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Abstract
Self-supervised models are increasingly prevalent in machine learning (ML) since
they reduce the need for expensively labeled data. Because of their versatility in
downstream applications, they are increasingly used as a service exposed via public
APIs. At the same time, these encoder models are particularly vulnerable to model
stealing attacks due to the high dimensionality of vector representations they output.
Yet, encoders remain undefended: existing mitigation strategies for stealing attacks
focus on supervised learning. We introduce a new dataset inference defense, which
uses the private training set of the victim encoder model to attribute its ownership
in the event of stealing. The intuition is that the log-likelihood of an encoder’s
output representations is higher on the victim’s training data than on test data if it
is stolen from the victim, but not if it is independently trained. We compute this
log-likelihood using density estimation models. As part of our evaluation, we also
propose measuring the fidelity of stolen encoders and quantifying the effectiveness
of the theft detection without involving downstream tasks; instead, we leverage
mutual information and distance measurements. Our extensive empirical results in
the vision domain demonstrate that dataset inference is a promising direction for
defending self-supervised models against model stealing.

1 Introduction

The self-supervised learning (SSL) paradigm enables pre-training models with unlabeled data to learn
generally useful domain knowledge and then transfer the knowledge to solve specific downstream
tasks. The ability to learn from unlabeled data alleviates the high costs of labeling large datasets [24],
and the transfer learning setup reduces the computational costs of retraining. These advantages have
made SSL increasingly popular [20] in domains like vision [5], language [12], and bioinformatics [29].

Recently, commercial service providers like Cohere [1] and OpenAI [2] began offering paid query
access to trained SSL encoders over public APIs. This exposes the encoders to black-box extraction
attacks, i.e., model stealing. In a model stealing attack, an attacker aims to train an approximate
copy of a victim model by submitting carefully chosen queries and observing the victim’s outputs.
The high costs of data collection, preprocessing and model training make encoders valuable targets
for stealing. For example, the training data of CLIP includes 400 million image and text pairs [37],
while computation costs of training a large language model can exceed one million USD [41]. The
threat of model stealing in SSL is real: researchers have demonstrated that encoders can be stolen at a
fraction of the victim’s training cost [14, 39]. Yet, most current defenses are designed for supervised
models [15, 23, 35] and cannot be directly applied to encoders [14].

Dataset inference [31] is a state-of-the-art defense against model stealing in the supervised learning
setting. The defense provides ownership resolution: it enables the model owner to make a strong
statistical claim that a given model is a stolen copy of their own model by showing that this model
is derivative of their own private training data. Dataset inference does not require retraining or
overfitting the model to any form of explicit watermark [4] and has been shown to resist attacks from

⇤Corresponding and leading author: adam.dziedzic@utoronto.ca
†Equal contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Test 
Data ܦே

Density
Estimator ࣟ

݄ುభ

݄ಿ
ሺ݄ುభሻ  ሺ݄ಿሻ

Stolen ݂

Private Train
Data ܦ

ଵܦ

Training
Inference

݂

ଶܦ

݄ುమ
ሺ݄ುభሻ ൎ ሺ݄ಿሻ

Independent ݂

Figure 1: Ownership Resolution for Encoders. First, an arbitrator trains density estimator E : divide DP

into non-overlapping partitions DP1 and DP2, and train density estimator E using the representations hDP2 of
f on DP2. Next, the arbitrator performs dataset inference: apply E on the representations of DP1 and DN of the
encoder f . For a stolen encoder, the log-likelihood of the representations hDP1 is significantly higher than hDN ,
while, for an independent encoder, the log-likelihoods of the representations are not significantly different.
adaptive adversaries [31]. These properties make the defense particularly attractive for SSL, as large
encoders can be expensive to retrain, and performance is paramount because it carries over to all
downstream tasks. However, the original dataset inference algorithm from [31] cannot be applied
to encoders, because it relies on computing distances between data points and decision boundaries.
These decision boundaries do not exist in SSL encoders since they are trained on unlabeled data.

We introduce a new dataset inference method (Figure 1) to defend against model stealing for encoders.
Our algorithm is suitable for the high-dimensional outputs of SSL encoders and does not rely on
labeled data or decision boundaries. Instead, it relies solely on the private training data of the victim
encoder as a signature. Moreover, our algorithm retains the advantages of dataset inference for
supervised models [31], namely, it does not require retraining or overfitting the SSL encoder.

Our key intuition is to identify stolen encoders by characterizing differences between an encoder’s
representations on its training data vs on unseen test data. The victim encoder and its derivatives,
such as stolen copies, exhibit different behavior on the victim’s private training data than on test
data; independently trained encoders do not. These differences exist because encoders overfit to
training data [18, 30]. Although for well-trained encoders the effect is minimal on any given data
point, we show that when aggregated over many training points it provides a statistically strong
signal. To identify the differences, we train a Gaussian Mixture Model (GMM), as an efficient general
approximation, to model the distribution of an encoder’s data representations from its training domain.
We then use the GMMs to predict the log-likelihood of the encoders’ representations of the victim’s
training set and a test set; derivatives of the victim encoder will have a higher log-likelihood on the
training set than on the test set. We perform experiments on five datasets from the vision domain and
show that we are able to distinguish between stolen and independent encoders even in cases when
adversaries obfuscate the representations from the stolen encoders to hide the theft (e.g., by shuffling
the elements in the representation vectors or applying to them some form of a linear transformation).

As part of our evaluation, we also introduce new metrics to measure the fidelity of stolen encoders
without involving downstream tasks and to quantify the effectiveness of theft detection. We compute
scores directly on the representations using tools from information theory and distance metrics. These
methods work well because losses used for stealing encoders directly minimize distances between
representations of victim and stolen encoders. Our mutual information score to assess the quality of
the stolen encoders is robust against obfuscations that an adversary might apply to the representations
returned by a stolen encoder. Without any obfuscation, our cosine similarity score shows a clearer
distinction between stolen and independent encoders. Finally, using these metrics, we observe that the
higher the quality of the stolen encoders, the more confident our dataset inference defense becomes.

Our main contributions are as follows:

• We propose a new defense against model stealing attacks on encoders, by combining dataset
inference with density estimation models for ownership resolution on unlabeled data.

• We are the first to design new metrics that quantify the quality of stolen encoders, which are derived
from the mutual information and distances between representations.

• We evaluate our defense using five datasets from the computer vision domain and show that our
defense can successfully identify stolen encoders with a strong statistical significance.
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2 Related Work

In model stealing, an adversary queries the victim model, obtains outputs, and uses them to recreate a
copy of the victim [42]. This is most commonly performed with black-box access, e.g., via a public
API. When stealing encoders in SSL, the goal of an adversary is to extract high-quality embeddings
either to train a stolen copy that achieves high performance on downstream tasks, or to obtain faithful
replicas of the victim’s embeddings on the same inputs. Stolen encoders might be further used for
model reselling, backdoor attacks, or membership inference [9].

While most past research on model stealing and defenses focuses on classifiers trained via supervised
learning, recent work constructed new attacks that target encoders [14, 39]. The main differences
between the attacks in these settings are that the outputs of encoders leak more information due
to their higher dimensionalities [39], and the attacks require different loss functions. Inspired by
contrastive learning, Cont-Steal [39] provides a method of stealing encoders using a loss function
based on InfoNCE [5]. SSL extraction [14]—a general Siamese-network-based framework for
stealing encoders—leverages losses including mean squared error, InfoNCE, Soft Nearest Neighbor,
and Wasserstein distance. The authors empirically show that an adversary can steal an ImageNet
victim encoder in less than a fifth of the queries required for training.

Proof of Learning (PoL) [22] is a reactive defense that involves the defender claiming ownership of a
model by showing incremental updates of the model training. It is a complementary method to dataset
inference, which instead identifies a stolen model. PoL could be applied directly to SSL encoders,
however, it requires an expensive verification process, where the verifier needs to perform model
updates and the prover needs to save intermediate weights of the model, which is more expensive
than dataset inference with GMMs. Unfortunately, other current defenses against model stealing for
supervised learning are inadequate for defending encoders, and adjusting them to the specificities
of encoders is non-trivial [14]. One line of approach is watermarking [9, 14], where the defender
embeds a secret trigger into the victim encoder during training to determine ownership at test time.
However, watermarking-based defenses have two significant disadvantages. First, researchers have
repeatedly shown that adaptive attackers can remove watermarks without severely affecting model
performance [7, 21, 40, 44], e.g., through pruning, fine-tuning, rounding or performing backdoor
removal [4]. Second, the watermark must be embedded during training; if a model is already trained,
or if a watermark defense needs to be updated, the model must be retrained. This is not practical for
large encoders.

Another state-of-the-art defense against model stealing in the supervised setting is dataset infer-
ence [31] which addresses these disadvantages. However, the adaptation of dataset inference to
encoders is difficult, because (1) the algorithm [31] relies on decision boundaries, which do not exist
for encoders; and (2) encoders are less prone to overfitting, which provides the signal for dataset
inference [14, 31]. Therefore, naive approaches like computing the loss of representations or distances
between train and test sets are ineffective [14]. To overcome these issues, we extract more signals
from the representations by estimating their densities for train and test sets, as described in Section 3.

When it comes to comparing signals within representations, prior work has considered measuring the
similarity between different representations. This has led to the proposal of various similarity metrics
including canonical correlation analysis (CCA) [33], centered kernel alignment (CKA) [25], and the
orthogonal Procrustes distance [13], which use methods from linear regression, principal component
analysis (PCA), and singular value decomposition (SVD). However, these metrics are very general
and complex. They have also been shown to disagree in some cases [13]. Since we can only access
the final embeddings from encoders, we design metrics more closely related to our setting.

3 Defense Method

Dataset inference serves as a defense against model stealing. It enables the model owner or a
third-party arbitrator to attribute the ownership of a model in the event that it is stolen. The idea
is to take advantage of the effects of knowledge from the victim’s training set and to use that as
a signature for attributing ownership. Given a well-trained encoder, the effects are small on any
single data point; however, when aggregated over many points in the training set, they collectively
provide a strong statistical signal for dataset inference. As depicted in Figure 2, for a victim that
leverages the private data DP during training or a stolen copy, we can identify a difference between
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Figure 2: Dataset Inference - In-
tuition. DP and DN come from
the same distribution. For indepen-
dent encoders, their representations
hDN and hDP are i.i.d. while for
victim/stolen encoders, hDN and
hDP induce different distributions.

distributions of the train data’s representations hDP and the
test data’s representations hDN while the distributions of these
representations from an independent encoder cannot be distin-
guished. We use this signal to determine whether a model is
a derivative of the victim’s training data, i.e., either directly
trained on the data or stolen from the victim. To capture the sig-
nal, we first partition the victim encoder’s training data into two
subsets and use one to train Gaussian Mixture Models (GMMs)
with the aim of modeling the distribution of representations of
data from the encoder’s domain. Then, we apply the GMMs
to perform dataset inference by measuring the log-likelihood
of the encoder’s representations of the remaining training data
vs some test data (see Figure 1). For the victim encoder or its
stolen copies, the log-likelihood of training data representations
is significantly higher than the one of test data. We use this to
construct statistical t-tests to determine whether a model is stolen, and present our empirical results
in Section 5.

3.1 Threat Model

As described in Figure 7, we consider a victim encoder fv trained on a private training dataset DP .
An adversary with black-box access to fv trains a stolen encoder fs by querying the victim with data
points from a dataset DS to obtain representations. These representations are then used as part of
the training objective for the stolen encoder. During the dataset inference, we assume the presence
of a third-party arbitrator, such as law enforcement, with white-box access to the victim’s training
data, as well as all encoders. Additionally, the arbitrator requires the test dataset DN from the same
distribution as DP to perform dataset inference. An independent encoder fi is trained with no access
to the victim’s private training set DP and without any queries to the victim’s encoder. It is used as a
baseline for the ownership resolution in the dataset inference.

3.2 Density Estimation of Representations

Representations from encoders contain rich features for given inputs. We analyze the inputs that
come from the training and test sets through their representations. For the training inputs, we compute
their representations and model their densities [16]. To this end, we leverage GMMs as universal
approximators of densities. We give representations a probabilistic interpretation such that they
have a smooth enough density which can be approximated by any specific nonzero amount of error
using a GMM with enough components. Each component has a separately parameterized mean µ

and covariance ⌃. In some cases, we observe that GMMs can overfit to their training data when
no constraints are applied to the covariance matrix, hence we limit the covariance matrix for each
component to be diagonal. Moreover, this constraint makes training more computationally efficient
since it avoids storing and inverting full high-dimensional covariance matrices.

3.3 Data Flow

The full flow of our dataset inference for encoders consists of the following four main steps (which
are also visualized in Figure 7 in Appendix):

1. Victim Training. The victim’s encoder fv is trained using the whole private training dataset DP .
2. Encoder Stealing. To steal the victim encoder fv, an adversary queries fv with data points

from DS to obtain representations hDS 2 Rn : hDS = fv(DS). With these representations, the
adversary trains the stolen encoder fs in a contrastive manner.

3. Training Estimators. To perform ownership resolution, an arbitrator trains three density estima-
tors Ev , Es and Ei for the victim fv , stolen fs, and independent encoder fi as follows:
a) DP (where DP is not necessarily the whole private training dataset) is divided into two

non-overlapping subsets DP1 and DP2. While DP2 serves as the base for training the density
estimators, DP1 is used to evaluate density estimates of the private training data vs part of the
test data DN .
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b) For a given encoder f 2 {fv, fs, fi}, the arbitrator generates representations h 2 Rn :
hDP2 = f(DP2) on dataset DP2. Training the density estimators on the respective represen-
tations yields the final density estimators Ev, Es, and Ei.

4. Estimating Densities. The arbitrator generates representations of DP1 and (a subset of) DN

with each encoder f 2 {fv, fs, fi}. Applying the respective density estimator E 2 {Ev, Es, Ei}
on the representations yields the log-likelihood of each data point x in the respective dataset:
8x 2 D : p(x) = E(f(x)).

3.4 Ownership Resolution

For an encoder f , we compute the log-likelihood on DP1 and DN as: uP := 1
|DP1|

P
x2DP1

E(f(x))
and uN := 1

|DN |
P

x2DN
E(f(x)). The density estimator E measures the similarity between the

distributions over the victim’s representations of the training DP vs test data DN . The intuition
behind the setup is that if an encoder was trained on DP , representations of DP1 are much more
similar to representations of DP2, because the whole dataset DP was used for training the encoder,
however, representations of DN differ from representation of DP2 since DN was not used to train
the encoder. For a victim fv and a stolen encoder fs, uP is significantly larger than uN , whereas, for
an independent encoder fi, the values do not differ significantly. Finally, we carry out a hypothesis
test with the null hypothesis being: H0 := uP  uN . If the null-hypothesis can be rejected (p-value
< 0.05), i.e., when the log-likelihood for the training set DP1 is higher than that for the test set DN ,
we can conclude that the tested model was stolen. On the other hand, if the null hypothesis cannot be
rejected then the test is inconclusive and we cannot determine if a tested encoder was stolen or not.

4 Encoder Similarity Scores

Measuring the quality of stolen encoders allows us to assess attacks and defenses. In standard
supervised learning, the quality of a stolen model is evaluated using two main objectives, namely task
accuracy, which is the model’s performance on the test set, and fidelity, which is the agreement in the
predictions for a given task between the stolen and the victim model [19]. One of the approaches
to measure the quality of an extracted encoder is to use its outputs to train a downstream task and
compute the accuracy of that task or fidelity (with respect to the outputs of the downstream task
trained on the victim encoder). However, a single downstream task cannot adequately reflect
the degree of similarity between encoders since it reduces their high dimensional embeddings to
single label representations, which are confounded by choices of downstream data and training
protocol. Instead, we propose two new metrics. Our first metric is an information-theoretic score
based on mutual information [10, 27]. Our second metric is a cosine similarity score based on the
representations returned by different encoders. These metrics correspond to the fidelity metric in
supervised learning. The behavior of the two metrics differs in certain cases, for example, when used
on obfuscated representations (e.g., with shuffled elements) or with independent models, however,
we find that the overall trend is similar. Moreover, the mutual information score is based on an
approximation while the cosine similarity score is calculated exactly given representation vectors.
Often the effectiveness of defenses may be underestimated against low-quality stolen copies that
haven’t successfully stolen victim behavior. Our metrics help disentangle such effects and enable
faithful evaluation of defenses.

4.1 Mutual Information Score

Our first approach to assessing the quality of a stolen encoder uses a score based on mutual information.
We sample N data points from the victim’s private training dataset DP and pass them through the
encoders fv, fs, and fi to generate the respective representations. Per standard practice, we recenter
and normalize the representations [13]. We denote the entropy by H and compute it according
to Algorithm 2 which takes fv, DP , and N as input. For the joint entropy H(fv, fs|D), we
generate representations from the two encoders (in this case victim fv and stolen fs) and concatenate
them, which increases the dimensionality of the final representation to 2d, while other steps remain
unchanged. A detailed algorithm for computing the joint entropy can be found in the Appendix as
Algorithm 3. We compute an approximate score that is based on the definition of mutual information
I(fv, fs|DP ) between the victim encoder fv and the stolen copy fs as well as the analogous mutual
information I(fv, fi|DP ) between the victim encoder fv and the independently trained encoder fi.
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We rely on approximations since we measure mutual information using finite data. Yet, in practice,
such approximations have proven useful [32]. We define our mutual information score as follows:

I(fv, fs|DP ) = H(fv|DP ) +H(fs|DP )�H(fv, fs|DP ). (1)

A higher value of the mutual information I(fv, fs|DP ) indicates a higher information leakage
incurred by the stolen encoder. Expectedly, mutual information is higher between the victim and the
stolen encoder than between the victim and independent encoders I(fv, fs|DP ) >> I(fv, fi|DP ).
We can normalize mutual information into a score (between 0 and 1) by setting the lower bound as the
mutual information between the victim fv and a randomly initialized model fr: Imin = I(fv, fr|DP )
and the upper bound as the mutual information between the victim and itself: Imax = I(fv, fv|DP )
For the current mutual information score Ic, the normalized score is defined as S := Ic�Imin

Imax�Imin
.

4.2 Cosine Similarity Score

The second score we use to assess the quality of a stolen encoder is based on the cosine similarity
between its representations and the victim’s representations. More specifically, we first compute
representations for the two encoders on a set of N randomly selected data points from the dataset DP .
Again as per standard practice [13], we recenter and normalize these representations. For each of the
N inputs, we then compute the cosine similarity between the corresponding representations from
both encoders where the cosine similarity sim(a, b) = aT b

||a||2||b||2 for representation vectors a and b.

We show (in Section 4.3) that the loss functions, which are used for stealing encoders, directly
maximize the cosine similarity between representations from victim and stolen encoders. We thus
propose to use the cosine similarity score C as a metric, which we define as: C = |sim(a, b)| (2).
The score yields values in the range [0, 1], with a higher score indicating closer representations. To
calculate a per-encoder cosine similarity score, we average the cosine similarity scores over all inputs.
We find that the cosine similarity score is well-calibrated across encoders. Namely, an independent
encoder, expected to have representations unrelated to the victim encoder, has an average cosine
similarity concentrated around 0 [9], while a stolen encoder exhibits significantly higher scores. The
cosine similarity score is also easy to compute since it only requires the corresponding representations
of the two models and their dot product.

4.3 Analysis

There are various ways in which an attacker may steal an encoder. To simplify our analysis of the
cosine similarity score, we consider the two best-performing loss functions used for stealing [14]: the
first where the attacker minimizes the non-contrastive MSE (Mean Squared Error) loss between its
representations and the victim encoder’s representations to train the stolen encoder, and the second
where the attacker uses a contrastive loss function, such as the InfoNCE loss [43] which is used in
SimCLR [5].

Stealing with MSE loss. In the case where the MSE loss is used, let xi be a query made by
an attacker and let fv(xi) = hvi , fs(xi) = hsi 2 Rn be the corresponding representations of
the victim and stolen encoders, respectively. The MSE loss between these two representations is
1
n

Pn
j=1(hvij � hsij )

2 = 1
n ||hvi � hsi ||22. It follows directly that minimizing the MSE loss also

minimizes the `2 distance between representations and equivalently maximizes the cosine similarity
between representations: Theorem 1 ||a� b||2 =

p
2(1� sim(a, b)), ||a||2 = ||b||2 = 1 (see G.1).

Stealing with a contrastive loss. When an attacker uses a contrastive loss function for stealing,
minimizing the loss corresponds to maximizing the sum of the cosine similarities between positive
pairs, i.e.,

Pm
c=1(sim(hsc , hvc)/⌧). The InfoNCE loss, or contrastive losses in general, also increase

the mutual information score [3, 43]. We therefore expect that stolen encoders will have larger
similarity scores w.r.t. the victim encoder than independent encoders. We refer the reader to
Appendix G.1 for a more detailed discussion of the loss functions and their relationship with the
similarity scores.
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5 Empirical Evaluation

We evaluate our defense against encoder extraction attacks using five different vision datasets
(CIFAR10, CIFAR100 [28], SVHN [34], STL10 [8], and ImageNet [11]). Table 1 shows that our
dataset inference method is able to differentiate between the stolen copies of the victim encoder and
independently trained encoders by using the victim’s private training data as the signature. We also
show that our defense works in the scenario where the adversary modifies the representations to
render them inconspicuous, e.g., by shuffling the order of elements in the representation vectors. To
assess the quality of the stolen encoders and the performance of our defense, we measure the mutual
information and cosine similarity scores between encoders and present our results in Tables 2 and 3.

5.1 Training Victim, Stolen and Independent Encoders

Victim. We use victim encoders trained on the ImageNet, CIFAR10, and SVHN datatsets. For the
ImageNet victim encoder , we use a model released by the authors of SimSiam [6]. To train CIFAR10
and SVHN victim encoders, we use an open-source PyTorch implementation of SimCLR 3. For
SVHN, we merge the original training and test splits, and use the randomly-selected 80% as the
training set and the rest 20% as the test set. This is necessary because the original training and test
splits for SVHN are not i.i.d [36], which violates the assumption for dataset inference (see Section
B). The ImageNet victim has an output representation dimension of 2048, while the CIFAR10 and
SVHN victim encoders have 512-dimensional representations.

Stolen. When stealing from the victim encoders, we evaluate different numbers of queries from
various datasets, including CIFAR10, SVHN, ImageNet, and STL10. Stolen encoders are trained in a
similar contrastive way as the victim and use the InfoNCE loss, where the positive pairs consist of
representations from the victim and stolen encoder for a given input. Algorithm 1 summarizes the
stealing approach used by an adversary.

Independent. For each victim encoder, we train independent encoders using datasets different
from the victim’s private training dataset DP . The encoders are trained with the SimCLR approach,
similar to the way the victim encoders were trained. In the case where the dataset used to train the
independent model had different image dimensions from the victim’s training dataset, the dataset was
resized to be of the same size.

More details on the training and stealing of encoders can be found in Section D.3 of the Appendix.

5.2 Dataset Inference on Encoders

Setup. We train GMMs with 10 components for SVHN and CIFAR10, and 50 components for
ImageNet. In general, we observe that the larger number of components for GMMs, the better
the defense is. For ImageNet, we restrict the covariance matrix to be diagonal for efficiency. For
CIFAR10 and SVHN, we use the full covariance matrix. For SVHN and CIFAR10, we use 50%
of the training set to train GMMs, and the remaining for evaluation. For ImageNet, we use 100K
images from the training set to train GMMs, and another 100K of the training set as an evaluation
set. We normalize representations by l2 norm for training GMM. For ImageNet, we also standardize
representations (subtract mean and divide by standard deviation) before normalization. We do not
use augmentations in dataset inference. For each setting, the hyperparameters are tuned on the victim
model and a randomly-initialized model.

Evaluation of our Defense. The empirical results in Table 1 demonstrate that we are able to
differentiate between stolen and independent encoders from the difference in log-likelihoods. We
observe that the stolen encoders have significantly larger �µ than the independent encoders. The
p-values further show that for stolen encoders the null hypothesis is rejected while for independent
encoders, the test is inconclusive. Similar to dataset inference for supervised learning [31], the victim
model typically has the largest �µ and the smallest p-values. We also observe that our method is
better at detecting encoders that are stolen using queries from the victim’s training set.

Number of Stolen Queries. Table 3 shows that as the attacker steals with more queries, the p-value
from our defense becomes lower. This is consistent with the finding in [31] that dataset inference
works better with stronger stolen encoders. We also find that our defense is able to detect stolen

3https://github.com/kuangliu/pytorch-cifar
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Table 1: Dataset inference via density estimation of representations. We detect if a given encoder
was stolen. fv denotes the victim encoder trained on data D, fs is the stolen encoder extracted using
queries from a given stealing dataset D, and fi is an independent encoder trained on data D (different
than the victim’s private training data). Each value is an average of 3 trials. �µ is the effect size from
the statistical t-test. Obfuscations: the representation can be modified by an attacker in the following
ways: (1) Shuffle the elements in the representation vectors, (2) Pad with zeros or add zeros at random
positions, and (3) apply a linear Transform. The first row below denotes the victim’s private data DP .

Victim’s private data: CIFAR10 SVHN ImageNet

Encoder Obfuscate D p-value �µ D p-value �µ D p-value �µ

fv N/A CIFAR10 5.61e-82 18.92 SVHN 2.75e-125 23.88 ImageNet 6.23e-14 7.09

fs N/A
SVHN 3.97e-2 3.04 SVHN 6.35e-41 13.36 SVHN 3.33e-4 4.04

CIFAR10 8.73e-7 5.09 CIFAR10 2.38e-4 4.61 CIFAR10 1.47e-4 6.21
STL10 1.04e-2 3.42 STL10 1.23e-5 5.22 STL10 1.09e-4 5.87

ImageNet 6.34e-3 3.47 ImageNet 9.81e-3 3.74 ImageNet 3.14e-5 7.32

fs
Shuffle CIFAR10 1.72e-6 4.98 CIFAR10 7.32e-4 4.77 CIFAR10 6.72e-4 5.21

Pad CIFAR10 3.44e-6 4.84 CIFAR10 2.51e-3 3.08 CIFAR10 2.31e-3 4.23
Transform CIFAR10 6.81e-7 5.11 CIFAR10 6.45e-3 3.32 CIFAR10 8.45e-3 3.98

fi N/A CIFAR100 3.67e-1 -0.37 CIFAR100 6.21e-1 0.52 CIFAR100 7.53e-2 1.63
SVHN 2.96e-1 0.98 CIFAR10 4.82e-1 0.56 SVHN 5.42e-1 0.69

encoders even if the attacker only steals from a small number of queries. For example, in Table 3, we
are able to claim ownership when only 50K - 100k queries are used for stealing ImageNet victims
(around 4% of its training set).

Robustness of Dataset Inference to Obfuscations. The attacker can obfuscate the stolen encoder
representations by, for instance, applying shuffling (changing the order of elements), padding (adding
zeros), or linear transformations (e.g., scaling or adding a constant). These obfuscations have little
impact on the downstream performance [17] but may pose challenges to the defenses of the victim.
The results in Table 1 show that the p-values for the stolen encoders after attackers’ obfuscations
remain low, which implies that our method is robust to these types of obfuscations.

5.3 Measuring Quality of Stolen Encoders

Figure 3: Distribution of cosine similar-
ity scores.

Setup. To measure the quality of stolen encoders, we se-
lect a random subset of N = 20K unaugmented images
from the private training dataset DP and compute their
representations from stolen and victim encoders. We then
centralize (subtract the mean for each dimension) and nor-
malize the representations (divide by the `2 norm). For the
mutual information score, we first estimate the entropies
H(fv), H(fs), H(fv, fs), which are then added and nor-
malized as in Section 4.1. The score is capped to be in the
range [0, 1]. To compute the cosine similarity score, we
find the absolute value of the dot product of corresponding
representations for the two encoders (Equation 2). These
dot products are then averaged over all representations.

Evaluation of Metrics. To evaluate the mutual informa-
tion and the cosine similarity scores, we conduct two sets
of experiments to verify if: (1) the scores are higher for
stolen than independent encoders, and (2) the scores increase as more queries are used to steal
encoders, which suggests a higher quality of the stolen copies [14]. In Table 2, we observe that both
our scores assign higher values to the stolen encoders than the independent encoders. Table 3 shows
that our mutual information and cosine similarity scores generally increase while the p-values from
our dataset inference decrease with respect to the number of queries used to steal an encoder. This
implies that the performance of our defense is consistent with the similarity metrics and becomes
more effective as the quality of the stolen encoder improves. We also plot a histogram of the cosine
similarity scores for the stolen and independent encoders in Figure 3 for an SVHN victim encoder,
a stolen encoder from it (using CIFAR10 training data for queries), and an independent encoder
(trained on CIFAR100). There is a pronounced difference between the two distributions with the
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Table 2: Encoder similarity scores. We compare encoders via the encoder quality metrics using the
same setting as in Table 1. We compute the score S(·, fv) based on the mutual information between
a given encoder (in a row) and the victim encoder fv . Analogously, we compute the cosine similarity
score C(·, fv).

Victim’s private data: CIFAR10 SVHN ImageNet

Encoder Obfuscate D S(·, fv) C(·, fv) D S(·, fv) C(·, fv) D S(·, fv) C(·, fv)

fv N/A CIFAR10 1.0 1.0 SVHN 1.0 1.0 ImageNet 1.0 1.0

fs

N/A SVHN 0.73 0.504 SVHN 0.96 0.91 SVHN 0.86 0.39
N/A CIFAR10 0.84 0.95 CIFAR10 0.94 0.69 CIFAR10 0.88 0.43
N/A STL10 0.89 0.92 STL10 0.95 0.89 ImageNet 0.96 0.78

fs

Shuffle SVHN 0.74 0.002 CIFAR10 0.94 0.003 SVHN 0.86 0.005
Pad SVHN 0.74 0.007 CIFAR10 0.93 0.013 SVHN 0.85 0.003

Transform SVHN 0.75 0.504 CIFAR10 0.93 0.69 SVHN 0.86 0.39

fi
N/A CIFAR100 0.63 0.0007 CIFAR100 0.90 0.007 CIFAR100 0.81 0.0018
N/A SVHN 0.12 0.0001 CIFAR10 0.90 0.009 SVHN 0.75 0.002

Table 3: Encoder similarity scores and p-values from dataset inference vs the number of queries.
The quality of the stolen encoders increases with more stealing queries, which is reflected by the
rise in the mutual information and cosine similarity scores as well as the better performance of our
defense as indicated by the decreasing p-values. DP is the private dataset used to train the victim and
DS is the dataset used for stealing.

DP DS Score Number of Queries
5K 10K 20K 30K 40K 50K 100K 200K 250K

ImageNet SVHN
S(·, fv) 0.62 0.79 0.79 0.81 0.82 0.84 0.85 0.85 0.86
C(·, fv) 0.25 0.32 0.33 0.36 0.35 0.38 0.38 0.40 0.39
p-values 1.23e-1 7.91e-2 6.53e-2 8.98e-2 4.52e-2 1.10e-2 2.11e-3 1.11e-3 3.33e-4

500 5K 7K 8K 9K 10K 30K 40K 50K

ImageNet CIFAR10
S(·, fv) 0.55 0.60 0.62 0.75 0.58 0.64 0.87 0.82 0.88
C(·, fv) 0.21 0.28 0.31 0.29 0.36 0.32 0.40 0.41 0.43
p-values 8.88e-2 7.12e-2 8.23e-1 4.14e-1 3.41e-3 8.51e-21 9.23e-2 7.32e-2 1.47e-4

500 5K 7K 8K 9K 10K 30K 50K 100K

ImageNet STL10
S(·, fv) 0.76 0.75 0.72 0.81 0.84 0.81 0.89 0.88 0.92
C(·, fv) 0.28 0.29 0.36 0.38 0.37 0.43 0.44 0.52 0.58
p-values 9.63e-1 8.21e-1 7.32e-1 5.44e-1 1.21e-1 5.98e-2 8.11e-2 6.28e-2 1.09e-4

5K 10K 20K 30K 40K 50K 100K 200K 250K

ImageNet ImageNet
S(·, fv) 0.61 0.75 0.73 0.76 0.81 0.91 0.90 0.95 0.96
C(·, fv) 0.29 0.48 0.49 0.51 0.46 0.38 0.52 0.76 0.78
p-values 9.88e-1 3.21e-1 5.32e-1 1.08e-1 3.61e-3 3.97e-4 5.34e-4 8.72e-4 3.14e-5

cosine similarity scores for the independent encoder being close to 0 and the scores for the stolen
encoder being much higher than 0.

Robustness of Metrics to Obfuscations. We also consider the effect of obfuscations on these metrics.
Without any obfuscation of the representations from stolen encoders, the cosine similarity score
shows a clearer distinction between stolen and independent encoders than the mutual information
score: in Table 2, the cosine similarity scores for all independent encoders are close to zero, but the
mutual information scores can be quite high (such as 0.9 for the independent encoders of SVHN,
which is likely because of the mutual information score being based on an approximation). However,
the mutual information score is robust to the obfuscations of the attackers while cosine similarity is
not: in Table 2, the cosine similarity score for the stolen encoders after shuffling and padding drops
close to zero. Mutual information, as a more general metric based on the information measurement
instead of the brittle structure of the representation vectors, performs better and is oblivious to the
obfuscations that attackers might introduce.

5.4 Limitations

If the t-test run as part of dataset inference is inconclusive for an extracted encoder, we cannot
state whether the encoder was stolen. Similarly, for an independent encoder, there is the possibility
of it being incorrectly classified as stolen. Previous work [26, 38] has shown that self-supervised
encoders trained using heavy augmentations and contrastive learning generalize better than their
supervised counterparts, which makes it harder for the dataset inference to differentiate between train
and test representations in SSL than in the SL setting [14]. The loss values of projected individual
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representations are insufficient for dataset inference [14]. We build on top of this observation to enable
dataset inference for encoders and use GMMs to distinguish between train and test representations.

6 Conclusions

New public APIs expose self-supervised encoder models which return high-dimensional embeddings
for provided inputs. Adversaries can use these embeddings to steal the encoders. We present a novel
method based on dataset inference for defending against such stealing attacks along with metrics
to assess the quality of the stolen encoders and to quantify the effectiveness of our defense. We
observe that knowledge contained in the private training set is transferred from the victim encoder to
its stolen copy. Thus, the private data acts as a signature of the victim encoder. By leveraging density
estimation on the respective encoders’ representations, we obtain a signal allowing us to differentiate
between the encoder’s training and test data. This difference is detectable in both the victim encoder
and its stolen copy but not in independent encoders which are legitimately trained on different data
than the victim’s private training data. Thus, we are able to flag the stolen copy of the victim encoder
while not accusing creators of legitimately trained encoders of theft. We show the high effectiveness
of our defense on vision encoders. Future work may explore additional applications of our proposed
defense and metrics beyond model stealing and ownership verification, as well as their use in other
domains such as natural language processing (NLP). In particular, our method may help enforce the
ethical usage of sensitive online data, such as images on social media, in accordance with privacy
regulations by auditing if a given provider’s encoder contains knowledge of these sensitive data.
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