduce the effectiveness of the attack,
however, at the cost of the lower performance of the defended encoder on downstream tasks.

C.2 Non-Transferable Learning

Non-Transferable Learning (NTL) [45] achieves ownership resolution and usage authorization by dis-
couraging the model to generalize to data domains outside of its training data. To perform ownership
resolution, NTL incentives the model to generalize poorly to a specific target domain, making it more
likely to mis-classify on data from that domain. The authors argue that the model’s unexpectedly
poor behavior on the target domain can then be used like a watermark to claim ownership, and unlike
many previous watermarking defenses, is harder to remove because the misclassification behavior
is embedded in the model. To control usage authorization, NTL intentionally degrades the model
performance on the target domain. The authors argue that this prevents users from applying the model
on unauthorized data.

C.3 Metrics to Compare Encoders

The desired metric for comparison between two representations should evaluate whether two repre-
sentations are essentially similar or importantly different [13].

15

Table 4: Summary of our encoders. We show all possible combinations of victim, stolen, and inde-
pendent encoders along with their architectures. *, ** denotes that the models listed are equivalent.

VICTIM ENCODER STOLEN ENCODER INDEPENDENT ENCODER
D ARCHITECTURE D ARCHITECTURE # QUERIES D ARCHITECTURE

CIFAR10 RESNET34 CIFAR10 RESNET34 500 - 50K CIFAR100* RESNET18
CIFAR10 RESNET34 SVHN RESNET34 500 - 50K CIFAR100* RESNET18
CIFAR10 RESNET34 STL10 RESNET18 500 - 50K SVHN RESNET34

SVHN RESNET34 CIFAR10 RESNET34 500 - 50K CIFAR100* RESNET18
SVHN RESNET34 SVHN RESNET34 500 - 50K CIFAR100* RESNET18
SVHN RESNET34 STL10 RESNET34 500 - 50K CIFAR10 RESNET34

IMAGENET RESNET50 CIFAR10 RESNET50 5K - 50K CIFAR100** RESNET50
IMAGENET RESNET50 SVHN RESNET50 5K - 250K CIFAR100** RESNET50
IMAGENET RESNET50 IMAGENET RESNET50 5K - 250K SVHN RESNET50

D Additional Details on Experiments

D.1 Datasets Used

CIFAR10 [28]: The CIFAR10 dataset consists of 32x32 colored images with 10 classes. There are
50000 training images and 10000 test images.

CIFAR100 [28]: The CIFAR100 dataset consists of 32x32 coloured images with 100 classes. There
are 50000 training images and 10000 test images.

SVHN [34]: The SVHN dataset contains 32x32 coloured images with 10 classes. There are roughly
73000 training images, 26000 test images and 530000 "extra" images.

ImageNet[11]: Larger sized coloured images with 1000 classes. As is commonly done, we resize
all images to be of size 224x224. There are approximately 1 million training images and 50000 test
images.

STL10 [8]: The STL10 dataset contains 96x96 coloured images with 10 classes. There are 5000
training images, 8000 test images, and 100000 unlabeled images.

D.2 Encoder similarity scores and p-values

We present additional results for the encoder similarity scores and p-values from dataset inference vs
the number of queries in Table ??.

D.3 Details on Experimental Setup

We show a summary of the encoders used in our experiments in Table 4.

The ResNet18/ResNet34 architectures used for the CIFAR10 and SVHN victim encoders and the
related stolen and independent encoders used a 3x3 Conv layer of stride 1 instead of the default 7x7
Conv layer and did not use a max pooling layer. When stealing from the ImageNet victim encoder,
the images used for queries were resized to be of size 224x224. Similarly when training independent
ResNet50 encoders to be used with the ImageNet victim encoder, the images in the respective datasets
were resized to a size of 224x224.

For the results in Tables 1 and 2, encoders with the highest numbers of queries for each case were
used. In other words, for encoders stolen from the CIFAR10 or SVHN victim encoders, 50K queries
were used while for encoders stolen from the ImageNet victim encoder, 250K queries were used.
Note that since CIFAR10 does not have 250K different examples, 60K queries from the aggregated
training and test set were used when stealing with the CIFAR10 dataset. Encoders with a smaller
number of queries were also stolen with the numbers of queries ranging from 500 - 50K for the
CIFAR10 and SVHN victim encoders, and queries ranging from 5K - 250K for the ImageNet victim
encoder.

We train the SVHN and CIFAR10 victim models for 200 epochs. To train the independent and stolen
encoders, we used 100 epochs. When stealing from the ImageNet victim encoder, the SGD/LARS
optimizer was used while for other models, the Adam optimizer was used. The initial learning rate

16

Algorithm 1 Stealing an Encoder [14].
Input: Querying Dataset D, access to a victim encoder fv(w; ✓v).
Output: Stolen representation model fs(w; ✓a)

1: Initialize fs with a similar architecture as fv .
2: for sampled queries {xk}Nk=1 2 D do
3: Query victim encoder to obtain representations:

yv = fv(xk)
4: Generate representations from stolen encoder:

ys = fs(xk)
5: Compute loss L{yv, ys}.
6: Update stolen encoder parameters ✓s := ✓s � ⌘r✓sL.
7: end for

Algorithm 2 Kozachenko-Leonenko Entropy Estimator for Encoders.
Input: Dataset D, number of data points N � 2 to be sampled from D, access to an encoder f(·),
the Euler-Mascheroni constant � ⇡ 0.577, and the gamma function �.
Output: Entropy Estimation H .

1: Sample N data points from D: x1, ..., xN .
2: for each sampled data point {xk}Nk=1 2 D do
3: Sample an augmentation t.
4: Generate view wk = t(xk).
5: Query the encoder f to generate the representation: yk = f(wk).
6: end for
7: for each representation {yk}Nk=1 2 Rd do
8: Find nearest neighbor distance: Rk = ||yk � yi||2, where i 6= k.
9: Compute transformation: zk = (N � 1) · (Rk)d.

10: end for
11: Compute the volume of the unit ball in Rd: Bd = ⇡d/2

�(1+d/2) .

12: Compute Entropy: H = 1
N

PN
i=1 log zi + logBd + �

was kept constant in all cases and was adjusted with the Cosine Annealing scheduler. A batch size of
256 or 512 was used for training the models. The temperature parameters used varied between 0.1,
0.15, 0.2, and 0.25 with a larger temperature used for models with a higher number of queries. For all
queries under 50K, the temperature was set to be 0.1.

We ran all experiments on machines equipped with an Intel® Xeon® Silver 4210 processor, 128 GB
of RAM, and four NVIDIA GeForce RTX 2080 graphics cards, running Ubuntu 18.04.

E Entropy Estimation

We present the entropy estimator in Algorithm 2 and the joint entropy estimator in Algorithm 3.

F Linear Evaluation of Encoders

In Table 5, we show results for the downstream accuracies of models stolen from the encoder pre-
trained on the ImageNet dataset. The extraction of the representation model is possible at a fraction
of the cost with a smaller number of queries (less than one-fifth) required to train the victim model.
In general, the performance of the stolen encoders increases with the number of queries. We also
perform a similar evaluation for victim encoders trained on the CIFAR10 and SVHN datasets and
models stolen from these encoders in Tables 6 and 8, respectively.

17

Algorithm 3 Kozachenko-Leonenko Joint Entropy Estimator for Encoders.
Input: Dataset D, number of data points N � 2 to be sampled from D, an access to an encoder f(·),
an access to an encoder g(·), the Euler-Mascheroni constant � ⇡ 0.577, and the gamma function �.
Output: Joint Entropy Estimation H .

1: Sample N data points from D: x1, ..., xN .
2: for each sampled data point {xk}Nk=1 2 D do
3: Sample an augmentation t.
4: Generate view wk = t(xk).
5: Query the encoder f to generate the representation: ŷk = f(wk).
6: Query the encoder g to generate the representation: ȳk = g(wk).
7: Concatenate the representations: yk = ŷk k ȳk.
8: end for
9: for each representation {yk}Nk=1 2 Rd do

10: Find nearest neighbor distance: Rk = ||yk � yi||2, where i 6= k.
11: Compute transformation: zk = (N � 1) · (Rk)2d.
12: end for
13: Compute the volume of the unit ball in Rd: Bd = ⇡d/2

�(1+d/2) .

14: Compute Entropy: H = 1
N

PN
i=1 log zi + logB2d + �

Table 5: Linear Evaluation Accuracy on a victim and stolen encoders. The victim encoder is
pre-trained on the ImageNet dataset.

OF QUERIES DATASET DATA TYPE CIFAR10 CIFAR100 STL10 SVHN F-MNIST

Victim Encoder N/A N/A 90.33 71.45 94.9 79.39 91.9

60K CIFAR10 TRAIN/TEST 83.3 57.0 71.2 73.8 90.7
250K IMAGENET TRAIN 80.0 57.0 85.8 71.5 90.2

5K SVHN EXTRA 42.0 16.2 34.4 26.9 81.3
10K SVHN EXTRA 60.8 33.0 50.5 71.7 87.5
50K SVHN EXTRA 73.3 47.1 58.2 78.8 90.4

100K SVHN EXTRA 76.3 50.2 61.1 78.2 90.8
200K SVHN EXTRA 76.9 52.0 62.1 78.3 90.8
250K SVHN EXTRA 77.1 52.6 61.9 80.2 91.4

G Metrics for Measuring the Quality of Stolen Encoders

This section considers additional metrics for measuring the quality of stolen encoders. As in
Section 5.3, we select a random sample of N inputs from the training set and find the representations
of the encoders on each of the inputs. The representations for each input are then centered by
subtracting the mean and normalized to be unit vectors. For each of the inputs, the `p norm of the
difference in representations by the encoders is computed where p = 1, 2,1. The final value used as
the metric is then the mean of these norms over all of the inputs. Tables 9, 10, and 11 show the results
obtained for the `1, `2, and `1 norms respectively. In a similar way, we find the cosine similarity
between representations (closely related to the `2 norm) and present results in Table 12. All norms
and the cosine similarity are able to differentiate between stolen and independent encoders, however
the `1, `2 norms and cosine similarity have a more clear difference.

G.1 Analysis of Distance and Cosine Similarity Based Metrics

We use the `2 score based on the `2 norm of the distance between representations, and the cosine
similarity score between representations as ways to measure the quality of stolen encoders and
differentiate between stolen and independent encoders.

We create two score metrics, namely the cosine similarity score C:

C = |sim(a, b)| (2)

18

Table 6: Linear Evaluation Accuracy on a victim and stolen encoders. The victim encoder is
pre-trained on the CIFAR10 dataset.

OF QUERIES DATASET CIFAR10 STL10 SVHN

Victim Encoder N/A 87.4 73.4 49.5

50K SVHN 61.2 51.7 54.8
50K CIFAR10 84.8 70.7 52.4
50K STL10 86.8 73.0 49.8

Table 7: Linear evaluation accuracy, mutual information score, cosine similarity and p-values
on a victim and stolen encoders. The victim encoder is pre-trained on the SVHN dataset. We observe
higher performance on downstream tasks with more queries and similarly observe higher similarity
scores for encoders stolen with more queries (see Table 3).

OF QUERIES DATASET CIFAR10 STL10 SVHN S(·, fv) C(·, fv) P-VALUE

Victim Encoder N/A 57.5 50.6 80.5 1 1 9.69E-227

500 CIFAR10 24.5 23.3 19.3 0.0 0.24 6.89E-1
5K CIFAR10 53.3 45.2 58.1 0.11 0.40 3.51E-1
7K CIFAR10 57.9 50.9 69.2 0.14 0.46 4.72E-1
8K CIFAR10 59.6 52.0 72.6 0.53 0.47 9.87E-2
9K CIFAR10 59.9 50.8 71.5 0.57 0.49 6.23E-2

10K CIFAR10 59.1 51.3 72.3 0.69 0.52 5.82E-3
20K CIFAR10 60.6 51.5 73.4 0.92 0.58 2.31E-7
30K CIFAR10 60.7 52.1 74.1 0.93 0.63 2.11E-10
50K CIFAR10 59.8 51.6 75.1 0.94 0.69 1.19E-17

50K STL10 60.6 51.5 76.8 0.95 0.89 1.65E-11
50K SVHN 55.6 48.7 82.2 0.96 0.91 1.05E-75

Independent CIFAR10 87.4 73.4 49.5 0.90 0.009 3.56E-1
Independent CIFAR100 73.8 61.7 67.7 0.90 0.007 2.13E-1
Independent STL10 79.4 73.1 55.8 0.84 0.015 4.62E-1

where sim(a, b) = aT b
||a||2||b||2 is the cosine similarity between representation vectors a and b, and the

`2 distance score which transforms the `2 norm of the difference as:

Score`2 = 1� 1

2

����
a

kak2
� b

kbk2

����
2

(3)

We first note that there are various ways by which an attacker may steal an encoder. To simplify
the analysis, we consider two main cases, one where the attacker minimizes the mean squared error
between its representations and the representations returned by the victim and the other where the
attacker minimizes the InfoNCE contrastive loss (other contrastive loss functions are similar).

With the MSE loss, the attacker directly minimizes the mean squared error between its representations
and the representations of the victim encoder on the queries it makes. Let xi be a query made
by an attacker and fv(xi) = hvi , fs(xi) = hsi 2 Rn be the representations of the victim and
stolen encoders respectively for this query. The MSE loss between these two representations is then
1
n

Pn
j=1(hvij �hsij)

2. Comparatively, the `2 distance (`2 norm of the difference) between these two

representations is ||hvi � hsi ||2 =
qPn

j=1(hvij � hsij)
2. From these two expressions, it follows

directly that minimizing the MSE loss, which is equivalent to minimizing
Pn

j=1(hvij � hsij)
2, also

minimizes the `2 distance.

We now consider the case where an attacker uses a contrastive loss function such as the InfoNCE
loss [43], specifically as used in [5]. The InfoNCE loss consists of positive and negative pairs
and encourages positive pairs to have similar representations and negative pairs to have dissimilar
representations. When stealing from a victim encoder, the attacker uses its own representation and
the representation from the victim encoder for a single query as a positive pairs while the other
inputs in the batch are considered negative pairs. Given an input batch of queries {x1, x2, . . . , xm}

19

Table 8: Linear evaluation accuracy, mutual information score, cosine similarity and p-values
on a victim and stolen encoders. The victim encoder is pre-trained on the CIFAR10 dataset. We
observe higher performance on downstream tasks with more queries and similarly observe higher
similarity scores for encoders stolen with more queries (see Table 3)

OF QUERIES DATASET CIFAR10 STL10 SVHN S(·, fv) C(·, fv) P-VALUE

Victim Encoder N/A 87.4 73.4 49.5 1 1 1.37E-16

500 SVHN 22.3 20.8 20.1 0.00 0.07 5.69E-1
1K SVHN 26.5 23.4 29.9 0.06 0.11 9.02E-1
2K SVHN 40.0 35.2 46.7 0.12 0.13 7.83E-1
3K SVHN 44.4 39.8 56.3 0.18 0.21 8.04E-1
4K SVHN 47.4 42.5 60.8 0.22 0.19 6.30E-1
5K SVHN 49.5 43.8 60.9 0.29 0.28 4.28E-1

10K SVHN 55.6 46.6 58.9 0.38 0.36 6.42E-1
20K SVHN 57.7 48.7 60.4 0.43 0.39 9.81E-2
30K SVHN 58.0 49.2 57.0 0.57 0.45 6.73E-2
40K SVHN 61.4 51.1 55.0 0.69 0.49 4.83E-2
50K SVHN 61.2 51.7 54.8 0.76 0.50 3.97E-2

50K CIFAR10 84.8 70.7 52.4 0.84 0.95 8.73E-7
50K STL10 86.8 73.0 49.8 0.89 0.92 1.04E-2

Independent SVHN 57.5 50.6 80.5 0.12 0.0001 2.96E-1
Independent CIFAR100 73.8 61.7 67.7 0.63 0.001 3.67E-1
Independent STL10 79.4 73.1 55.8 0.34 0.001 5.21E-1

Table 9: `1 distance between normalized and centered representations from Encoders. We compute
d(·, fv) between the representations of a given encoder (in a row) and the Victim encoder fv where d
is the `1 norm.

CIFAR10 SVHN IMAGENET
ENCODER DATASET d(·, fv) DATASET d(·, fv) DATASET d(·, fv)

fs

SVHN 14.74 ± 0.22 SVHN 6.92 ± 0.10 SVHN 25.78 ± 0.26
CIFAR10 5.19 ± 0.05 CIFAR10 11.92 ± 0.21 CIFAR10 24.89 ± 0.28

STL10 6.24 ± 0.08 STL10 7.22 ± 0.14 IMAGENET 16.68 ± 0.21

fi
SVHN 22.20 ± 0.07 CIFAR10 22.17 ± 0.06 SVHN 35.45 ± 0.21

CIFAR100 23.65 ± 0.07 CIFAR100 23.13 ± 0.07 CIFAR100 38.96 ± 0.25

sent by an attacker, the representations for each query from both the victim and stolen encoders are
concatenated as {hs1 , hs2 , . . . , hsm , hv1 , hv2 , . . . , hvm} where hsi = fs(xi) and hvi = fv(xi)
are the representations by the stolen and victim encoders respectively. The positive pairs are
(hs1 , hv1), . . . , (hsm , hvm) and the loss between a positive pair of samples (hsi , hvi) is defined
as l(si, vi) = � log

exp (sim(hsi ,hvi)/⌧)P2m
k=1 1[k 6=si]

exp (sim(hsi ,hk)/⌧)
. Here sim is the cosine similarity function

(sim(u, v) = uT v
||u||2||v||2), ⌧ is the temperature parameter, and 1[k 6=si] is an indicator function

equal to 1 iff k 6= si and 0 otherwise. The overall loss for the batch is the sum of the losses over each
positive pair i.e. L = 1

2m

Pm
c=1[l(sc, vc) + l(vc, sc)]. We can combine the log terms to rewrite this

loss function as L = � 1
2m log

Qm
c=1(exp (sim(hsc ,hvc)/⌧))

2

Qm
c=1(

P2m
k=1 1[k 6=sc] exp (sim(hsc ,hk)/⌧))(

P2m
k=1 1[k 6=vc] exp (sim(hvc ,hk)/⌧))

.
Note that exp(r) > 0 8r so that the loss L is always positive (the denominator contains the terms in
the numerator and each term is positive so the fraction is < 1 and has a negative log).

Simplifying L by combining the exponents in the numerator and using log a
b = log a� log b gives:

L = 1
2m (log

Qm
c=1(

P2m
k=1 1[k 6=sc] exp (sim(hsc , hk)/⌧))(

P2m
k=1 1[k 6=vc] exp (sim(hvc , hk)/⌧)) �

1
2m (log exp(

Pm
c=1(2 · sim(hsc , hvc)/⌧)))

L = 1
2m (log

Qm
c=1(

P2m
k=1 1[k 6=sc] exp (sim(hsc , hk)/⌧))(

P2m
k=1 1[k 6=vc] exp (sim(hvc , hk)/⌧)) �

1
m (

Pm
c=1(sim(hsc , hvc)/⌧))

20

Table 10: `2 distance between normalized and centered representations from Encoders. We compute
d(·, fv) between the representations of a given encoder (in a row) and the Victim encoder fv where d
is the `2 norm divided by 2.

CIFAR10 SVHN IMAGENET
ENCODER DATASET d(·, fv) DATASET d(·, fv) DATASET d(·, fv)

fs

SVHN 0.49 ± 0.007 SVHN 0.21 ± 0.003 SVHN 0.55 ± 0.04
CIFAR10 0.16 ± 0.02 CIFAR10 0.39 ± 0.007 CIFAR10 0.53 ± 0.004

STL10 0.19 ± 0.003 STL10 0.23 ± 0.005 IMAGENET 0.33 ± 0.004

fi
SVHN 0.71 ± 0.001 CIFAR10 0.70 ± 0.01 SVHN 0.71 ± 0.007

CIFAR100 0.71 ± 0.001 CIFAR100 0.71 ± 0.01 CIFAR100 0.71 ± 0.007

Table 11: `1 distance between normalized and centered representations from Encoders. We compute
d(·, fv) between the representations of a given encoder (in a row) and the Victim encoder fv where d
is the `1 norm.

CIFAR10 SVHN IMAGENET
ENCODER DATASET d(·, fv) DATASET d(·, fv) DATASET d(·, fv)

fs

SVHN 0.13 ± 0.003 SVHN 0.10 ± 0.002 SVHN 0.27 ± 0.005
CIFAR10 0.06 ± 0.001 CIFAR10 0.19 ± 0.004 CIFAR10 0.26 ± 0.005

STL10 0.08 ± 0.002 STL10 0.12 ± 0.003 IMAGENET 0.15 ± 0.004

fi
SVHN 0.256 ± 0.003 CIFAR10 0.31 ± 0.006 SVHN 0.33 ± 0.004

CIFAR100 0.263 ± 0.003 CIFAR100 0.31 ± 0.006 CIFAR100 0.27 ± 0.006

Figure 4: Distribution of the normalized L2 score for the representations of an SVHN victim encoder,
a stolen encoder from it (using CIFAR10 training data) and a random encoder (trained on CIFAR100).
There is a pronounced difference in the distribution of the distances between stolen and independent
encoders. This histogram relates to the values presented in Table 10.

We now note that the cosine similarity is such that �1  sim(a, b)  1. Therefore minimiz-
ing the loss corresponds to maximizing the sum of the cosine similarities between positive pairsPm

c=1(sim(hsc , hvc)/⌧)) (as this term is subtracted and the the overall loss is positive). This then
corresponds to maximizing the individual cosine similarities sim(hsc , hvc). In other words, the
similarity between the representation of the victim and stolen encoders on the query samples xi is

21

Table 12: Cosine similarity between normalized and centered representations from Encoders. We
compute sim(·, fv) between the representations of a given encoder (in a row) and the Victim encoder
fv where sim is the cosine similarity.

CIFAR10 SVHN IMAGENET
ENCODER DATASET sim(·, fv) DATASET sim(·, fv) DATASET sim(·, fv)

fs

SVHN 0.50 ± 0.01 SVHN 0.91 ± 0.003 SVHN 0.39 ± 0.007
CIFAR10 0.95 ± 0.01 CIFAR10 0.69 ± 0.01 CIFAR10 0.43 ± 0.008

STL10 0.92 ± 0.002 STL10 0.89 ± 0.005 IMAGENET 0.78 ± 0.005

fi
SVHN 0.00013 ± 0.004 CIFAR10 0.009 ± 0.002 SVHN 0.002 ± 0.002

CIFAR100 0.0007 ± 0.004 CIFAR100 -0.007 ± 0.003 CIFAR100 -0.0018 ± 0.002

Figure 5: Distribution of the normalized L2 score for the representations of a CIFAR10 victim
encoder, a stolen encoder from it (using SVHN training data) and a random encoder (trained on
CIFAR100). There is a pronounced difference in the distribution of the distances between stolen and
independent encoders. This histogram relates to the values presented in Table 10.

maximized through the loss function. Note that the first term of the loss corresponds to minimizing
the similarity between negative pairs, however, we do not focus on that aspect of the loss as part of
this analysis. We now consider the relationship between the `2 norm of the difference of two unit
vectors a and b and the cosine similarity sim(a, b) through the following theorem:

Theorem 1 ||a� b||2 =
p
2(1� sim(a, b)) for unit vectors a, b.

Proof: sim(a, b) = aT b
||a||2||b||2 = a

T
b, since a and b are unit vectors.

||a�b||22 = (a�b)T (a�b) = (aT �b
T)(a�b) = a

T
a�a

T
b�b

T
a+b

T
b = ||a||2�2aT b+ ||b||2 =

1� 2aT b+ 1 = 2� 2aT b = 2(1� sim(a, b))

) ||a� b||2 =
p
2(1� sim(a, b)) ⇤

Therefore maximizing the cosine similarity sim(hsi , hvi) through the InfoNCE loss means mini-
mizing the `2 norm of the difference between the normalized representations h

0
si , h

0
vi . Similarly,

minimizing the `2 norm through the MSE loss corresponds to maximizing the cosine similarity. It
also follows from this theorem that the `2 distance ||a � b||2 is such that 0  ||a � b||2  2. We
therefore divide the `2 distance by 2 to get the distance to be between 0 and 1. Transforming the

22

Figure 6: Distribution of the cosine similarity scores for the representations of a CIFAR10 victim
encoder, a stolen encoder from it (using SVHN training data) and a random encoder (trained on
CIFAR100). There is a pronounced difference in the distribution of the scores between stolen and
independent encoders. This histogram relates to the values presented in Table 12.

Table 13: `2 score vs the number of queries. The quality of the stolen encoder should increase with
respect to the number of queries. Therefore, we should be able to observe an increasing trend for the
`2 score.

Victim Encoder Stolen dataset Number of Queries

CIFAR10 SVHN 500 5K 10K 20K 30K 50K

0.322 ± 0.005 0.372 ± 0.005 0.411 ± 0.006 0.421 ± 0.006 0.475 ± 0.007 0.511 ± 0.007

CIFAR10 STL10 500 5K 10K 20K 30K 50K

0.564 ± 0.007 0.749 ± 0.004 0.781 ± 0.003 0.795 ± 0.003 0.811 ± 0.002 0.807 ± 0.003

SVHN CIFAR10 500 5K 10K 20K 30K 50K

0.386 ± 0.006 0.459 ± 0.007 0.516 ± 0.007 0.551 ± 0.007 0.580 ± 0.007 0.614 ± 0.007

SVHN STL10 500 5K 10K 20K 30K 50K

0.458 ± 0.007 0.611 ± 0.007 0.667 ± 0.006 0.736 ± 0.005 0.738 ± 0.005 0.769 ± 0.005

ImageNet SVHN 5k 10k 50k 100k 200k 250k

0.390 ± 0.001 0.418 ± 0.001 0.444 ± 0.001 0.446 ± 0.001 0.452 ± 0.001 0.450 ± 0.001

ImageNet ImageNet 5k 10k 50k 100k 200k 250k

0.407 ± 0.001 0.493 ± 0.001 0.448 ± 0.001 0.515 ± 0.001 0.661 ± 0.001 0.674 ± 0.001

`2 distance into the `2 score, allows us to relate it more closely to the cosine similarity so that an
increase in the cosine similarity corresponds to an increase in the `2 score. The metrics are also made
to have ranges between 0 and 1 through these scores.

Theorem 1 allows us to relate our `2 score and cosine similarity score. We have:

Score`2 = 1� 1

2

����
a

kak2
� b

kbk2

����
2

= 1� 1

2

p
2(1� sim(a, b))

This can equivalently be written as:

23

Table 14: Cosine similarity score vs the number of queries. The quality of the stolen encoder
should increase with respect to the number of queries. Therefore, we should be able to observe a
similar increasing trend for the cosine similarity score.

Victim Encoder Stolen dataset Number of Queries

CIFAR10 SVHN 500 5K 10K 20K 30K 50K

0.073 ± 0.012 0.205 ± 0.012 0.294 ± 0.014 0.318 ± 0.014 0.433 ± 0.015 0.508 ± 0.013

CIFAR10 STL10 500 5K 10K 20K 30K 50K

0.606 ± 0.012 0.869 ± 0.004 0.901 ± 0.003 0.913 ± 0.003 0.927 ± 0.002 0.923 ± 0.002

SVHN CIFAR10 500 5K 10K 20K 30K 50K

0.235 ± 0.014 0.400 ± 0.015 0.518 ± 0.013 0.582 ± 0.013 0.632 ± 0.012 0.689 ± 0.010

SVHN STL10 500 5K 10K 20K 30K 50K

0.396 ± 0.015 0.682 ± 0.012 0.767 ± 0.009 0.852 ± 0.006 0.856 ± 0.006 0.887 ± 0.005

ImageNet SVHN 5k 10k 50k 100k 200k 250k

0.254 ± 0.001 0.320 ± 0.001 0.377 ± 0.002 0.383 ± 0.002 0.395 ± 0.002 0.391 ± 0.002

ImageNet ImageNet 5k 10k 50k 100k 200k 250k

0.295 ± 0.001 0.480 ± 0.002 0.386 ± 0.002 0.526 ± 0.002 0.766 ± 0.001 0.783 ± 0.001

Table 15: Dataset Inference for fine-tuning with a different number of samples. We detect if
a given encoder was stolen after fine-tuning with a different number of samples. We use a stolen
encoder from the SVHN victim model and then retrain it with standard contrastive training using 5
epochs and data from CIFAR10.

of points p-value �µ

5K 3.24e-16 7.03
10K 1.82e-16 7.14
20K 6.91e-14 6.09
50K 5.28e-12 5.53

sim(a, b) = 1� 2(1� Score`2)
2

C = |1� 2(1� Score`2)
2|

When computing the distances and similarity, centering and normalizing the representations before
computing the scores is important to get useful metrics. Centering (i.e. subtracting the mean of the
elements in each representation from each element) allows for the values in the representations to be
distributed in a similar way about the mean so that values above the mean are positive while values
below the mean are negative. Normalizing the representations scales the values in the representations
from the two encoders being compared to a similar range which then makes the metrics consistent
across different encoders where representations may have different ranges of values. Moreover,
normalizing the representations allows for Theorem 1 to be applied which then gives us bounded
score metrics and a relationship between the `2 score and cosine similarity score.

H Additional Figures

In this section, we present additional figures.

Figure 7 presents the full overview of our dataset inference method for the self-supervised models.
Figure 1 presents the resolution of the encoder ownership (this is a simplified version of Figure 7).

I Number of Queries For Dataset Inference

In Table 15, we check how the dataset inference performs after fine-tuning the stolen model with a
different number of samples.

In Table 16, we check how the dataset inference performs after fine-tuning the stolen model with a
different number of epochs.

24

Victim ௩݂

݄஽ುభ

Test
Data ܦே

Steal

Density
Estimator ࣟ௦

݄஽ುభ
݄஽ಿ

݄஽ುభ
݄஽ಿ

ሺ݄஽ುభሻ݌ ൐ ሺ݄஽ಿሻ݌

Density
Estimator ࣟ௩

Density
Estimator ࣟ௜

Stolen ௦݂

ሺ݄஽ುభሻ݌ ൎ ሺ݄஽ಿሻ݌

Independent
௜݂

Private Train
Data ܦ௉

1

2

3

ሺ݄஽ುభሻ݌ ൐ ሺ݄஽ಿሻ݌

௉ଵܦ

4

Training
Inference

௦݂

௜݂

௉ଶܦ
݄஽ಿ

Figure 7: Dataset Inference on Encoders. 1 Victim trains encoder fv using private training data DP . 2
Adversary steals fv: submit queries from dataset DS and obtain representations hDS to train the stolen encoder
fs. 3 Arbitrator trains density estimators: divide DP into non-overlapping partitions DP1 and DP2, and train
density estimators Ev , Es and Ei using the representations of fv , fs, fi on DP2, respectively. 4 Arbitrator
performs dataset inference: apply Ev , Es and Ei on the representations of DP1 and DN of each encoder. For the
victim and stolen encoders, the log-likelihood of the representations of DP1 is significantly higher than DN ,
whereas, for an independent encoder, the log-likelihoods of the representations are not significantly different.

Table 16: Dataset Inference for fine-tuning with a different number of epochs. We detect if a
given encoder was stolen after fine-tuning with a different number of epochs. We use a stolen encoder
from the SVHN victim model and then retrain it with standard contrastive learning using 50K data
points from CIFAR10.

of epochs p-value �µ

5 5.28e-12 5.53
10 8.73e-6 4.62
25 6.81e-1 1.34
50 1.73e-1 0.92

100 8.53e-1 -0.53

25

