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A Societal Impact

Though deep learning models are in the process of being deployed for safety critical applications, we
still have very little understanding of the structure and evolution of their internal representations. In
this paper we discuss one aspect of these representations. We hope that by better illuminating the
inner workings of these networks, we will be a small part of the larger effort to make deep learning
more understandable, reliable, and fair.

B Code availability

Our code can be found at https://github.com/pnnl/modelsym.

C Examples

We first give an example of two networks with distinct weights which are functionally equivalent.
Let f be a 2 layer network with ReLU activations and weight matrices

W1 =

[
1 0
0 2

]
and W2 =

[
3 0
0 1

]
(and biases = 0). Let f̃ be a network with the same architecture, but with weights

W1 =

[
0 2
1 0

]
and W2 =

[
0 3
1 0

]
.

Then one can verify that f̃(x) = f(x) for all x ∈ R, but that the weights of f and f̃ differ.

We also work through a small example of φσn
where n = 2. Assume that σ is the ReLU nonlinearity.

Then,

A =

[
0 1
2 0

]
belongs to Gσ2

, and we can compute directly that

ReLU ◦
[
0 1
2 0

] [
x1

x2

]
=

[
ReLU(x2)
ReLU(2x1)

]
=

[
ReLU(x2)

2 ReLU(x1)

]
,
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where in the last equality we used the fact that ReLU(ax) = aReLU(x) when a is positive. On the
other hand, [

0 1
2 0

]
◦ ReLU(

[
x1

x2

]
) =

[
0 1
2 0

] [
ReLU(x1)
ReLU(x2)

]
=

[
ReLU(x2)

2 ReLU(x1)

]
.

D Experimental Details

In this section we provide additional experimental results, as well as implementation details for the
purposes of reproducibility. All experiments were run on Nvidia GPUs using PyTorch [Pas+19].

D.1 Sampling pairs of models trained with different random seeds

We began by training 100 models with different random seeds (i.e. with independent initializations
and different random batches) for each of the following architectures:

(i) Myrtle CNN: a simple 5-layer feed-forward CNN with batch normalization.6

(ii) ResNet20: a ResNet tailored to the CIFAR-10 dataset (numbers of channels are 16, 32, 64
respectively in the 3 residual blocks).

(iii) ResNet18: an ImageNet-style ResNet adapted to the input size of CIFAR-10 — much wider
than the above (numbers of channels are 64, 128, 256 respectively in the 3 residual blocks).

More detailed architecture schematics are included in figs. 26a, 27a and 28a.

All models were trained for 50 epochs using the Adam optimizer with PyTorch’s default settings. We
use a batch size of 32, initial learning rate 0.001 and 4 evenly spaced learning rate drops with factor
0.5. We augment data with translations of up to 2 pixels (padded as necessary with the mean RGB
value for CIFAR-10) and left-right flips, and we save the weights with best validation accuracy. In
the rotation penalties experiment of fig. 4 the fine-tuning stage uses the same hyperparameters as the
initial training phase (though of course only a subset of parameters recieve gradient updaates during
fine-tuning). Training this many CIFAR-10 models on a reasonable budget of time and computing
resources was greatly aided by the excellent FFCV library [Lec+22].

In the later stitching and dissimilarity measure experiments, we sample pairs of models from these
“zoos” uniformly with replacement (but of course making sure that the two models in the pair are
distinct). Thus the cost of training hundreds of models is amortized across many runs of stitching
and dissimilarity measurement; this can be also viewed as bootstrap estimation of our experimental
quantities of interest using empirical samples from certain distributions of CIFAR-10 models.

D.2 Stitching Experiments

For stitching layers, we train for 20 epochs with batch size 32 and learning rate 0.001 (with no drops),
however we use vanilla SGD with no momentum (we found the approximate second-order and/or
momentum aspects of Adam interacted in complicated ways with the PGD algorithm described in
appendix D.2.1 below, even after following some helpful advice from the Internet7). Augmentation is
described in the previous paragraph.

We parameterize reduced rank 1-by-1 convolutions as a composition of 2 1-by-1 convolutions, with
in_channels, out_channels = in_channels, rank and rank, in_channels respectively. In
contrast to [BNB21] we omit both batch norm and bias from stitching layers (to stick closely to the
statement of theorem 4.2).

D.2.1 Approximate Optimization over Permutation Matrices

By far the most complicated stitching layer is the one using GReLU, which we describe here. Recall
that GReLU is equal to the n× n matrices of the form PD, where P ∈ Σn is a permutation matrix

6With the exception of the rotation penalties experiment in fig. 4, where we omitted batch normalization to
adhere closely to the theoretical framework of section 3

7https://datascience.stackexchange.com/questions/31709/adam-optimizer-for-projected-gradient-descent
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and D is a diagonal matrix with positive entries We parameterize D simply as D = diag(λi) where
λ1, . . . , λnl

∈ R≥0 — we preserve non-negativity during training by a projected gradient descent
step D ← ReLU(D). During stitching layer training, we parameterize P as a doubly stochastic
matrix, that is, an element of the Birkhoff polytope

B = {A = (aij) ∈ Matnl,nl
(R) | aij ≥ 0 for all i, j,1TA = 1T and A1 = 1}

— after each gradient descent step we project P back onto B by the operation P ← ReLU(P )
followed by P ← sink(P ), where “sink” denotes Sinkhorn iterations. These consist of T iterations
of

A← Adiag(1TA)−1 followed by A← diag(A1)−1A

(it is a theorem of Sinkhorn that this sequence converges to a doubly stochastic matrix of the form
DAE with D,E positive diagonal matrices [Sin64]). We use T = 16 in all experiments (this choice
drew on the work of [Men+18]). In addition, we add a regularization term −α|P |2 to the stitching
objective, where α > 0 is a hyperparameter (the motivation here is that permutation matrices are
precisely the elements of B with maximal `2-norm). Unless stated otherwise in our experiments
α = 0.1. We did experiment with choosing α by cross validation and found the particular choice of
α was not crucial; see appendix D.5 for further details.

At evaluation time, we threshold P to an actual permutation matrix via the Hungarian algorithm
(specifically its implementation in scipy . optimize . linear_sum_assignment [Vir+20]). This amounts
to

Peval = arg max
Q∈Σnl

tr(PtrainQ
T )

As stated above, we train for 20 epochs with batch size 32 and learning rate 0.001 (with no drops),
using SGD with momentum 0.9. However, we allow the permutation factor to get a “head start” by
keeping D fixed at the identity I for the first 10 epochs. This is probably not essential, as shown in
appendix D.5.

Finally, before evaluating the stitched model on the CIFAR-10 validation set, we perform a no-
gradient epoch on the training data with stitching layer Peval. This is critical as it allows the batch
normalization running means and variances in later layers to adapt to the thresholded permutation
matrix Peval; observe that if we omitted this step, during evaluation the “batch normalization layers”
would not even be performing batch normalization per se, since their running statistics would be
computed from features produced by a layer Ptrain no longer in use.

As an aside, we also experimented with the differeniable relaxation of permutation matrices SoftSort
[PE20]. Our final results were comparable, however this method took far longer (> 10×) to optimize
than the Birkhoff polytope method. It is perhaps of interest that we used SoftSort on permutations
far larger than those of [PE20] (e.g., the 512 channels of late layers of our Myrtle CNN). The next
section (appendix D.2.2) contains some of our technical findings.

We wish to aknowledge a couple articles, [Fog+13] and [LW14], that provided us with useful
backround on optimization over doubly stochastic matrices.

D.2.2 Stitching with SoftSort

We parameterized D simply as D = diag(eλi) where λ1, . . . , λnl
∈ R. During stitching layer

training, we parameterized P using SoftSort [PE20], a continuous relaxation of permutation matrices
given by the formula

P = SoftSort(s, τ) := softmax
(
− 1

τ
(sort(s)1T − 1sT )

)
, where s ∈ Rnl ,

sort(s) denotes s sorted in descending order, and softmax is applied over rows. The parameter
τ > 0 controls softmax temperature, and we were only able to obtain reasonable results when tuning
it according to τ ≈ 1/nl . At validation time, we threshold P to an actual permutation matrix by
applying arg max over rows as in [PE20].

D.3 Stitching and GReLU-dissimilarity measures for ResNets

Here we include further results for ResNet20 and ResNet18 architectures. Figure 6 and fig. 7 include
results for full 1-by-1 convolution, reduced randk 1-by-1 convolution and GReLU 1-by-1 convolutions
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Figure 6: Full/reduced rank and GReLU 1-by-1 convolution stitching penalties (4.3) for ResNet20s
on CIFAR-10. Confidence intervals were obtained by evaluating stitching penalties for 16 pairs of
models trained with different random seeds. Accuracy of the models was 89.9 ± 0.2 %. Layers
marked with ‘*’ occur inside residual blocks (remark 3.6).

stitching in the ResNet20 and ResNet18 architectures respectively. Note that in general, layers inside
residual blocks incur higher penalties, consisent with remark 3.6. This holds even in the full 1-by-1
convolution case, a finding that to the best of our knowledge is new.

In the case of ResNet20 we also observe that the relative ranking of the different stitching constraints
tends to change inside of residual blocks: whereas GReLU stitching consistently outperforms rank 1
(and sometimes rank 2) stitching outside residual blocks, it consistently underperforms all strategies
inside residual blocks. Lastly, we remark that the ResNet20 is significantly narrower than the Myrtle
CNN (channels are 16, 32, 64 vs. 64, 128, 256, see figs. 27a and 28a), and hence the low-rank
transformations account for a larger proportion of the available total rank (for example, in early layers
of the ResNet20 rank 4 is 0.25 · fullrank whereas in the early layers of the Myrtle CNN rank 4 is
0.0625 · fullrank). Heuristically, in the narrower network low-rank transformations may suffice to
align for a larger fraction of the principal components of hidden features.

We also observe generally lower stitching penalties in the ResNet18 with the exception of the
penultimate inside-a-residual-block layer — we do not have a satisfactory explanation for random
chance performance at that layer. We also remark that while the penalties in fig. 6 are significantly
higher than those in fig. 1, especially in later layers, we also saw significant dissimilarity in fig. 2 (a),
especially in later layers.

We also modify the ResNet20 to use the LeakyReLU activation function and train models with
different negative slopes s. The accuracy for two models trained with different random seeds at
different LeakyReLU is given in table 3. We perform GReLU stitching in fig. 8. Note that for a
negative slope s = 1, the activation function is the identity. We find the results difficult to interpret
due to the significant decrease in CIFAR-10 accuracy for larger s. With this being said, unlike for
s << 1, we note that the stitching penalties for s = 1 (and to a lesser extent, s = 0.9) are mostly
constant throughout the layers of the network. This is most prominent for the final two ResNet20
layers (72 and 75), where the stitching penalty for models with small LeakyReLU slopes is the
lowest.

Table 3: ResNet20 with LeakyReLU CIFAR-10 accuracy

LeakyReLU SLOPE

1e−4 1e−3 1e−2 0.1 0.5 0.9 1.0
% acc. 89.3± 0.2 89.4± 0.2 89.2± 0.2 89.4± 0.1 86.6± 0.1 73.0± 0.2 41.8± 0.1

Figure 9 contains GReLU and orthogonal Procrustes dissimilarities for the ResNet20. The 2 measures
seem qualitatively quite similar in this case. For the most part the same applies to the ResNet18 in
fig. 10, with the exception of layer 70 (penultimate inside-a-residual-block layer), where we see high
GReLU similarity, in conflict with both fig. 7 and fig. 11 below.
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Figure 7: Full/reduced rank and GReLU 1-by-1 convolution stitching penalties (4.3) for ResNet18s
on CIFAR-10. Confidence intervals were obtained by evaluating stitching penalties for 16 pairs of
models trained with different random seeds. Accuracy of the models was 92.9 ± 0.2 %. Layers
marked with ‘*’ occur inside residual blocks (remark 3.6).
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Figure 8: Stitching penalties (4.3) for ResNet20s trained with different random seeds on CIFAR-10,
where respective ResNet20 models are trained with LeakyReLU activation functions with different
slopes. Accuracy of the models with different LeakyReLU slopes is given in table 3.

We include GReLU and orthogonal CKA dissimilarities for the wider ResNet18 in fig. 11. For the
most part the qualitative remarks on fig. 2 apply here as well — note also the extreme dissimilarity in
layer 70 (in both GReLU and orthogonal cases) consistent with fig. 7.

D.4 Stitching for a Vision Transformer

Here we include an additional stitching experiments with vision transformers from [Has+21] trained
on CIFAR-10. Figure 12 include results for linear stitching andGReLU stitching after each transformer
encoder layer. The large stitching penalties for GReLU are expected due to the lack of activation
functions after the linear (feedforward) layers for each encoder layer.

We train 10 Compact Convolutional Transformers with sinusoidal positional encodings and six
transformer blocks. The average model accuracy was 98% using the distributed training-from-scratch
recipe from [Has+21], which includes 6e−2 weight decay, augmentations (namely mixup [Zha+18]
and CutMix [Yun+19]), label smoothing, and AdamW with a learning rate of 55e−5 with cosine
scheduling.

D.5 Choosing the negative-`2 regularization multiplier α with cross validation

Here we briefly describe an experiment in which the multiplier α of appendix D.2.1 is chosen by cross
validation. Most of the details are as in appendix D.2. However, we create a random 80-20 split of the
CIFAR10 training set into a smaller training and cross-validation set. We then learn GReLU stitching
layers for each α ∈ {10k | k = −3,−2, . . . , 1}, as in appendix D.2.1, with the exception that we
only optimize over our training split for 5 epochs and do not give the permutations a head start. Then,
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Figure 9: GReLU and orthogonal Procrustes dissimilarities for two ResNet20s trained on CIFAR-10
with different random seeds. Layers marked with ‘*’ occur inside residual blocks (remark 3.6).
Confidence intervals were obtained by evaluating similarities for 32 pairs of models trained with
different random seeds.

Figure 10: GReLU and orthogonal Procrustes dissimilarities for two ResNet18s trained on CIFAR-10
with different random seeds. Layers marked with ‘*’ occur inside residual blocks (remark 3.6).
Confidence intervals were obtained by evaluating similarities for 32 pairs of models trained with
different random seeds.

the α corresponding to highest accuracy on our cross validation set is selected, the corresponding
model weights are loaded and we report accuracy on the regular CIFAR10 validation set. In fig. 13
we obtain very similar results to those in fig. 1. Perhaps more interestingly, in fig. 14 we see that
there is substantial variance in the α selected by cross-validation, at all layers of our Myrtle CNN
network — for reference, α = 0.1 is used in the rest of this paper. This suggests that the particular
choice of α is not essential to our method. Results for ResNet architectures are qualitatively similar
and omitted for brevity.

D.6 Stitching with `1-regularized (a.k.a. LASSO) fully-connected layers

In this section we present results of a small experiment stitching with full 1-by-1 convolutional layers
with `1 penalty λ|W |1, where |W |1 =

∑
ij |Wij |, as in [Csi+21]. We vary λ ∈ {0.001, 0.01, 0.1}

and also tried λ = 1 but found the stitching optimization to be unstable due the magnitude of the `1
penalty (possible this could have been counteracted by decreasing the learning rate). We also record
the sparsity of the stitching weights — if nl is the relevant channel dimension, and hence also the
number of rows/columns in the square stitching matrix W , we measure this as

|{(i, j) ∈ {1, . . . , nl}2 | |Wij | ≤ τ}|
n2
l

(D.1)

where τ is a threshold, in our experiments chosen to be 0.001. Note that the sparsity of a GReLU is
equal to n2

l−nl

n2
l

= 1− 1
nl

. Figure 15 illustrates the results of these experiments, and seems to show
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(a) (b)

Figure 11: GReLU-CKA and orthogonal CKA for two ResNet18s trained on CIFAR-10 with different
random seeds. Layers marked with ‘*’ occur inside residual blocks (remark 3.6). Results averaged
over 16 such pairs of models.

Figure 12: Linear and GReLU stitching penalties (4.3) for 5 pairs of vision transformers [Has+21]
trained on CIFAR-10 with different random seeds. Stitching was performed after every transformer
block, and notably these blocks do not end in activation functions.

that GReLU layers achieve low stitching penalties for their sparsity levels. Also note that in the final
layer the scatter points corresponding to GReLU and λ = 0.01 nearly overlap.

D.7 Implementing dissimilarity measures

As mentioned in section 5, we aim to capture invariants to permuting and scaling channels, but not
spatial coordinates. This requires some care; practically speaking it means we cannot simply flatten
feature vectors.

In all cases we compute our measures over the entire CIFAR-10 validation set. In particular, we do
not require batched computations as in [NRK21].

D.7.1 Procrustes

As in [DDS21b; Wil+21]

min
P∈Σd

|X̃ − Ỹ P | =
√

min
P∈Σd

|X̃ − Ỹ P |2

so it suffices to consider minimizing the Frobenius norm-squared, and expanding as

|X̃ − Ỹ P |2 = |X̃|2 + |Ỹ |2 − 2 tr(X̃T Ỹ P )

we see that this is equivalent to maximizing tr(X̃T Ỹ P ). In our case X,Y have shape (N,C,H,W )
where N is the size of the entire CIFAR-10 validation set and C,H,W are the channels, height, and
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Figure 13: Full, reduced rank, and GReLU 1-by-1 convolution stitching penalties (4.3) for Myrtle
CNNs [Pag18] on CIFAR-10, in which α is chosen by cross-validation. Confidence intervals were
obtained by evaluating stitching penalties for 32 pairs of models trained with different random seeds.
The accuracy of the models was 91.3 ± 0.2 %.

Figure 14: The histograms of α selected by cross validation in the experiment of fig. 13

width at the given hidden layer respectively. We want P to be a C × C permutation matrix. Hence
for X̃T Ỹ we compute the tensor dot product

(X̃T Ỹ )c,c′ =
∑
n,h,w

X̃n,c,h,wỸn,c′,h,w (D.2)

The same method is used for orthogonal Procrustes, where instead of
scipy . optimize . linear_sum_assignment we use the nuclear norm of eq. (D.2) as in [DDS21a].

D.7.2 CKA

In this case for a set of hidden features X of shape (N,C,H,W ) as above, we first subtract the mean
over all but the channel dimension:

Xn,c,h,w ← Xn,c,h,w −
1

NHW

∑
n′,h′,w′

Xn′,c,h′,w′

Figure 15: `1-regularized stitching penalties versus sparsity for Myrtle CNNs, with GReLU stitching
penalties included for comparison. Penalties and sparsities are averaged over evaluations on 32 pairs
models trained with different random seeds.
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and divide by the norms over all but the channel dimension:8

Xn,c,h,w ←
Xn,c,h,w√∑

n′,h′,w′ X
2
n′,c,h′,w′

.

Next, we compute a tensor dot product of X with itself over spatial dimensions, to obtain the shape
(N,N,C) tensor

Jm,n,c :=
∑
h,w

Xn,c,h,wXn,c,h,w

and finally we apply max over the channel dimension to get

Km,n = max
c
Jm,n,c.

Remark D.3. It could be interesting to refrain from applying a dot product over spatial dimensions,
and thus measure not only similarity between hidden features of different images, but similarity
between hidden features of different images at certain locations. However, the memory requirements
would have been far beyond our computational limits.

D.8 Dissimilarity measures for network with constant channel width

A notable feature of our plots in figs. 2, 5 and 11 is that the GReLU-CKA exhibits a much more
significant decay with network depth than its orthogonal counterpart. From a skeptical perspective,
we thought this could have something to do with dimensionality. All the networks we looked at up to
this point had the feature that their channel dimension grows exponentially with depth (as seen in
the last 3 figures of the appendix). When we compute the kernels max(x̃_i� x̃_j), we encounter
maxima of larger and larger sets of random variables as the channel dimension increases. If the
products inside these maxima were independent normal random variables (we are not claiming this
is a reasonable heuristic), we’d expect the max to grow like Φ−1(1 − 1

nl
) where nl is the channel

dimension. It seemed possible that something along these lines could cause GReLU-CKA to drift as
depth (in our experiments correlated with channel dimension) increases. Note that the dot product
kernel seems comparatively immune, since (with the same heuristics of normal distribution) the
expected value of 〈x̃, ỹ〉 is 0 regardless of dimension.

Motivated by this train of thought, we evaluated all 4 dissimilarity measures of section 5 on a variant
of our Myrtle CNN with constant channel dimension. The architecture of this network is identical to
the one shown in fig. 26a with the exception that all channel dimensions are 512. In table 4 and fig. 16
we see that these constant width CNNs exhibit qualitatively very similar dissimilarity measures as
their non-constant width counterparts. This suggests that the GReLU-CKA decay with network depth
is not an artifact of increasing channel dimension.

We speculate that it’s possible that the decay ofGReLU-CKA is due to something like the superposition
hypothesis for hidden layer features [Elh+22; Ola+20]. Roughly, in overcomplete cases where the
model can use more features than basis directions in a hidden layer, it may be encoding m nearly
orthogonal features across n < m basis directions. If this encoding is not consistent across random
seeds, we expect GReLU-CKA to be smaller. Finally, polysemanticism may increase with depth. In
a simple thought experiment, if each basis direction in layer l has a features encoded, layer l + 1
will have 2a features per direction if it each neuron in l + 1 simply sums over two neurons in l.
Again assuming the combinations of features occuring in this polysemanticism vary accross random
seeds, we would expect GReLU-CKA to be smaller. Simply put, superposition and polysemanticism
would seem to preclude alignment of the hidden features of different networks with permutations and
scaling alone.

8In retrospect, it would arguably make more sense to use standard deviation rather than `2 norm; however,
for us the choice is irrelevant in the end since the 2 choices differ by a factor of

√
NHW which gets cancelled

in eq. (5.4).
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layer 3 layer 6 layer 10 layer 14

GReLU 0.8176 ± 0.007 0.7602 ± 0.005 0.5691 ± 0.005 0.4971 ± 0.003
orthogonal 0.8460 ± 0.008 0.6735 ± 0.005 0.5409 ± 0.003 0.6050 ± 0.002

Table 4: GReLU and orthogonal Procrustes similarities for constant channel width Myrtle CNNs
trained on CIFAR-10. Confidence intervals were obtained by evaluating similarities for 4 pairs of
models trained with different random seeds.

(a) (b)

Figure 16: GReLU-CKA and orthogonal CKA for two constant channel width Myrtle CNNs trained
on CIFAR-10 with different random seeds. Results averaged over 4 such pairs of models .

E Proofs

E.1 A proof of lemma 3.1, plus some abstractions thereof

Proof of lemma 3.1. Since by definition Gσn ⊆ GLn(R), to prove Gσn is a subgroup it suffices
to show that if A1, A2 ∈ Gσn then A1A

−1
2 ∈ Gσn . By hypotheses, there are matrices B1, B2 ∈

GLn(R) so that

σn ◦A1 = B1 ◦ σn (E.1)
and σn ◦A2 = B2 ◦ σn. (E.2)

Applying A−1
2 on the right hand side of eq. (E.1) gives

σn ◦ (A1A
−1
2 ) = B1 ◦ σn ◦ (A−1

2 ). (E.3)

On the other hand, applying A−1
2 on the right hand side of eq. (E.2) gives σn = B2 ◦ σn ◦ (A−1

2 ) and
hence

σn ◦ (A−1
2 ) = B−1

2 ◦ σn. (E.4)
Combining eqs. (E.3) and (E.4) we obtain

σn ◦ (A1A
−1
2 ) = B1B

−1
2 ◦ σn (E.5)

and hence Gσn is a subgroup. Next, we solve

σn ◦A = B ◦ σn
for B in terms of A by evaluating both sides at e1, . . . , en ∈ Rn (standard basis vectors). Letting
A[:, j] denote the j-th column of A we obtain

σn(A[:, j]) = Bσn(ej), for j = 1, . . . , n

and stacking these columns to obtain the full n× n matrix yields

σ(A) = Bσ(I)

where I ∈ GLn(R) is the identity matrix and σ(A) denotes σ applied to the coordinates of A
(similarly for σ(I)). As σ(I) is invertible by hypotheses, this implies B = σ(A)σ(I)−1 =: φσ(A),
and finally substituting Bi = φσ(Ai) for i = 1, 2 in eq. (E.5) shows that

σn ◦ (A1A
−1
2 ) = φσ(A1)φσ(A2)−1 ◦ σn
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while at the same time
σn ◦ (A1A

−1
2 ) = φσ(A1A

−1
2 ) ◦ σn

so that φσ(A1A
−1
2 ) ◦ σn = φσ(A1)φσ(A2)−1 ◦ σn. Using the invertibility of σ(I) one more time,

we conclude
φσ(A1A

−1
2 ) = φσ(A1)φσ(A2)−1,

which implies φσ is a homomorphism.

Remark E.6 (for the mathematically inclined reader). Here is a more abstract definition of Gσn that
makes lemma 3.1 appear more natural: let X be a topological space with a continuous (left) action
of a topological group G. There is a natural (right) action of G on C(X,R) by precomposition
((f, g) 7→ f ◦ g). For any subspace V ⊆ C(X,R) define

GV := {g ∈ G |V · g ⊆ V }

(that is, the elements of G stabilize V as a subspace, but not necessarily pointwise — one can show
this is always a subgroup of G). Then, for every such subspace V , the group GV acts linearly on V ,
and if we have a basis f1, . . . , fn ∈ V , we can obtain a matrix representation of G in GLn(R). To
obtain the special case in lemma 3.1, we take X = Rn, G = GLn(R) with the usual action, and
V to be the subspace spanned by the functions fi(x1, . . . , xn) = σ(xi). The condition that σ(I) is
invertible is equivalent to the condition that the column space of the matrix (fi(ej) is n-dimensional,
which in turn implies V is n-dimensional.

We end this section with a lemma that allows for easy verification that σ(I) is invertible. We used
this on all the activation functions considered in table 1.
Lemma E.7. Let σ : R→ R be any function and let I ∈ GLn(R) be the identity matrix. Then σ(I)
is invertible provided

σ(1) 6= σ(0) and σ(1) 6= −(n− 1)σ(0). (E.8)

Proof. Let N = 11T − I . Then

σ(I) = σ(1)I + σ(0)N.

Note that the eigenvalues of 11T are n (corresponding to eigenvector 1) and 0’s (corresponding to
the orthogonal complement of 1). For any linear operator A ∈ Matn(R) with eigenvector/eigenvalue
pair (v, λ), v is easily seen to be an eigenvector ofA−I with eigenvalue λ−1. Hence the eigenvalues
of N are n− 1 and −1, and it follows that the eigenvalues of σ(I) are

σ(1) + σ(0)(n− 1), σ(1)− σ(0), . . . , σ(1)− σ(0)

which are all non-zero if and only if eq. (E.8) holds.

Remark E.9. In particular eq. (E.8) holds when σ(1) = 1, σ(0) = 0 (which holds for example when
σ(x) = ReLU(x) or σ(x) = xd). In this situation, σ(I) = I and φσ(A) = σ(A) (coordinatewise
application of σ). For example, if σ ≥ 0 is non-negative, then φσ(A) = σ(A) has non-negative
entries.

E.2 Calculating intertwiner groups (for table 1)

We begin with two lemmas: the first puts a “lower bound” on Gσn
and the second is a “differential

form” of the definition of the intertwiner group from section 3. Together, these two results effectively
allow us to reduce calculation of intertwiner groups to the n = 1 case.
Lemma E.10 (cf. [GBC16, §8.2.2], [Bre+19, §3]). Gσn always contains the permutation matrices
Σn, and φσ restricts to the identity on Σn.

Proof. IfA ∈ Σn is a permutation matrix, so thatAei = eπ(i) where π is a permutation of {1, . . . , n}
then for any x ∈ Rn we observe

Aσ(x) = A(
∑
i

σ(xi)ei) =
∑
i

σ(xi)Aei =
∑
i

σ(xi)eπ(i)

which is exactly σ applied coordinatewise to
∑
i xieπ(i) = Ax.
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Corollary E.11. If A ∈ GLn(R), P ∈ Σn, and AP ∈ Gσn or PA ∈ Gσn , then A ∈ Gσn .

Proof. If B = AP ∈ Gσn
, then A = BP−1, where B ∈ Gσn

by hypothesis and P ∈ Gσn
by

lemma E.10. The result follows as Gσn
is a group (lemma 3.1) and hence closed under multiplication.

The other case is similar.

Lemma E.12. Suppose A,B ∈ GLn(R) and σn ◦A = B ◦ σn. Suppose x = (x1, . . . , xn)T ∈ Rn
and assume σ is differentiable at x1, . . . , xn as well as

(Ax)i =
∑
j

aijxj , for i = 1, . . . , n.

Then,
diag(σ′((Ax)i)|i = 1, . . . , n)A = B diag(σ′(xi)|i = 1, . . . , n)

(here diag : Rn → Matn×n(R) takes a vector to a diagonal matrix). Explicitly, for each i, j ∈
{1, . . . , n}

σ′(
∑
k

aikxk)aij = bijσ
′(xj). (E.13)

Proof. By the chain rule [Rud76, Thm. 9.15], and since the differential of a matrix is itself,

dσn|AxA = Bdσn|x.
Finally, by the definition of σn

∂(σn(x))i
∂xj

=
∂σ(xi)

∂xj
=

{
σ′(xj) if i = j

0 otherwise.

Theorem E.14. Suppose σ is non-constant, non-linear, and differentiable on a dense open set with
finite complement.9 Then,

(i) Every A ∈ Gσn
is of the form PD, where P ∈ Σn and D is diagonal.

(ii) For a diagonal D = diag(λ1, . . . , λn) ∈ Gσn
, we have λi ∈ Gσ1

for i = 1, . . . , n and

φσ(diag(λ1, . . . , λn)) = diag(φσ(λ1), . . . , φσ(λ1))

where we make a slight abuse of notation: on the right hand side φσ is the homomorphism
Gσ1 → GL1(R).

In particular, φσ is determined by lemma E.10 and its behavior for n = 1.

Proof. For any A ∈ Gσn
we observe that the differentiability hypotheses of lemma E.12 holds for

x ∈ U where U is a dense open set with measure-0 complement. Indeed, if t1, . . . , tM ∈ R are
the points where σ fails to be differentiable, we can take U to be the complement of the hyperplane
arangement given by

(
⋃
ij

{x ∈ Rn | xi = tj}) ∪ (
⋃
ij

{x ∈ Rn | (Ax)i ∈= tj}) ⊆ Rn

Fix a row i — the matrix A is invertible by hypotheses, and so there must be some j such that aij 6= 0
(otherwise the i-th row of A is 0). For any x ∈ U , we have by lemma E.12

σ′(
∑
k

aikxk)aij = bijσ
′(xj) (E.15)

and we claim that this cannot hold unless aik = 0 for k 6= j. First, there is a (x1, . . . , xn) ∈ U such
that σ′(xj) 6= 0 (otherwise σ would be constant). Next, fixing xj at a value with σ′(xj) 6= 0 and
rearranging eq. (E.15) we have

σ′(aijxj +
∑
k 6=j aikxk)

σ′(xj)
aij = bij = constant. (E.16)

9The differentiability assumption is probably not necessary, however it holds in all of the examples we
consider and allows us to safely use lemma E.12.
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By hypothesis σ is non-linear and so σ′ is non-constant — hence if there were some aik 6= 0 for
k 6= j, the left hand side of eq. (E.16) would be non-constant.

We have shown each row ofA has at most one non-0 entry aij and that aij 6= 0. ForA to be invertible,
it must be that these non-0 entries land in distinct columns. This is exactly the form described in
item (i).

Next, we note that for any ij (without assuming aij 6= 0) eqs. (E.15) and (E.16) tell us

aij = 0 =⇒ bij = 0,

and hence if D = diag(λ1, . . . , λn) ∈ Gσn
and σn ◦D = E ◦ σn (i.e. E = φσ(D)), it must be that

E = diag(µ1, . . . , µn) for some µ1, . . . , µn ∈ R. Now the equation σn ◦D = E ◦ σn is equivalent
to

σ(λixi) = βiσ(xi) for i = 1, . . . , n

which in turn is equivalent to λi ∈ Gσ1 and βi = φσ(λi) for i = 1, . . . , n, proving item (ii).

In light of theorem E.14, to fill in the table of table 1 it will suffice to deal with the n = 1 cases,
which we do below.

Calculation of GReLU. We remark that this is just the “positive homogeneous” property of ReLU,
which is quite well known (cf. [GBC16, §8.2.2], [FB17, §2], [Kun+21, §3], [Men+19, §3], [RK20,
§3, A], [Yi+19, §2-3]). Using remark E.9 if a ∈ Gσ1

max{0, ax} = max{0, a}max{0, x}.

If a < 0 then setting x = −1 results in a = 0, a contradiction. So a > 0 and max{0, ax} =
amax{0, x}, showing φσ(a) = a.

Modifications for LeakyReLU. By definition, for 0 < s� 1.

LeakyReLU(x, a) :=

{
sx for x < 0

x for x ≥ 0

which we may simplify to LeakyReLU(x) = sx+ (1− s) ReLU(x). Suppose now that

LeakyReLU(ax) = bLeakyReLU(x), or using our simplification
sax+ (1− s) ReLU(ax) = b(sx+ (1− s) ReLU(x)).

(E.17)

If a < 0, we may choose x = −1 to obtain

−a = −sa− (1− s)a = −bs and x = 1 to obtain

sa = b

showing that a = as2, which is impossible when 0 < s � 1. So it must be a > 0, and then
evaluating eq. (E.17) at x = 1 gives a = b.

The sigmoid case: σ(x) = 1/(1 + ex). We will leverage of a useful fact about the sigmoid function:

σ′(x) is a smooth probability distribution function on R, with σ′(x) > 0 for all x ∈ R. (*)

If σ(ax) = bσ(x), differentiating with respect to x gives

σ′(ax)a = bσ′(x). (E.18)

Using eq. (*) and the fact that to probability distribution functions are proportional if and only if they
are equal, we get σ′(ax) = σ′(x). Then integrating from −∞ to x tells us σ(ax)/a = σ(x); setting
x = 0 we see 1

2a = 1
2 , hence a = 1.

To show φσ = id, backtracking to eq. (E.18) and setting x = 0 shows b = a.

The Gaussian RBF case: σ(x) = 1√
2π
e−

x2

2 . We make use of several properties of this σ(x):
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(i) For any a > 0 the function σ(ax) is a probability distribution function with mean 0 and
variance 1

a2 ,and with σ(ax) > 0 for all x ∈ R and

(ii) σ is an even function (σ(−x) = σ(x)).

Now if σ(ax) = bσ(x), then the pdfs σ(ax) and σ(x) are proportional hence equal by item (i).
Therefore they have the same means and variances — since these are 0, 1

a2 and 0, 1 respectively we
conclude a = ±1.

Finally, we explain why φσ(A) = abs(A) (entrywise absolute value). Differentiating with respect to
x gives

σ′(ax)a = bσ′(x). (E.19)
This implies b = 1 when a = 1. On the other hand differentiating item (ii) tells us −σ′(−x) = σ′(x),
so when a = −1

bσ′(x) = −σ′(−x) = σ′(x)

and hence b = 1.

The polynomial case: σ(x) = xd. We remark that the description given in table 1 is implicit in
[KTB19]. By theorem E.14 we only need to describe φσ : Gσ1

→ GL1(R); for any a 6= 0

(ax)d = adxd

and this shows Gσ1
= R \ {0} and φσ(a) = ad.

E.2.1 Gaussian error linear units (GeLUs)

Introduced and first studied in [HG16], these are defined as GeLU(x) = xΦ(x) where Φ is the
standard normal cummulative distribution function:

Φ(x) =

∫ x

−∞

e−
t2

2

√
2π

dt.

By inspecting plots in fig. 17a, we see that GeLU and ReLU are globally quite similar (they converge
as |x| → ∞) but that they differ when x within a few standard normal standard deviations of 0. One
can show that GGeLUn = Σn: indeed, by theorem E.14 it suffices to show that the only λ ∈ R \ {0}
such that GeLU(λx) = φ(λ) GeLU(x) for all x (where φ is some non-zero function of λ) is λ = 1.
Expanding, we see that

λxΦ(λx) = φ(λ)xΦ(x), (E.20)
and rearranging this becomes

Φ(λx)

Φ(x)
=
φ(λ)

λ
=: c, (E.21)

that is, the right hand side is constant as a function of x. Then Φ(λx) = cΦ(x), and since Φ is positive
it must be c is too. Moreover it must be λ > 0, as otherwise Φ(λx) is monotonically decreasing
while Φ(x) is increasing. Finally, letting x → ∞ we see that c = 1, and from there we conclude
λ = 1 by an argument similar to the use of item (i) in the Gaussian RBF case.

Despite the above calculation, it seems natural to ask how far GGeLU is from GReLU, in other words
how badly GeLU fails to be positive homogeneous. One measure of this is obtained by letting
X ∼ N (0, 1) be a standard normal variable and computing the root-mean-square error

ξ(λ) :=
√
E[|GeLU(λX)− λGeLU(X)|2] (E.22)

as a function of λ > 0, where the expectation is over X . Here our choice of a standard normal X is
motivated by the same reasoning as discissed in [HG16], namely that activation inputs are roughly
standard normal, especially in the presence of batch normalization. Evaluating eq. (E.22) doesn’t
seem particularly tractible analytically, but it does simplify to

ξ(λ) = λ
√
E[|x(Φ(λx)− Φ(x))|2]. (E.23)

In fig. 17b we estimate ξ(λ) by sampling X and replacing the expectation with the corresponding
average. Evidently, as λ→∞ the function ξ(λ) becomes linear: since Φ(λx)→ 1x≥0 as λ→∞
(here 1x≥0 is the indicator of x > 0, also known as the Heaviside or unit-step function), the
asymptotic slope is

√
E[|x(1x≥0 − Φ(x))|2] ≈ 0.127.
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(a) (b)

Figure 17: (a) The ReLU and GeLU functions. (b) Root-mean-square lack of positive homogeneity
for the GeLU function, estimated using 105 samples of X .

E.3 Proof of theorem 3.3

Proof. The explicit description of G(ReLU, n) in table 1 is enough to show G(ReLU, n) stabilizes
{R≥0ei|i = 1, . . . , n}. Indeed, any A ∈ G(ReLU, n) may be written as PD where D = diag(ai)
for some ai > 0 and P is a permutation matrix associated to a permutation π. It suffices to show that
P and diag(ai) each preserves {R≥0ei|i = 1, . . . , n}. First,

diag(ai){R≥0ei|i = 1, . . . , n} = {R≥0aiei|i = 1, . . . , n} = {R≥0ei|i = 1, . . . , n}

since the ai > 0 so scaling by ai preserves the ray R≥0ei. Second,

P{R≥0ei|i = 1, . . . , n} = {R≥0Pei|i = 1, . . . , n} = {R≥0eπ(i)|i = 1, . . . , n} = {R≥0ei|i = 1, . . . , n}

(the last equality is due to the fact that we only consider the set of rays, not the ordered tuple of rays).

Conversely, if A ∈ GL(n) stabilizes {R≥0ei|i = 1, . . . , n}, then in particular for each j
Aej ∈ R≥0ei for some i and as A is invertible, setting j = π(i) yields a permutation of {1, . . . , n}.
Moreover,since Aej 6= 0 (A is invertible) there must be some aj > 0 so that Aej = ajei. One can
now verify that A = PD where P is the permutation matrix associated to π and D = diag(aj)
which matches the description of G(ReLU, n) from table 1.

For the “moreover,” we prove the contrapositive, namely that if v = (v1, . . . , vn) ∈ Rn has at least
2 non-0 coordinates vi, vj , then the GReLU-orbit of the ray R≥0v that v generates cannot be finite.
Indeed, suppose t ≥ 0 and let D = diag(1, . . . , 1, t, 1, . . . , 1) (t in the ith position). The n × 2
matrix (v|Dv) has a 2× 2 minor(

vi tvi
vj vj

)
with deteriminant (1− t)vivj 6= 0 as long as t 6= 1. (E.24)

Thus v and Dv are linearly independent, and hence define distinct rays, for all t 6= 1. It follows that
any set of rays stabilized by G(ReLU, n) that contains R≥0v is uncountable.

E.4 Proof of proposition 3.4

To give a rigorous proof we use induction on the depth k; since this to some extent obscures the main
point, we briefly outline an informal proof: consider a composition of 2 layers of the network f with
weights W ′:

σ(Ai+1Wi+1φσ(Ai)
−1σ(AiWiφσ(Ai−1)−1x+Aibi) +Ai+1bi+1). (E.25)

Using the defining properties of Gσ and φσ , we can extract Ai like

σ(AiWiφσ(Ai−1)−1x+Aibi) = φσ(Ai)σ(Wiφσ(Ai−1)−1x+ bi). (E.26)
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The resulting copy of φσ(Ai) on the right hand side of eq. (E.26) is cancelled by the copy of φσ(Ai)
−1

right-multiplying Wi+1 in eq. (E.25), so that eq. (E.25) reduces to

σ(Ai+1Wi+1σ(Wiφσ(Ai−1)−1x+ bi) +Ai+1bi+1).

In this way, in between any two layers `i+1 ◦ `i the Ai in AiWiφσ(Ai−1)−1 and the φσ(Ai)
−1 in

Ai+1Wi+1φσ(Ai)
−1 cancel. However, the factors φσ(Am) and φσ(Am)−1 appear on endpoints of

the truncated networks f≤m, f>m and so they are not cancelled.

To keep track of W,W ′ while using the notation from section 3, we write

`i(x,W ) = σ(Wix+ bi) and `i(x,W ′) = σ(W ′ix+ b′i) for i < k

and so on.

Proof. By induction on k, the depth of the network. The case k = 1 is trivial, since there W ′ = W
and there is nothing to prove. For k > 1 we consider 2 cases:

Case m = 1: In this case let V = (W2, b2, . . . ,Wk, bk) and V ′ =
(A2W2, A2b2, A3W3φσ(A2)−1, A3b3, . . . ,Wkφσ(A−1

k−1), bk), and let

g(x, V ) = `k−1(x, V ) ◦ · · · ◦ `1(x, V ) and g(x, V ′) = `k−1(x, V ′) ◦ · · · ◦ `1(x, V ′)

where `i(x, V ) = σ(Wi+1x + bi+1) and similarly for V ′. In other words, the weights V, V ′ and
function g represent the architecture obtained by removing the earliest layer of f . Then, f≤1(x,W ) =
σ(W1x+ b1) and on the other hand

f≤1(x,W ′) = σ(A1W1x+A1b1) = σ(A1(W1x+ b1)).

Using the identity σ(A1z) = φσ(A1)σ(z) for any z ∈ Rn1 , we obtain

f≤1(x,W ′) = φσ(A1)σ(W1x+ b1) = φσ(A1)σ(W1x+ b1).

This shows f≤1(x,W ′) = φσ(A1) ◦ f≤1(x,W ). Next, f>1(x,W ) = g(x, V ) but because V ′1 =
A2W2 whereas W ′2 = A2W2φσ(A1)−1

f>1(x,W ′) = g(x, V ′) ◦ φσ(A1)−1.

By induction on k, we may assume g(x, V ) = g(x, V ′) and it follows that f>1(x,W ′) =
f>1(x,W ) ◦ φσ(A1)−1

Case m > 1: Defining V, V ′ and g as above, we observe that

f≤i(x,W ) = g≤i−1(σ(W1x+ b1), V ) and

f≤i(x,W
′) = g≤i−1(φσ(A1)−1σ(A1W1x+A1b1), V ′) = g≤i−1(σ(W1x+ b1), V ′).

(E.27)

By induction on k we may assume g≤i−1(x, V ′) = φσ(Ai)g≤i−1(x, V ) and so

f≤i(x,W
′) = φσ(Ai)g≤i−1(σ(W1x+ b1), V ) = φσ(Ai)f≤i(x,W ).

Finally, f>i(x,W ) = g>i−1(x, V ) and f>i(x,W ′) = g>i−1(x, V ′) and we may assume by in-
duction on k that g>i−1(x, V ′) = g>i−1(x, V ) ◦ φσ(Ai)

−1, hence f>i(x,W ′) = f>i(x,W ) ◦
φσ(Ai)

−1.

E.5 Proof of theorem 4.2

Proof. Observe that by proposition 3.4, f̃>l = f>l ◦ φσ(A−1
l ). Hence

S(f, f̃ , l, ϕ) = f̃>l ◦ ϕ ◦ f≤i = f>l ◦ φσ(A−1
l ) ◦ ϕ ◦ f≤l.

If S contains φσ(Gσnl
) we may choose ϕ = φσ(Al) to achieve S(f, f̃ , l, ϕ) = f as functions.

Similarly, f̃≤l = φσ(Al) ◦ f≤l so if S contains φσ(Gσnl
) we may choose ϕ = φσ(A−1

l ) to achieve
S(f, f̃ , l, ϕ) = f̃ as functions. In either case eq. (4.1) holds.
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E.6 Symmetries of the loss landscape

Given that the intertwiner group describes a large set of symmetries of a network, it is not surprising
that it also provides a way of understanding the relationship between equivalent networks. Proposi-
tion 3.4 has an interpretation in terms of the loss landscape of model architecture. For any layer ni
in f , the action of Gσni

on the weight spaceW , translates to the obvious group action on the loss
landscape.

Corollary E.28. For any 1 ≤ i ≤ k, the group Gσni
acts onW and for any test set Dt ⊂ X × Y ,

model loss on Dt is invariant with respect to this action. More precisely, if `(Φ(W ), D) is the loss of
Φ(W ) on test set Dt, then for any g ∈ Gσni

, `(Φ(W ), D) = `(Φ(gW ), D).

E.7 Comparing capacities of stitching layers via discretization

Let Matn×n(R) denote the space of n×nmatrices. For r = 1, . . . , n let Matrn×n(R) ⊆ Matn×n(R)
denote the rank r matrices, and let GReLUn

be as described in table 1. Suppose that each real
dimension of Matn×n(R) is replaced by a discrete gridN(M, ε) = {−M+iε | i = 0, . . . , b 2M

ε c−1}
— here ε could represent the limits of numerical precision in a floating point number system, and M
could represent the maximum numerical magnitude. The size of each such grid is b 2M

ε c, and so the
number of points in the resulting mesh grid N(M, ε)n

2 ⊂ Matn×n(R) is b 2M
ε c

n2

. We now estimate
the number of points of GReLUn

and Matrn×n(R) in such a mesh grid.

GReLUn is a disjoint union of n! irreducible components, corresponding to the n! possible permuta-
tions P in table 1. Each of these components is n-dimensional, corresponding to the fact that the
factor D in table 1 is an arbitrary positive diagonal matrix. Hence we obtain

|GReLUn
∩N(M, ε)n

2

| ≈ n! · (M
ε

)n. (E.29)

On the other hand, any matrix A ∈ Matrn×n(R) can be written as A = UV where U ∈ Matn×r(R)
and V ∈ Matr×n(R). TheseU and V are not unique: given any invertible r×r matrixW ∈ GLr(R),
we have A = (UW )(W−1V ). From this we obtain the approximation10

|Matrn×n(R) ∩N(M, ε)n
2

| ≈ |Matn×r(R) ∩N(M, ε)nr| · |Matr×n(R) ∩N(M, ε)rn|
|GLr(R) ∩N(M, ε)r2 |

(E.30)

≈
( 2M
ε )nr( 2M

ε )rn

( 2M
ε )r2

(E.31)

≈ (
2M

ε
)2nr−r2 . (E.32)

It follows that

log|GReLUn ∩N(M, ε)n
2

| − log|Matrn×n(R) ∩N(M, ε)n
2

| (E.33)

= log(n!) + n log(
M

ε
)− (2nr − r2) log(

M

ε
+ log 2). (E.34)

Ignoring the term (2nr − r2) log 2, which is independent of M, ε, we get the approximation

log(n!) +n log(
M

ε
)− (2nr− r2) log(

M

ε
+ log 2) ≈ log(n!)− ((2r− 1)n− r2) log(

M

ε
). (E.35)

Next, we make the coarse approximation

log(n!) =

n∑
k=1

log k ≈
∫ n

1

log x dx = n log n− n; (E.36)

10Here we ignore a significant subtlety: whether or not the multiplication map Matn×r(R)×Matr×n(R)→
Matn×n(R) induces a map N(M, ε)nr ×N(M, ε)rn → N(M, ε)n

2

(with our naive setup it probably doesn’t)
and moreover whether the fibers of this map, which in the non-discretized case are generically isomorphic to
GLr(R), have intersection with N(M, ε)nr ×N(M, ε)rn of the expected size. We do not expect that these
technical details will impact the takeaway of this analysis.
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with this approximation the expression of eq. (E.35) is approximated as

log(n!)− ((2r − 1)n− r2) log(
M

ε
) ≈ n log n− n− ((2r − 1)n− r2) log(

M

ε
). (E.37)

From this we conclude that as long as

1. r ≥ 1 (we actually already assumed this when defining Matrn×n(R)) and

2. M
ε � n, which roughly says that the number of grid points per dimension is greater than

the number of rows (equivalently columns) in Matn×n(R),

n log n− n− ((2r − 1)n− r2) log(
M

ε
) ≤ n log n− n− (n− 1) log(

M

ε
) using item 1 (E.38)

= (n− 1)(log n− log(
M

ε
)) + log n− n (E.39)

< (n− 1)(log n− log(
M

ε
)) for n > 1 (E.40)

< 0 using item 2. (E.41)
The upshot is that our approximations and items 1 and 2 imply

log|GReLUn
∩N(M, ε)n

2

| − log|Matrn×n(R) ∩N(M, ε)n
2

| < 0, and hence (E.42)

|GReLUn
∩N(M, ε)n

2

| < |Matrn×n(R) ∩N(M, ε)n
2

|. (E.43)

E.8 Calculations related to dissimilarity measures (for section 5)

Proof of lemma 5.5. We must show that for any x1, . . . , xr ∈ Rd and any c1, . . . , cr ∈ R that∑
i,j

cicj max(xi � xj) ≥ 0.

We use the elementary “max ≥ mean” inequality:

max(xi � xj) ≥
1

d

∑
k

xikxjk =
1

d
xi · xj

where on the right hand side “·” denotes dot product. This implies∑
i,j

cicj max(xi � xj) ≥
1

d

∑
i,j

cicj(xi · xj) ≥ 0

where the last inequality follows from the fact that the dot product is a kernel function.

The last string of inequalities also shows
∑
i,j cicj max(xi � xj) > 0 when x1, . . . , xr are linearly

independent, but does not directly imply the converse. It would be interesting to know conditions on
x1, . . . , xr that imply positive definiteness of the matrix (max(xi � xj)).

Proof of lemma 5.1. By table 1 any A ∈ GReLU can be factored as A = PD with P a permutation
matrix and D a positive diagonal matrix, and we can obtain a similar factorization B = QE. Then

µ(XA,Y B) = µ(XPD, Y QE) = µ(XP, Y Q) = µ(X,Y )

where the second equality uses the hypothesis that µ is invariant to right multiplication by positive
diagonal matrices, and the third uses the hypothesis that µ is invariant to right multiplication by
permutation matrices.

Lemma E.44. Suppose A is a matrix such that max(Ax1 � Ax2) = max(Ax1 � Ax2) for all
x1, x2 ∈ Rd. Then, A is of the form PD where P is a permutation matrix and D is diagonal with
diagonal entries in {±1}.

Proof. We only need the special case where x = y: observe that
max(x� x) = max{x2

1, . . . , x
2
d} = (max{|x1|, . . . , |xd|})2 = |x|2∞

This means that if max(Ax1 � Ax2) = max(Ax1 � Ax2), then A preserves the `∞ norm on Rd,
hence in particular preserves the unit hypercube in Rd, and it is known that symmetries of the
hypercube have the form PD where P is a permutation matrix and D is diagonal with diagonal
entries in {±1} (see for example [Ser77, §5.9]).
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E.9 Intertwiners and more general architecture features (justification of remark 3.6)

Here we briefly discuss how ubiquitous architecture features like batch normalization and residual
connections interact with intertwiner groups. For simplicity in this section we only consider σ =
ReLU.

E.9.1 Batch normalization

A batch normalization layer that takes as input X ∈ Rb·n (where b is the batch size and n is the
dimension of the layer) and returns

X̃ diag(X̃T X̃)−1 diag(γ) + β where X̃ = X − 11TX

and where γ, β ∈ Rn are the “gain” and “bias” parameters of the batch normalization layer, is
invariant under independent scaling of coordinates, that is transformations of the form X ← XD
where D is an n× n positive diagonal matrix (see e.g. [BMC15]). Hence a k-layer ReLU MLP as in
section 3 enhanced with batch normalization (pre-activation, as is standard) is invariant under the
action of the slightly larger group

∏k−1
l=1 (Rnl

>0 oGReLUnl
), where the action is given by11

(c1, A1, . . . , ck−1, Ak−1) · (W1, γ1, β1, . . . ,Wk−1, γk−1, βk−1,Wk, bk)

= (A1W1, π(A1) diag c1γ1, π(A1) diag c1β1,

A2W2(π(A1) diag c1)−1, π(A2) diag c2γ2, π(A2) diag c2β2,

. . . , Ak−1Wk−1(π(Ak−2) diag ck−2)−1, π(Ak−1) diag ck−1γk−1, π(Ak−1) diag ck−1βk−1,

Wk(π(Ak−1) diag ck−1)−1, bk).
(E.45)

Here,

• cl ∈ Rnl
>0 and Al ∈ GReLUnl

, for all l = 1, . . . , k − 1
• π : GReLUnl

→ Σnl
is the homomorphism setting the positive entries to 1.

The key point is that we get another factor of Rnl
>0 at each layer. We also note that the space of

matrices of the form π(Al) diag cl is, incidentally, exactly GReLUnl
, and that using eq. (E.45) one

can generalize proposition 3.4 and theorem 4.2 to the case of networks with batch normalization.

E.9.2 Residual connections

We expand on remark 3.6 and explain what exactly transpires with residual connections below.

Suppose we have a k-layer MLP as in section 3 (again for simplicity with σ = ReLU), together with
residual connections between a set of layers R = {r1, . . . , rm} ⊆ {2, · · · , k − 1}12:

Rn0 · · · Rnri−1 · · · Rnri · · ·Rnk−1 RnL+1
σW1

σWri−1
σWri−1+1

id

Wri σ Wk (E.46)

(for legibility biases bl are suppressed). In addition we assume that the depth of each residual block
is some fixed, that is ri − ri−1 = b = constant for all i.

First, we claim that a (A1, . . . Ak−1) ∈
∏L
l=1GReLUnl

stabilizes the function f if (not claiming if
and only if) Ari = Arj for all ri, rj ∈ R. To see this suppose gi(x,W ), i = 1, . . . ,m are the depth
b feedforward networks of the residual blocks, so that the f≤ri is given by

f≤ri(x,W ) = f≤ri−1
(x,W ) + gi(f≤ri−1

(x,W ),W ) where
gi(z,W ) = σ(Wri+bσ(· · ·σ(Wri−1+1z) · · · )).

(E.47)

11As is best practice we omit the biases on the linear layers `l for l < k, since they would be redundant now
that we have biases on batch norm layers.

12In particular we assume there is at least one linear layer before the first outgoing/after the last incoming
residual connection, as occurs in e.g. ResNets.

33



Assuming by induction on i that proposition 3.4 applies at the residual connections in R we note that
with weights W ′ eq. (E.47) turns into

f≤ri(x,W
′) = f≤ri−1

(x,W ′) + gi(f≤ri−1
(x,W ′),W ′)

= Ari−1f≤ri−1(x,W ) + gi(Ari−1f≤ri−1(x,W ),W ′).
(E.48)

Note that proposition 3.4 applies directly to the gi, so we may compute gi(z,W
′) =

Arigi(A
−1
ri−1

z,W ). Hence

f≤ri(x,W
′) = Ari−1f≤ri−1(x,W ) +Arigi(A

−1
ri−1

Ari−1f≤ri−1(x,W ),W )

= Ari−1
f≤ri−1

(x,W ) +Arigi(f≤ri−1
(x,W ),W ).

(E.49)

and we see that the only way f≤ri(x,W
′) = Bf≤ri(x,W ) for some matrix B is if Ari−1

= Ari ,
proving our claim. This also shows that if Ar denotes the common value of the Ari for ri ∈ R,
we have f≤ri(x,W

′) = Arf≤ri(x,W ) for all i. It is also true that f>ri(x,W
′) = f>ri(A

−1
r x,W ):

observe that
f>ri(x,W ) = f>ri+1(x+ gi+1(x,W ),W ). (E.50)

By descending induction on k, we may assume fri+1(x,W ′) = fri+1(A−1
r x,W ), and as above

gi+1(z,W ′) = Argi+1(A−1
r z,W ), so that with weights W ′ eq. (E.50) becomes

f>ri(x,W
′) = f>ri+1(x+ gi+1(x,W ′),W ′)

= f>ri+1
(A−1

r (x+Argi+1(A−1
r x,W )),W )

= f>ri+1
(A−1

r x+ gi+1(A−1
r x,W ),W ) = f>ri(A

−1
r x,W ).

(E.51)

as claimed.

Finally, we describe how stitching fails inside a residual block. Suppose we use weights Wl for
l ≤ ri + j where 0 < j < b) (recall b = depth of our basic block) and weights W ′l for l > ri + j.
The resulting stitched network is (attempting to use indentation to increase legibility)

fri+1
(

f≤ri(x,W ) + g>j(

ϕg≤j(f≤ri(x,W ),W ),

W ′),

W ′).

(E.52)

By proposition 3.4 g>j(z,W
′) = Arg>j(A

−1
ri+j

z,W ), and we have shown f>ri+1
(z,W ′) =

f>ri+1
(A−1

r z,W ). Combining these facts eq. (E.52) becomes

fri+1(

A−1
r f≤ri(x,W ) +A−1

r Arg>j(

A−1
ri+j

ϕg≤j(f≤ri(x,W ),W ),

W ),

W ).

(E.53)

Even after cancelling to remove the A−1
r Ar and in the ideal case where ϕ = Ari+j , we are left with

an extra factor of A−1
r left multiplying f≤ri(x,W ):

fri+1
(

A−1
r f≤ri(x,W ) + g>j(

g≤j(f≤ri(x,W ),W ),

W ),

W ).

(E.54)

F Network dissection details

Here we include some supplementary results and experiments for examining coordinate basis inter-
pretability with network dissection [Bau+17].
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Figure 18: Supplement for the same network dissection experiment for the ResNet-50, modified
ResNet-50, and ConvNeXt models in fig. 3, highlighting the categories of interpretable units for each
model and basis on the right. The y-axis for the plot on the right is distinct concepts.
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Figure 19: Fraction of network dissection interpretable units under rotations of the representation
basis for a ResNet-50 and a modified ResNet-50 without an activation function on the residual output.

F.1 Network dissection methodology

The Broden concept dataset, compiled by Bau et al., contains pixel-level annotations for hierarchical
concepts including colors, textures, objects, and scenes. For every channel activation, network
dissection assesses the binary segmentation performance with every visual concept from Broden.
The method first computes the channel activation for every Broden image. The distribution of
the activations for the channel is used to binarize the activation (where we threshold by the top
0.5% of all activations for the channel) to define a segmentation mask for the channel activation
which is interpolated to the size of the input image. If the Intersection over Union (IoU) of the
activation segmentation mask and a concept mask is high enough (namely where IoU > 0.04),
network dissection labels the activation an interpretable detector for the concept.

F.2 Additional experiments

fig. 18 breaks down the categories of interpretable units for the models and rotations examined in
fig. 3. The number of interpretable units tends to be dominated by the object and scene concept
detectors for the ResNet-50 and the ConvNeXt models.
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We also perform an analogous network dissection experiment to section 6 within the residual blocks
for the normal and modified ResNet-50 in fig. 19. Like the ConvNeXt model in fig. 3 we find that,
surprisingly, the percentage of interpretable units actually tends to increase away from the activation
basis.

Per-concept breakdowns produced by network dissection for three different rotation powers in the
experiment in fig. 3 are given for the ResNet-50 in fig. 20, the modified ResNet-50 (without a ReLU
activation function on the residual output) in fig. 22, and the ConvNeXt in in fig. 24. We also include
the units with the highest concept intersection over union scores for the the three representative
rotations for the ResNet-50 in fig. 21, the modified ResNet-50 (without a ReLU activation function
on the residual output) in fig. 23, and the ConvNeXt in in fig. 25

F.3 Model training details

We train a ResNet-50 without ReLU (or any activation function) on the residual blocks in PyTorch
using [Lec+22] on ImageNet [Den+09]. We train with SGD with momentum for 88 epochs with a
cyclic learning rate rate of 1.7, label smoothing of 0.1, a batch size of 512, and weight decay of 10−4.
The model achieves 76.1% top-1 accuracy. We use pretrained weights for the ResNet-50 (unmodified)
and ConvNeXt models from [MR10] and [Wig19] respectively.

G Dataset Details

CIFAR-10: CIFAR-10 is covered by the MIT License (MIT). We use canonical train/test splits
(imported using torchvision).

Broden: the code used to generate the dataset is covered by the MIT license.

ImageNet: ImageNet is covered by CC-BY 4.0. We use canonical train/test splits.
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Figure 20: Network dissection bar graph of categories of unique concepts at three different rotation
powers for the ResNet-50 model in fig. 3.
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Figure 21: Top two highest scoring units for network dissection at three different rotation powers for
the ResNet-50 model in fig. 3.
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Figure 22: Network dissection bar graph of categories of unique concepts at three different rotation
powers for the modified ResNet-50 model (without a ReLU activation function on the residual output)
in fig. 3.
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Figure 23: Top two highest scoring units for network dissection at three different rotation powers for
the modified ResNet-50 model (without a ReLU activation function on the residual output) in fig. 3.
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Figure 24: Network dissection bar graph of categories of unique concepts at three different rotation
powers for the ConvNeXt model in fig. 3.
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Figure 25: Top two highest scoring units for network dissection at three different rotation powers for
the ConvNeXt model in fig. 3.

(a) Myrtle CNN architecture, summary courtesy of torch-
info. (b) Myrtle CNN architecture without batch norm (only

used in section 3.3), summary courtesy of torchinfo.

40

https://github.com/tyleryep/torchinfo
https://github.com/tyleryep/torchinfo
https://github.com/tyleryep/torchinfo


(a) Our ResNet20 architecture, summary courtesy of
torchinfo.

(b) Internals of the 1st BasicBlock (the sequential con-
tains the residual connection).

(a) Our ResNet18 architecture, summary courtesy of
torchinfo.

(b) Internals of the 1st BasicBlock (the sequential con-
tains the residual connection).

41

https://github.com/tyleryep/torchinfo
https://github.com/tyleryep/torchinfo


References
[Bau+17] David Bau et al. “Network Dissection: Quantifying Interpretability of Deep Visual Rep-

resentations”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017), pp. 3319–3327.

[BMC15] Vijay Badrinarayanan, Bamdev Mishra, and R. Cipolla. “Understanding Symmetries in
Deep Networks”. In: ArXiv (2015).

[BNB21] Yamini Bansal, Preetum Nakkiran, and Boaz Barak. “Revisiting Model Stitching to
Compare Neural Representations”. In: NeurIPS. 2021.

[Bre+19] Johanni Brea et al. “Weight-Space Symmetry in Deep Networks Gives Rise to Per-
mutation Saddles, Connected by Equal-Loss Valleys across the Loss Landscape”. In:
(July 5, 2019). arXiv: 1907.02911 [cs, stat]. URL: http://arxiv.org/abs/
1907.02911 (visited on 01/12/2022).

[Csi+21] Adrián Csiszárik et al. “Similarity and Matching of Neural Network Representations”.
In: Advances in Neural Information Processing Systems. Ed. by A. Beygelzimer et al.
2021. URL: https://openreview.net/forum?id=aedFIIRRfXr.

[DDS21a] Frances Ding, Jean-Stanislas Denain, and J. Steinhardt. “Grounding Representation
Similarity with Statistical Testing”. In: ArXiv (2021).

[DDS21b] Frances Ding, Jean-Stanislas Denain, and Jacob Steinhardt. “Grounding Representation
Similarity Through Statistical Testing”. In: Advances in Neural Information Processing
Systems. Ed. by A. Beygelzimer et al. 2021. URL: https://openreview.net/forum?
id=_kwj6V53ZqB.

[Den+09] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE
conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[Elh+22] Nelson Elhage et al. “Softmax Linear Units”. In: Transformer Circuits Thread (2022).
[FB17] C. Daniel Freeman and Joan Bruna. “Topology and Geometry of Half-Rectified Network

Optimization”. In: ArXiv abs/1611.01540 (2017).
[Fog+13] Fajwel Fogel et al. “Convex Relaxations for Permutation Problems”. In: SIAM J. Matrix

Anal. Appl. 2013.
[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.

deeplearningbook.org. MIT Press, 2016.
[Has+21] Ali Hassani et al. “Escaping the big data paradigm with compact transformers”. In:

arXiv preprint arXiv:2104.05704 (2021).
[HG16] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). 2016. DOI:

10.48550/ARXIV.1606.08415. URL: https://arxiv.org/abs/1606.08415.
[KTB19] J. Kileel, Matthew Trager, and Joan Bruna. “On the Expressive Power of Deep Polyno-

mial Neural Networks”. In: NeurIPS. 2019.
[Kun+21] Daniel Kunin et al. Neural Mechanics: Symmetry and Broken Conservation Laws in

Deep Learning Dynamics. Mar. 29, 2021. arXiv: 2012.04728 [cond-mat, q-bio,
stat]. URL: http://arxiv.org/abs/2012.04728 (visited on 01/12/2022).

[Lec+22] Guillaume Leclerc et al. ffcv. https://github.com/libffcv/ffcv/. commit 849.
2022.

[LW14] Cong Han Lim and Stephen J. Wright. “Beyond the Birkhoff Polytope: Convex Relax-
ations for Vector Permutation Problems”. In: NIPS. 2014.

[Men+18] Gonzalo Mena et al. “Learning Latent Permutations with Gumbel-Sinkhorn Networks”.
In: International Conference on Learning Representations. 2018. URL: https://
openreview.net/forum?id=Byt3oJ-0W.

[Men+19] Qi Meng et al. “G-SGD: Optimizing ReLU Neural Networks in Its Positively Scale-
Invariant Space”. In: ICLR. 2019.

[MR10] Sébastien Marcel and Yann Rodriguez. “Torchvision the machine-vision package of
torch”. In: Proceedings of the 18th ACM international conference on Multimedia. 2010,
pp. 1485–1488.

[NRK21] Thao Nguyen, Maithra Raghu, and Simon Kornblith. “Do Wide and Deep Networks
Learn the Same Things? Uncovering How Neural Network Representations Vary with
Width and Depth”. In: International Conference on Learning Representations. 2021.
URL: https://openreview.net/forum?id=KJNcAkY8tY4.

42

https://arxiv.org/abs/1907.02911
http://arxiv.org/abs/1907.02911
http://arxiv.org/abs/1907.02911
https://openreview.net/forum?id=aedFIIRRfXr
https://openreview.net/forum?id=_kwj6V53ZqB
https://openreview.net/forum?id=_kwj6V53ZqB
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.48550/ARXIV.1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2012.04728
https://arxiv.org/abs/2012.04728
http://arxiv.org/abs/2012.04728
https://github.com/libffcv/ffcv/
https://openreview.net/forum?id=Byt3oJ-0W
https://openreview.net/forum?id=Byt3oJ-0W
https://openreview.net/forum?id=KJNcAkY8tY4


[Ola+20] Chris Olah et al. “Zoom in: An introduction to circuits”. In: Distill 5.3 (2020), e00024–
001.

[Pag18] David Page. How to Train Your ResNet. Myrtle. Sept. 24, 2018. URL: https://myrtle.
ai/learn/how-to-train-your-resnet/ (visited on 05/09/2022).

[Pas+19] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach
et al. Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-
learning-library.pdf.

[PE20] Sebastian Prillo and Julian Martin Eisenschlos. “SoftSort: A Continuous Relaxation for
the argsort Operator”. In: ICML. 2020.

[RK20] D. Rolnick and Konrad Paul Kording. “Reverse-Engineering Deep ReLU Networks”. In:
ICML. 2020.

[Rud76] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1976. 342 pp. ISBN:
978-0-07-085613-4. Google Books: kwqzPAAACAAJ.

[Ser77] Jean-Pierre Serre. Linear representations of finite groups. Vol. 42. Springer, 1977.
[Sin64] Richard Sinkhorn. “A Relationship Between Arbitrary Positive Matrices and Doubly

Stochastic Matrices”. In: The Annals of Mathematical Statistics 35.2 (1964), pp. 876–
879. DOI: 10.1214/aoms/1177703591. URL: https://doi.org/10.1214/aoms/
1177703591.

[Vir+20] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python”. In: Nature Methods 17 (2020), pp. 261–272. DOI: 10.1038/s41592-019-
0686-2.

[Wig19] Ross Wightman. PyTorch Image Models. https : / / github . com / rwightman /
pytorch-image-models. 2019. DOI: 10.5281/zenodo.4414861.

[Wil+21] Alex H. Williams et al. “Generalized Shape Metrics on Neural Representations”. In:
NeurIPS. 2021.

[Yi+19] Mingyang Yi et al. “Positively Scale-Invariant Flatness of ReLU Neural Networks”. In:
ArXiv (2019).

[Yun+19] Sangdoo Yun et al. “Cutmix: Regularization strategy to train strong classifiers with
localizable features”. In: Proceedings of the IEEE/CVF international conference on
computer vision. 2019, pp. 6023–6032.

[Zha+18] Hongyi Zhang et al. “mixup: Beyond Empirical Risk Minimization”. In: International
Conference on Learning Representations. 2018. URL: https://openreview.net/
forum?id=r1Ddp1-Rb.

43

https://myrtle.ai/learn/how-to-train-your-resnet/
https://myrtle.ai/learn/how-to-train-your-resnet/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://books.google.com/books?id=kwqzPAAACAAJ
https://doi.org/10.1214/aoms/1177703591
https://doi.org/10.1214/aoms/1177703591
https://doi.org/10.1214/aoms/1177703591
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

	Societal Impact
	Code availability
	Examples
	Experimental Details
	Sampling pairs of models trained with different random seeds
	Stitching Experiments
	Stitching and G`39`42`"613A``45`47`"603AReLU-dissimilarity measures for ResNets
	Stitching for a Vision Transformer
	Choosing the negative-2 regularization multiplier  with cross validation
	Stitching with 1-regularized (a.k.a. LASSO) fully-connected layers
	Implementing dissimilarity measures
	Dissimilarity measures for network with constant channel width

	Proofs
	A proof of lem:intertwiner, plus some abstractions thereof
	Calculating intertwiner groups (for fig-intertwiner-groups)
	Proof of thm:stabilizer1
	Proof of lem:comm-w-sig
	Proof of thm:min-stitch
	Symmetries of the loss landscape
	Comparing capacities of stitching layers via discretization
	Calculations related to dissimilarity measures (for sec:shapemetrics)
	Intertwiners and more general architecture features (justification of rmk:rn-failure)

	Network dissection details
	Network dissection methodology
	Additional experiments
	Model training details

	Dataset Details

