
On the Symmetries of Deep Learning Models and
their Internal Representations

Charles Godfrey1,∗, Davis Brown1,∗, Tegan Emerson1,3,4, Henry Kvinge1,2,3

1Pacific Northwest National Laboratory,
2Department of Mathematics, University of Washington,
3Department of Mathematics, Colorado State University,

4Department of Mathematical Sciences, University of Texas, El Paso
∗Equal contribution

first.last@pnnl.gov

Abstract

Symmetry has been a fundamental tool in the exploration of a broad range of
complex systems. In machine learning, symmetry has been explored in both mod-
els and data. In this paper we seek to connect the symmetries arising from the
architecture of a family of models with the symmetries of that family’s internal
representation of data. We do this by calculating a set of fundamental symmetry
groups, which we call the intertwiner groups of the model. Each of these arises
from a particular nonlinear layer of the model and different nonlinearities result
in different symmetry groups. These groups change the weights of a model in
such a way that the underlying function that the model represents remains constant
but the internal representations of data inside the model may change. We connect
intertwiner groups to a model’s internal representations of data through a range
of experiments that probe similarities between hidden states across models with
the same architecture. Our work suggests that the symmetries of a network are
propagated into the symmetries in that network’s representation of data, provid-
ing us with a better understanding of how architecture affects the learning and
prediction process. Finally, we speculate that for ReLU networks, the intertwiner
groups may provide a justification for the common practice of concentrating model
interpretability exploration on the activation basis in hidden layers rather than
arbitrary linear combinations thereof.

1 Introduction

Symmetry provides an important path to understanding across a range of disciplines. This principle
is well-established in mathematics and physics, where it has been a fundamental tool (e.g., Noether’s
Theorem [Noe18]). Symmetry has also been brought to bear on deep learning problems from a
number of directions. There is, for example, a rich research thread that studies symmetries in data
types that can be used to inform model architectures. The most famous examples of this are standard
convolutional neural networks which encode the translation invariance of many types of semantic
content in natural images into a network’s architecture. In this paper, we focus on connections
between two other types of symmetry associated with deep learning models: the symmetries in the
learnable parameters of the model and the symmetries across different models’ internal representation
of the same data.

The first of these directions of research starts with the observation that in modern neural networks
there exist models with different weights that behave identically on all possible input. We show in
section 3 that at least some of these equivalent models arise because of symmetries intrinsic to the

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

nonlinearities of the network. We call these groups of symmetries, each of which is attached to a
particular type of nonlinear layer σ of dimension n, the intertwiner groups Gσn of the model. These
intertwiner groups come with a natural action on network weights for which the realization map to
function space of [JGH18] is invariant (proposition 3.4). As such they provide a unifying framework
in which to discuss well-known weight space symmetries such as permutation of neurons [Bre+19]
and scale invariance properties of ReLU and batch-norm [IS15; NH10].

Next, we tie our intertwiner groups to the symmetries between different model’s internal represen-
tations of the same data. We do this through a range of experiments that we describe below; each
builds on a significant recent advance in the field.

Neural stitching with intertwiner groups: The work of [BNB21; Csi+21; LV15] demonstrated
that one can take two trained neural networks, say A and B, with the same architecture but trained
from different randomly initialized weights, and connect the early layers of network A to the later
layers of network B with a simple “stitching” layer and achieve negligible loss in prediction accuracy.
This was taken as evidence of the similarity of strong model’s representations of data. Though the
original experiments use a fully connected linear layer to stitch, we provide theoretical evidence
in theorem 4.2 that much less is needed. Indeed, we show that the intertwiner group (which has
far fewer parameters in general) is the minimal viable stitching layer to preserve accuracy. We
conduct experiments stitching networks at ReLU activation layers with the stitching layer restricted
to elements of the group GReLU showing in fig. 1 that one can stitch CNNs on CIFAR-10 [Kri09]
with only elements of GReLU incurring less than ≈ 10% accuracy penalty at most activation layers.
This is surprisingly close to the losses found when one allows for a much more expressive linear
layer to be used to stitch two networks together. However, we see that there remains a significant
gap between the stitching accuracies obtained using GReLU and fully connected linear layers; this
provides independent confirmation of earlier findings that neurons of networks trained with different
random seeds (i.e. with independent initializations and different random batches) are not simply
permutations of each other [Li+15; Wan+18]. It is also consistent with observed phenomena such as
distributed representations in hidden features [GBC16, §15.4] and perhaps also polysemantic neurons
[Ola+20].

Figure 1: Full, reduced rank and GReLU 1-by-1 convolution stitching penalties (4.3) for Myrtle CNNs
[Pag18] on CIFAR-10. Confidence intervals were obtained by evaluating stitching penalties for 32
pairs models trained with different random seeds. The accuracy of the models was 91.3± 0.2%.

Representation dissimilarity measures for GReLU: In section 5 we present two statistical dissimi-
larity measures, GReLU-Procrustes andGReLU-CKA, for ReLU-activated hidden features in different
networks, say A and B. Our measures are counterparts of orthogonal Procrustes distance (see e.g.
[DDS21b]) and Centered Kernel Alignment (CKA)1 [Kor+19] respectively, which are invariant to
orthogonal transformations, and are maximized when the hidden features of networks A and B agree
up to orthogonal transformations. In contrast GReLU-Procrustes and GReLU-CKA are invariant to
GReLU transformations, and are maximized when hidden features agree up toGReLU transformations.
We compare and contrast our measures with their orthogonal counterparts, as well as with stitching
experiment results. Figure 2 shows a comparison of GReLU and orthogonal CKA measures.

1with linear or RBF kernel.

2

Figure 2: GReLU-CKA and orthogonal CKA between layers of two ResNet20s trained on CIFAR-10.
Results averaged over 16 pairs of models trained with different random seeds . Layers marked with
‘*’ occur inside residual blocks (remark 3.6). For further details see section 5.

0.0 0.2 0.4 0.6 0.8 1.0
fraction rotation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fra
ct

io
n

in
te

rp
re

ta
bl

e
un

its

ResNet-50, final residual
modified ResNet-50, final residual
ConvNext, final residual

Figure 3: Fraction of network dissection interpretable units under rotations of the representation basis
for a ResNet-50, as well as a modified ResNet-50 and a ConvNeXt model (both without an activation
function on the residual output). Section 6 contains details and further discussion.

Impact of activation functions on interpretability: An intriguing finding from [Bau+17, §3.2]
was that individual neurons are more interpretable than random linear combinations of neurons.
Our results on intertwiner groups (theorem 3.3) predict that this is a particular feature of ReLU
networks. Indeed, fig. 3 shows that in the absence of ReLU activations interpretability does not
decrease when one moves from individual neurons to linear combinations of neurons — section 6
describes this experiment in further detail. This result suggests that intertwiner groups provide a
theoretical justification for the explainable AI community’s focus on individual neuron activations,
rather than linear combinations thereof [Erh+09; Na+19; Yos+15; ZF14; Zho+15], but that this
justification is only valid for layers with certain activation functions.

Taken together, our experiments provide evidence that a network’s symmetries (realized through
intertwiner groups) propagate down to symmetries of a model’s internal representation of data. Since
understanding how different models process the same data is a fundamental goal in fields such as
explainable AI and the safety of deep learning systems, we hope that our results will provide an
additional lens under which to examine these problems.

2 Related work

The research on symmetries of neural networks is extensive, hence we aim to provide a representative
sample knowing it will be incomplete. [Bre+19; FB17; GBC16; Yi+19] study the effect of weight
space symmetries on the loss landscape. On the other hand, [BMC15; GBC16; Kun+21; Men+19]
study the effect of weight space symmetries on training dynamics, while [GBC16; RK20] show that
weight space symmetries pose an obstruction to model identifiability.

Neural stitching was introduced as a means of comparing learned representations between networks
in [LV15]. In [BNB21] it was shown to have intriguing connections with the “Anna Karenina ” (high
performance models share similar internal representations of data) and “more is better” (stitching

3

later layers of a weak model to early layers of a model trained with more data/parameters/epochs can
improve performance) phenomena. [Csi+21] considered constrained stitching layers by restricting the
rank of the stitching matrix or by introducing an `1 sparsity penalty. Our methods are distinct in that
we explicitly optimize over the intertwiner group for ReLU nonlinearities (permutations and scalings).
Both [BNB21; Csi+21] compare their stitching results with statistical dissimilarity measures such
as CKA. Our GReLU-Procrustes measure is a close relative of the permutation Procrustes distance
introduced in [Wil+21], and our GReLU-CKA is a an instance of CKA [Kor+19] in which the kernel
is taken to be max{x1 · y1, . . . , xd · yd}.
[Li+15] developed algorithms for obtaining a permutation to align neurons, and [Wan+18] introduced
neuron activation subspace matching and used it to study similarity of hidden feature representations.
[AHS22; Ent+22; Tat+20] all aligned neurons with permutations with the goal of obtaining low-loss
paths between the weights of networks. The objectives for neuron alignment used in these works
include maximizing correlation ([AHS22; Li+15; Tat+20]), maximizing a “match” (as defined in
[Wan+18]), simulated annealing search algorithms ([Ent+22]), direct alignment of weights via a
bilinear assignment problem and a “straight-through estimator” of back-propagated training loss
([AHS22]). Each of these is distinct from our method, which explicitly seeks a permutation mini-
mizing training loss and searches for one using standard convex relaxation methods for permutation
optimization.

Approaches to deep learning interpretability sometimes assume that the activation basis is special
[Erh+09; Na+19; Yos+15; ZF14; Zho+15]. Studying individual neurons rather than linear combina-
tions of neurons significantly reduces the complexity of low-level approaches to the understanding of
neural networks [Elh+21]. In tension with this, many different projections of hidden layer activations
appear to be semantically coherent [Sze+14]. However, [Bau+17] found evidence that the hidden
feature vectors closer to the coordinate basis align more with human concepts than vectors sampled
uniformly from the unit sphere.

3 The symmetries of nonlinearities

Let Matn1,n0(R) be the algebra of all n0×n1 real matrices andGLn(R) be the group of all invertible
n×n matrices. Let σ : R→ R be a continuous function. For any n ∈ N, we can build a nonlinearity
σn from Rn to Rn by applying σ coordinatewise, i.e., σn(x1, . . . , xn) = (σ(x1), . . . , σ(xn)). Fix
some k > 1 and for each 1 ≤ i < k let `i : Rni−1 → Rni be the composition of an affine
layer and a nonlinear layer, so that `i(x) := σni

(Wix + bi), and let `k(x) := Wkx + bk. Here
Wi ∈ Matni,ni−1

(R) and bi ∈ Rni are the weights and bias of layer i respectively. We define
f : Rn0 → Rnk to be the neural network f = `k ◦ · · · ◦ `1. For each 1 ≤ i < k − 1 we can then
decompose f as f = f>i ◦ f≤i where

f≤i = `i ◦ · · · ◦ `1 and f>i = `k ◦ · · · ◦ `i+1.

We define

W := (Wi, bi | i = 1, . . . , k) and W :=

k∏
i=1

(Matni,ni−1
(R)× Rni)

where the former is the collection of all weights of f and the latter is the space of all possible weights
for a given architecture. When we want to emphasize the dependence of f on weights W , we write
f(−,W) (and similarly f≤i(−,W), f>i(−,W)).

One of the topics this work will consider is vector space bases for f ’s hidden spaces Rni , for
1 ≤ i ≤ k − 1. We will investigate the legitimacy of analyzing features f≤i(D) for dataset D ⊂ Rn0

with respect to the activation basis for Rni which is simply the usual coordinate basis, e1, . . . , eni

where ej = [δj`]
ni

`=1 is naturally parameterized by individual neuron activations. Note that Rni has
an infinite number of other possible bases that could be chosen.

3.1 Intertwiner Groups

For any 0 ≤ i < k, elements of GLni
(R) can be applied to the hidden activation space Rni both

before and after the nonlinear layer σni
. We define

Gσni
:= {A ∈ GLni

(R) | there exists a B ∈ GLni
(R) such that σni

◦A = B ◦ σni
}.

4

Activation Gσn
φσ(A)

σ(x) = x (identity) GLn(R) A

σ(x) = ex

1+ex
Σn A

σ(x) = ReLU(x) Matrices PD, where D has positive entries A

σ(x) = LeakyReLU(x) Same as ReLU as long as negative slope 6= 1 A

σ(x) = 1√
2π
e−

x2

2 (RBF) Matrices PD, where D has entries in {±1} abs(A)

σ(x) = xd (polynomial) Matrices PD, where D has non-zero entries A�d

Table 1: Explicit descriptions of Gσn
and φσ for six different activations. Here P ∈ Σn is a

permutation matrix, D is a diagonal matrix, abs denotes the entrywise absolute value, and A�d
denotes the entrywise dth power.

Informally, we can understand Gσni
to be the set of all invertible linear transformations whose action

on Rni prior to the nonlinear layer σni
has an equivalent invertible transformation after σni

. This is
an instance of the common procedure of understanding a function by understanding those operators
that commute with it. For any A ∈ GLni(R), we can write σ(A) for the ni × ni matrix formed by
applying σ to all entries in A.
Lemma 3.1. Suppose σ(In) is invertible and for each A ∈ GLn(R) define φσ(A) = σ(A)σ(In)−1.
Then Gσn

is a group, φσ : Gσn
→ GLn(R) is a homomorphism and σn ◦A = φσ(A) ◦ σn.

We defer all proofs to appendix E. We include concrete examples of σ for small ni there as well.
Definition 3.2. When the hypotheses of lemma 3.1 are satisfied (namely, σ(In) is invertible) we call
Gσn the intertwiner group of the activation σn. We denote the image of the homomorphism φσ as
φσ(Gσn).

The intertwiner group Gσn
and φσ are concretely described for a range of activations in table 1 —

the last two examples motivate the generality of definition 3.2. Note also that in both of those cases
A 7→ φσ(A) is not a homomorphism on all of GLn(R), but is a homomorphism when restricted to
the appropriate subgroupGσn . While a substantial part of table 1 can be found scattered in prior work,
our calculations in appendix E.2 deal with the different cases of table 1 in a uniform way, by what
amounts to an algorithm that compute Gσn and φσ given in terms of elementary properties of any
(reasonable) activation function σ.2 As design of activation functions remains an active industry (for
example [Elh+22]), our techniques for computing Gσn

could be useful in future studies of network
symmetries.

The following theorem shows that the activation basis is intimately related to the intertwiner group of
ReLU: GReLU admits a natural group-theoretic characterization in terms of the rays spanned by the
activation basis, and dually the rays spanned by the activation basis can be recovered from GReLU .
While both its statement and proof are elementary, our interest in this theorem lies in the question of
whether it could potentially provide theoretical justification for focusing model interpretation studies
on individual activations. We investigate this question further in section 6.
Theorem 3.3. The group GReLUn

is precisely the stabilizer of the set of rays {R≥0ei ⊂ Rn|i =
1, . . . , n}. Moreover if R≥0v1, . . . ,R≥0vN ⊆ Rn is a finite set of rays stabilized by GReLU, then for
each vi = [vi1, . . . , vin]T , it must be that vij = 0 for all but one j ∈ {1, . . . , n}. Equivalently up to
multiplication by a positive scalar every vi is of the form ±ej for some j.

3.2 Weight space symmetries

The intertwiner group is also a natural way to describe the weight space symmetries of a neural
network. We denote by F ⊆ C(Rn0 ,Rnk) the space of continuous functions that can be described
by a network with the same architecture as f . As described in [JGH18] there is a realization map
Φ : W → F mapping weights W ∈ W to the associated function f ∈ F . Φ arises because there
are generally multiple sets of weights that yield the same function. We will show that Φ is invariant

2We defer further discussion of and references to this prior work to appendix E.2.

5

Figure 4: Rotation penalties for Myrtle CNNs on the CIFAR-10 dataset. Confidence intervals were
obtained by performing 10 independent trials of the experiment with different random seeds, and
baseline accuracy was ≈ 87%..

with respect to an action of the intertwiner groups onW so that intertwiner groups form a set of
“built-in” weight space symmetries of f . This result, which encompasses phenomena including
permutation symmetries of hidden neurons, is well known in many particular cases (e.g., [GBC16,
§8.2.2], [Bre+19, §3], [FB17, §2], [Men+19, §3], [RK20, §3, A]). From Proposition 3.4 we can also
derive corollaries regarding symmetries of the loss landscape — these are included in appendix E.6.
Proposition 3.4. Suppose Ai ∈ Gσni

for 1 ≤ i ≤ k − 1, and let

W ′ = (A1W1, A1b1, A2W2φσ(A−1
1), A2b2, . . . ,Wkφσ(A−1

k−1), bk)

Then, as functions, for each m
f≤m(x,W ′) = φσ(Am) ◦ f≤m(x,W) and f>m(x,W ′) = f>m(x,W) ◦ φσ(Am)−1, (3.5)

In particular, f(x,W ′) = f(x,W) for all x ∈ Rn0 . Equivalently, we have Φ(W ′) = Φ(W) ∈ F .
Remark 3.6. We will show in appendix E that the statement of this theorem must be modified if the
architecture of f contains residual connections. By placing suitable restrictions on the matrices Ai3
we can recover a form of eq. (3.5) provided m occurs at the end of a residual block. However, there
doesn’t seem to be a way to obtain such an identity when m occurs inside a residual block; we see
empirical evidence consistent with this point in figs. 2, 6 and 9 below.

3.3 A “sanity test” for intertwiners

To test proposition 3.4 with a simple experiment, we begin with a Myrtle CNN [Pag18] network4

trained for 50 epochs on the CIFAR-10 dataset, fix a pre-activation layer l, and apply a transformation
A to the weights Wl and biases bl to obtain AWl and Abl (we only act on channels, hence in practice
this is implemented by an auxiliary 1-by-1 convolution layer). We consider 2 choices of A: (i) a
random element of GReLU, where P is a random permutation and the diagonal entries of D are
sampled from a lognormal distribution, and (ii) a random orthogonal matrix, obtained as the “Q” in a
QR-decomposition of a random matrix X with independent standard normal entries.

Next, we freeze layers up to and including l and finetune the later layers for another 50 epochs. We
refer to the difference between the validation accuracy before and after applying the transformation
A and finetuning as a rotation penalty. Based on proposition 3.4, when A ∈ GReLU the network
should be able to recover reasonable performance even with the transformed features — for example,
by updating Wl+1 to Wl+1φσ(A)−1. On the other hand, with probability 1 there is no matrix B such
that updating Wl+1 to Wl+1B counteracts the effect of an orthogonal rotation A on all possible input.
We see that this is indeed the case in fig. 4: transforming by A ∈ GReLU rather a random orthogonal
matrix results in significantly smaller rotation penalties.

4 Intertwining group symmetries and model stitching

In this section we provide evidence that some of the differences between distinct model’s internal
representations can be explained in terms of symmetries encoded by intertwiner groups. We do this

3Namely, that Al = Am if layers l and m are joined by a sequence of residual connections.
4This is a simple 5-layer CNN, with no residual connections described further in appendix D.

6

using the stitching framework from [BNB21; Csi+21], and begin by reviewing the concept of network
stitching.

Suppose f, f̃ are two networks as in section 3, with weightsW , W̃ respectively. For any 1 ≤ l ≤ k−1
we may form a stitched network S(f, f̃ , l, ϕ) : Rn0 → Rnk defined in the notation of section 3
by S(f, f̃ , l, ϕ) = f̃>l ◦ ϕ ◦ f≤l – here ϕ : Rnl → Rnl is a stitching layer. In a typical stitching
experiment one trains networks f and f̃ from different initializations and freezes their weights,
constrainsϕ to some simple function class S (e.g., affine maps in [BNB21]), and trains S(f, f̃ , l, ϕ) by
optimizing ϕ alone. The final validation accuracy AccS(f, f̃ , l, ϕ) of S(f, f̃ , l, ϕ) is then considered
a measure of similarity (or lack therof) of the internal representations of f and f̃ in Rnl — in this
framework the situation

AccS(f, f̃ , l, ϕ) ≈ Acc f,Acc f̃ (4.1)

corresponds to high similarity since the hidden representations of model f and f̃ could be related by
a transformation S.

Recall that even though the networks f(W) and f(W ′) may be equal as functions, their hidden
representations need not be the same (an example of this is given in appendix C). Our next result shows
that in the case where f and f̃ do only differ up to an element of Gσnl

, eq. (4.1) is achievable even
when the stitching function class S is restricted down to elements of φσ(Gσnl

) (see definition 3.2).

Theorem 4.2. Suppose W̃ = (A1W1, A1b1, A2W2φσ(A−1
1), A2b2, . . . ,Wkφσ(A−1

k), bk) where
Ai ∈ Gσni

for all i. Then eq. (4.1) is achievable with equality if the stitching function class S
containing ϕ contains φσ(Gσnl

).

Motivated by theorem 4.2, we attempt to stitch various networks at ReLU activation layers using the
group GReLU described in Figure 1. Every matrix A ∈ GReLU can be written as PD, where P is
a permutation matrix and D is diagonal with positive diagonal entries — hence optimization over
GReLU requires optimizing over permutation matrices. We use the well-known convex relaxation
of permutation matrices to doubly stochastic matrices and describe our optimization procedure in
greater detail in D.2.

Figure 1 gives the difference between the average test error of Myrtle CNN networks f and f̃ and the
network S(f, f̃ , l, ϕ), which we call the stitching penalty:

Acc(f) + Acc(f̃)

2
−Acc(S(f, f̃ , l, ϕ)). (4.3)

In our experiments S(f, f̃ , l, ϕ) was stitched together at layer l via a stitching transformation ϕ
that was either optimized over all affine transformations, reduced rank affine transformations as
in [Csi+21] or transformations restricted to GReLU. We consider only the ReLU activation layers,
as these are the only layers where the theory of section 3 applies, and we only act on the channel
tensor dimension — in practice, this is accomplished by means of 1-by-1 convolution operations. In
particular, with GReLU we are only permuting and scaling channels. Lower values indicate that the
stitching layer was sufficient to translate between the internal representation of f at layer l and the
internal representation of f̃ .

We find that when we learn a stitching layer over arbitrary affine transformations of channels, we
can nearly achieve the accuracy of the original models. When we only optimize over GReLU there
is an appreciable increase in test error difference. This is consistent with findings in [Csi+21;
Li+15; Wan+18] discussed in section 2, and also consistent with observations that hidden features
of neural networks exhibit distributed representations and polysemanticism [Ola+20]. Nonetheless,
that S(f, f̃ , l, ϕ) is able get within less than 10% of the accuracy of f and f̃ in all but one layer
suggests that elements of GReLU can account for a substantial amount of the variation in the internal
representations of independently trained networks. We include the reduced rank transformations as
the dimension of their parameter spaces is greater than that of GReLU, and yet they incur significantly
higher stitching penalties. If nl is the number of channels, we have dimGReLUnl

= nl whereas
the dimension of rank r transformations is 2nl · r − r2 (hence greater than dimGReLUnl

even for

7

r = 1).5 Finally, in the specific case of the Myrtle CNNs the stitching penalties incurred when using
any layer other than 1-by-1 convolution with a rank 1 matrix all follow similar trends: they increase
up to the third activation layer, then decrease at the final activation layer.

Further stitching results on the ResNet20 architecture can be found in appendix D.3, including an
experiment where we modify the architecture to have LeakyReLU activation functions, vary the
negative slope of the LeakyReLU, and find similar stitching penalties up to but not including a
slope of 1. This result is consistent with our calculations in table 1, where we find that for any
LeakyReLU negative slope 6= 1 the intertwiner is the same as GReLU (when the negative slope is 1,
LeakyReLU(x) = x and so the intertwiner is all of GLn).

5 Dissimilarity measures for the intertwiner group of ReLU

Stitching penalties can be viewed as task oriented measures of hidden feature dissimilarity. From
a different perspective, we can consider raw statistical measures of hidden feature dissimilarity.
In the design of measures of dissimilarity, a crucial choice is the group of transformations under
which the dissimilarity measure is invariant. For example, Centered Kernel Alignment (CKA)
[Kor+19] with the dot product kernel is invariant with respect to orthogonal transformations and
isotropic scaling. We ask for a statistical dissimilarity metric µ on datasets X,Y ∈ RN×d with the
properties that (0) 0 ≤ µ(X,Y) ≤ 1, (i) (GReLU-Invariance) If A,B ∈ GReLUd

and v, w ∈ Rd
then µ(XA + 1vT , Y B + 1wT) = µ(X,Y), and (ii) (Alignment Property) µ(X,Y) = 1 if (∗)
Y = XA + 1vT for some A ∈ GReLUd

, v ∈ Rd. To motivate this question, we note that given
such a metric µ, one can detect if X and Y do not differ by an element of GReLU by checking if
µ(X,Y) < 1. Our basic tool for ensuring (i) is the next lemma.
Lemma 5.1. Suppose µ(XA,Y B) = µ(X,Y) if A,B are either positive diagonal matrices or
permutation matrices. Then, (i) holds.

In effect, this allows us to divide the columns of X and Y by their norms to achieve invariance to
the action of positive diagonal matrices and then apply dissimilarity measures for the permutation
group such as those presented in [Wil+21]. Ensuring (ii) seems to require case-by-case analysis to
determine an appropriate normalization constant.
Definition 5.2 (GReLU-Procrustes). Let DX = diag(|X[:,i]|) and DY = diag(|Y[:,i]|). Assuming
these are invertible, let X̃ = XD−1

X and Ỹ = Y D−1
Y . Let δ be the permutation Procrustes distance

between X̃, Ỹ , defined by δ := minP∈Σd
|X̃− Ỹ P | (as pointed out in [Wil+21] this can be computed

via the linear sum assignment problem). Then the GReLU-Procrustes measure is

µProcrustes(X,Y) := 1− δ

2
√
d
.

The factor of 2
√
d ensures this lies in [0, 1], and equals 1 if (and only if) the condition ∗ of (ii) holds.

layer 3 layer 6 layer 10 layer 14

GReLU 0.6208 ± 0.008 0.5106 ± 0.005 0.4432 ± 0.004 0.4899 ± 0.002
Orthogonal 0.7724 ± 0.028 0.5743 ± 0.040 0.5087 ± 0.016 0.5825 ± 0.019

Table 2: GReLU and orthogonal Procrustes similarities for Myrtle CNNs trained on CIFAR-10.
Confidence intervals were obtained by evaluating similarities for 32 pairs models trained with
different random seeds.

We apply GReLU-Procrustes and orthogonal Procrustes similarities to 4 different hidden represen-
tations from Myrtle CNNs in table 2 and many more layers of ResNet20s in fig. 9, all trained
on CIFAR-10 [Kri09]. In keeping with the discussion of section 4, we only consider permuta-
tions or orthogonal transformations of channels (for details on how this is implemented we refer

5A valid concern is that the preceding analysis underestimates the size of GReLU by ignoring a large discrete
factor: GReLUnl

has nl! connected components. In appendix E.7 we carry out a comparison of the sizes of the
parameter spaces of GReLUnl

and reduced rank transformations inspired by the machinery of ε-nets, obtaining
the same conclusion that even the space of rank 1 transformations is larger than GReLU.

8

Figure 5: GReLU-CKA and orthogonal CKA for two Myrtle CNNs with different random seeds
trained on CIFAR-10. Results averaged over 16 such pairs of models .

to appendix D.7). We see that distinct representations register less similarity in terms of GReLU-
Procrustes than they do in terms of orthogonal Procrustes. This makes sense as similarity up to
GReLU-transformation requires a greater degree of absolute similarity between representations than
is required of similarity up to orthogonal transformation (the latter being a higher-dimensional group
containing all of the permutations in GReLU). Otherwise patterns in GReLU-Procrustes similaritiy
largely follow those of orthogonal Procrustes, with similarity between representations decreasing as
one progresses through the network, only to increase again in the last layer. This correlates with the
stitching penalties of fig. 1, which increase with depth only to decrease in the last layer.
Definition 5.3 (GReLU-CKA). Assume that X and Y are data matrices that have been centered by
subtracting means of rows: X ← X − 1

d11
TX and Y ← Y − 1

d11
TY . Let X̃ = XD−1

X and Ỹ =

Y D−1
Y . Let x̃1, . . . , x̃N be the rows of X̃ , and similarly for Ỹ . Form the matrices K,L ∈ RN×N≥0

defined by Kij = max(x̃i � x̃j) and Lij = max(ỹi � ỹj) where � is the Hadamard product. Then
the GReLU-CKA for X and Y is defined as:

µCKA(X,Y) :=
HSIC1(K,L)√

HSIC1(K,K)
√

HSIC1(L,L)
. (5.4)

where HSIC1 is the unbiased form of the Hilbert-Schmidt independence criterion of [NRK21, eq. 3].

Symmetry of the max function ensures (i), the Cauchy-Schwarz inequality ensures µCKA(X,Y) ∈
[0, 1], and we claim that µCKA(X,Y) = 1 if the condition ∗ of (ii) is met. We do not claim
‘if and only if’, however we point out the following in lemma E.44: if A is a matrix such that
max(Ax1 � Ax2) = max(x1 � x2) for all x1, x2 ∈ Rd, then A is of the form PD where P is a
permutation matrix and D is diagonal with diagonal entries in {±1}. In fact, µCKA is simply an
instance of CKA for a the “max kernel.”
Lemma 5.5. The function κ : Rd × Rd → R defined by k(x, y) = max(x � y) is a positive
semi-definite kernel.

As with CKA [Kor+19], this metric makes sense even if X,Y are datasets in Rd,Rd′ respectively
with d 6= d′. Results for a pair of Myrtle CNNs trained on CIFAR-10 with different random seeds,
as well as standard orthogonal CKA for comparison, are shown in fig. 5. Analogous results for
ResNet20s are shown in fig. 2. We find that GReLU-CKA respects basic trends found in their
orthogonal counterparts: model layers at the same depth are more similar, early layers are highly
similar, and the metric surfaces the block structure of the ResNet in fig. 2 (layers inside residual
blocks are less similar than those at residual connections). One notable difference for GReLU-CKA
in figs. 2 and 5 is that the similarity difference between early and later layers in the orthogonal CKA
(discussed for ResNets in [Rag+21]) shown in (b) is less pronounced in (a), and in fact later layers
are found to be less similar between runs. We found similar results for stitching in figs. 1 and 6.

6 Interpretability of the coordinate basis

In this section we explore the confluence of model interpretability and intertwiner symmetries using
network dissection from [Bau+17]. Network dissection measures alignment between the individual

9

neurons of a hidden layer and single, pre-defined concepts (see appendix F.1 for the methodology). We
adapt an experiment from [Bau+17] to compare the axis-aligned interpretability of hidden activation
layers with and without an activation function. Bau et al. compares the interpretability of individual
neurons, measured via network dissection, with that of random orthogonal rotations of neurons. We
likewise rotate the hidden layer representations and then measure their interpretability. Using the
methodology from [Dia05], we define a random orthogonal transform Q drawn uniformly from
SO(n) by using Gram-Schmidt to orthonormalize the normally-distributed QR = A ∈ Rn2

. Like in
[Bau+17], we also consider smaller rotations Qα ∈ SO(n) where 0 ≤ α ≤ 1, where α is chosen to
form a minimal geodesic rotating from I to Q. [Bau+17] found that the number of interpretable units
decreased away from the activation basis as α increased for layer5 of an AlexNet.

We compare three models trained on ImageNet: a ResNet-50, a modified ResNet-50 where we remove
the ReLU on the residual outputs (training details in appendix F.3), and a ConvNeXt [Liu+22] analog
of the ResNet-50, which also does not have an activation function before the final residual output.
We give results in fig. 3, and provide sample unit detection outputs and full concept labels for the
figures in appendix F.2. As was shown in [Bau+17], interpretability decreases as we rotate away from
the axis for the normal ResNet-50 in appendix F.3. On the other hand, with no activation function,
neuron interpretability does not drop with rotation for the modified ResNet-50 and the ConvNeXt.
We note that the models without residual activation functions also have far fewer concept covering
units for a given basis. Interestingly, while the number of interpretable units remains constant for the
residual output of the modified ResNet-50, for the ConvNeXt model it actually increases. We find
similar results, where the number of interpretable units increase with rotation, for the convolutional
layer inside the residual block for the modified ResNet-50 in fig. 19.

7 Limitations

Our theoretical analysis in section 3 does not account for standard regularization techniques that are
known to have symmetry-breaking effects (for example weight decay reduces scaling symmetry).
More generally, we do not account for any implicit regularization of our training algorithms. As
illustrated in figs. 1 and 6, stitching with intertwiner groups appears to have significantly more
architecture-dependent behaviour than stitching with arbitrary affine transformations (however, since
different architectures have different symmetries this is to be expected). Our empirical tests of the
dissimilarity measures in section 5 are limited to what [Kor+19] terms “sanity tests”; in particular we
did not perform the specificity, sensitivity and quality tests of [DDS21a].

8 Conclusion

In this paper we describe groups of symmetries that arise from the nonlinear layers of a neural
network, calculate these symmetry groups for a number of different types of nonlinearities, and
explore their fundamental properties and connection to weight space symmetries. Next, we provide
evidence that these symmetries induce symmetries in a network’s internal representation of the data
that it processes, showing that previous work on the internal representations of neural networks can
be naturally adapted to incorporate awareness of the intertwiner groups that we identify. Finally,
in the special case where the network in question has ReLU nonlinearities, we find experimental
evidence that intertwiner groups justify the special place of the activation basis within interpretable
AI research.

9 Acknowledgements

This research was supported by the Mathematics for Artificial Reasoning in Science (MARS)
initiative at Pacific Northwest National Laboratory. It was conducted under the Laboratory Directed
Research and Development (LDRD) Program at at Pacific Northwest National Laboratory (PNNL), a
multiprogram National Laboratory operated by Battelle Memorial Institute for the U.S. Department
of Energy under Contract DE-AC05-76RL01830.

The authors would also like to thank Nikhil Vyas for useful discussions related to this work.

10

References
[AHS22] Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. “Git Re-Basin:

Merging Models modulo Permutation Symmetries”. In: (2022). DOI: 10.48550/ARXIV.
2209.04836. URL: https://arxiv.org/abs/2209.04836.

[Bau+17] David Bau et al. “Network Dissection: Quantifying Interpretability of Deep Visual Rep-
resentations”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017), pp. 3319–3327.

[BMC15] Vijay Badrinarayanan, Bamdev Mishra, and R. Cipolla. “Understanding Symmetries in
Deep Networks”. In: ArXiv (2015).

[BNB21] Yamini Bansal, Preetum Nakkiran, and Boaz Barak. “Revisiting Model Stitching to
Compare Neural Representations”. In: NeurIPS. 2021.

[Bre+19] Johanni Brea et al. “Weight-Space Symmetry in Deep Networks Gives Rise to Per-
mutation Saddles, Connected by Equal-Loss Valleys across the Loss Landscape”. In:
(July 5, 2019). arXiv: 1907.02911 [cs, stat]. URL: http://arxiv.org/abs/
1907.02911 (visited on 01/12/2022).

[Csi+21] Adrián Csiszárik et al. “Similarity and Matching of Neural Network Representations”.
In: Advances in Neural Information Processing Systems. Ed. by A. Beygelzimer et al.
2021. URL: https://openreview.net/forum?id=aedFIIRRfXr.

[DDS21a] Frances Ding, Jean-Stanislas Denain, and J. Steinhardt. “Grounding Representation
Similarity with Statistical Testing”. In: ArXiv (2021).

[DDS21b] Frances Ding, Jean-Stanislas Denain, and Jacob Steinhardt. “Grounding Representation
Similarity Through Statistical Testing”. In: Advances in Neural Information Processing
Systems. Ed. by A. Beygelzimer et al. 2021. URL: https://openreview.net/forum?
id=_kwj6V53ZqB.

[Dia05] Persi Diaconis. “What is a random matrix”. In: Notices of the AMS 52.11 (2005),
pp. 1348–1349.

[Elh+21] N Elhage et al. A mathematical framework for transformer circuits. 2021.
[Elh+22] Nelson Elhage et al. “Softmax Linear Units”. In: Transformer Circuits Thread (2022).
[Ent+22] Rahim Entezari et al. “The Role of Permutation Invariance in Linear Mode Connectivity

of Neural Networks”. In: International Conference on Learning Representations. 2022.
URL: https://openreview.net/forum?id=dNigytemkL.

[Erh+09] Dumitru Erhan et al. “Visualizing higher-layer features of a deep network”. In: University
of Montreal 1341.3 (2009), p. 1.

[FB17] C. Daniel Freeman and Joan Bruna. “Topology and Geometry of Half-Rectified Network
Optimization”. In: ArXiv abs/1611.01540 (2017).

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[IS15] S. Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: ICML (2015).

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel: convergence
and generalization in neural networks (invited paper)”. In: Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing (2018).

[Kor+19] Simon Kornblith et al. “Similarity of Neural Network Representations Revisited”. In:
ICML (2019).

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep. 2009.
[Kun+21] Daniel Kunin et al. Neural Mechanics: Symmetry and Broken Conservation Laws in

Deep Learning Dynamics. Mar. 29, 2021. arXiv: 2012.04728 [cond-mat, q-bio,
stat]. URL: http://arxiv.org/abs/2012.04728 (visited on 01/12/2022).

[Li+15] Yixuan Li et al. “Convergent Learning: Do Different Neural Networks Learn the Same
Representations?” In: FE@NIPS. 2015.

[Liu+22] Zhuang Liu et al. “A ConvNet for the 2020s”. In: arXiv preprint arXiv:2201.03545
(2022).

[LV15] Karel Lenc and A. Vedaldi. “Understanding Image Representations by Measuring Their
Equivariance and Equivalence”. In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2015). DOI: 10.1109/CVPR.2015.7298701.

11

https://doi.org/10.48550/ARXIV.2209.04836
https://doi.org/10.48550/ARXIV.2209.04836
https://arxiv.org/abs/2209.04836
https://arxiv.org/abs/1907.02911
http://arxiv.org/abs/1907.02911
http://arxiv.org/abs/1907.02911
https://openreview.net/forum?id=aedFIIRRfXr
https://openreview.net/forum?id=_kwj6V53ZqB
https://openreview.net/forum?id=_kwj6V53ZqB
https://openreview.net/forum?id=dNigytemkL
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/2012.04728
https://arxiv.org/abs/2012.04728
http://arxiv.org/abs/2012.04728
https://doi.org/10.1109/CVPR.2015.7298701

[Men+19] Qi Meng et al. “G-SGD: Optimizing ReLU Neural Networks in Its Positively Scale-
Invariant Space”. In: ICLR. 2019.

[Na+19] Seil Na et al. “Discovery of natural language concepts in individual units of cnns”. In:
arXiv preprint arXiv:1902.07249 (2019).

[NH10] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted Boltz-
mann Machines”. In: ICML. 2010.

[Noe18] E Noether. “Invariante Variationsprobleme”. In: 1918, pp. 235–257.
[NRK21] Thao Nguyen, Maithra Raghu, and Simon Kornblith. “Do Wide and Deep Networks

Learn the Same Things? Uncovering How Neural Network Representations Vary with
Width and Depth”. In: International Conference on Learning Representations. 2021.
URL: https://openreview.net/forum?id=KJNcAkY8tY4.

[Ola+20] Chris Olah et al. “Zoom in: An introduction to circuits”. In: Distill 5.3 (2020), e00024–
001.

[Pag18] David Page. How to Train Your ResNet. Myrtle. Sept. 24, 2018. URL: https://myrtle.
ai/learn/how-to-train-your-resnet/ (visited on 05/09/2022).

[Rag+21] Maithra Raghu et al. “Do vision transformers see like convolutional neural networks?”
In: Advances in Neural Information Processing Systems 34 (2021).

[RK20] D. Rolnick and Konrad Paul Kording. “Reverse-Engineering Deep ReLU Networks”. In:
ICML. 2020.

[Sze+14] Christian Szegedy et al. “Intriguing properties of neural networks”. In: CoRR
abs/1312.6199 (2014).

[Tat+20] N. Joseph Tatro et al. “Optimizing Mode Connectivity via Neuron Alignment”. In:
(Nov. 2, 2020). arXiv: 2009.02439 [cs, math, stat]. URL: http://arxiv.org/
abs/2009.02439 (visited on 05/13/2022).

[Wan+18] Liwei Wang et al. “Towards Understanding Learning Representations: To What Extent
Do Different Neural Networks Learn the Same Representation”. In: NeurIPS. 2018.

[Wil+21] Alex H. Williams et al. “Generalized Shape Metrics on Neural Representations”. In:
NeurIPS. 2021.

[Yi+19] Mingyang Yi et al. “Positively Scale-Invariant Flatness of ReLU Neural Networks”. In:
ArXiv (2019).

[Yos+15] Jason Yosinski et al. “Understanding Neural Networks Through Deep Visualization”.
In: Deep Learning Workshop, International Conference on Machine Learning (ICML).
2015.

[ZF14] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional net-
works”. In: European conference on computer vision. Springer. 2014, pp. 818–833.

[Zho+15] Bolei Zhou et al. “Object Detectors Emerge in Deep Scene CNNs.” In: ICLR. 2015.
URL: http://arxiv.org/abs/1412.6856.

12

https://openreview.net/forum?id=KJNcAkY8tY4
https://myrtle.ai/learn/how-to-train-your-resnet/
https://myrtle.ai/learn/how-to-train-your-resnet/
https://arxiv.org/abs/2009.02439
http://arxiv.org/abs/2009.02439
http://arxiv.org/abs/2009.02439
http://arxiv.org/abs/1412.6856

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This

paper is largely focused on the mathematical aspects of deep learning so we do not
think there are any immediate negative societal impact to the methods described. From
a broader perspective though, we see this work helping to create a more principled
groundwork for many interpretable AI techniques. We explain why this could have
positive societal impacts in Section A.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] All proofs can be

found in appendix E.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [TODO] We are in
the process of making code publicly available.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See appendix D.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See appendix D — while we did
not keep precise track of CPU/GPU hours, we do specify the hardware used.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See Section G.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Related work
	The symmetries of nonlinearities
	Intertwiner Groups
	Weight space symmetries
	A ``sanity test'' for intertwiners

	Intertwining group symmetries and model stitching
	Dissimilarity measures for the intertwiner group of `39`42`"613A``45`47`"603AReLU
	Interpretability of the coordinate basis
	Limitations
	Conclusion
	Acknowledgements

