
Appendix

A Additional Discussions

A.1 Application scenario

As shown in Figure 1, Alice, the service receiver (bank) squared in red dashed line, is the or-
ganization to be assisted. Before learning, it broadcasts identification (ID) to locate and align
vertically distributed data held by other organizations. At the beginning of the Learning Stage, the
bank deterministically initializes the values of F 0(x) to be the unbiased estimate of y1, namely
F 0(x) = EN (y0

1). For the regression task, F 0(x) is a single scalar. For classification task, F 0(x) is
a point in the K-dimensional simplex PK .

During the first assistance round in the Learning Stage, the bank computes pseudo-residual r1
1

and broadcasts it to other organizations (e.g., hospital, mall, and insurance company). Then, all
the organizations, including the bank, will fit a new local model with 1) their local data, 2) the
pseudo-residual r1

1 , and 3) their local regression loss function `m (e.g., `2-loss) to fit the pseudo-
residual. We note that organizations have complete autonomy on model fitting. In particular, they can
choose their own learning algorithms and models by considering their resources (e.g., computation
power). Next, the bank will aggregate all the predictions from each organization’s local models by
optimizing a weight vector w1:M referred to as gradient assistance weights. As previously discussed
in Equation (5), we approximate the oracle gradient (operated on centralized data, in hindsight)
with a weighted average of those predictions from organizations. We then numerically search for
the learning rate η. This process can be iterated multiple times until the learning rate is low or the
validation loss is satisfactory.

During the Prediction Stage, organizations will predict with trained models at every assistance round
and transmit their predictions to the bank. Similar to the Learning Stage, the synchronization of each
organization is unnecessary. The bank computes the final prediction with gradient assistance weights,
learning rates, and received predictions.

A.2 Future work on adversarial learning

In this work, we have considered settings where the participating organizations are cooperative, or
some of them receive noisy inputs (pseudo-residuals) or create noisy outputs (fitted pseudo-residuals).
More experimental studies are included in Section D.4 of the Appendix. Nevertheless, we have not
considered adversarial scenarios during Assisted Learning. In adversarial scenarios, one or more
organizations may be malicious or subject to an adversarial attack, e.g., in training data, test data, or
models at training or prediction stages. Compared with conventional adversarial learning settings
that often involve one learner, the proposed decentralized learning framework potentially offers more
avenues for adversarial behavior. Inspired by the existing literature on adversarial learning, we briefly
comment on the following adversarial GAL problems that may deserve future study.

• Adversarial examples [41–45] refer a type of prediction-stage attack that the intended input data
(e.g., an image) is slightly perturbed to cause an already-trained model to make a false prediction. In
GAL, if a participant, Bob, has a large assistance weight (at one or more rounds), it will contribute
non-trivially to the final prediction of Alice. In this case, Bob’s adversarially perturbed future
input will also affect Alice’s prediction accuracy, especially when the weights are large. To enhance
robustness against such an attack, the participants may use a minimax-based robust local training [46].

• Backdoor attacks [47–56] aim to disrupt the prediction performance on specific sub-populations or
target labels (e.g., from a stop sign to a speed sign) without degrading accuracy on most of the input
data regimes. Backdoor attacks often assume the adversary can inject crafted perturbations into the
training data (also known as a “backdoor trigger”), and the learning task is classification. While this
attack may occur to any participating organization at the training stage, it is unclear how to devise
backdoor triggers for GAL participants that only solve regression problems at each round.

• Data poisoning attacks [57–62] aim to deteriorate the overall prediction performances of Alice.
Compared with backdoor attacks, a poisoning attack is untargeted and often occurs in the training
stage. We conjecture that this type of attack is relatively easier to address in a practical GAL system

16

since the gradient assistance weights may assign small weights for those participants that are not
trained well, in contrast with the conventional setting where there is only one learner and one dataset.

• Model-stealing attacks [63–68] (also known as model extractions) refer to the unwanted recon-
struction of a trained machine learning model through information exchanges. In GAL, Alice may
receive assistance from Bob to steal Bob’s local model using queries and responses in the prediction
stage. Likewise, Bob may steal Alice’s local model by participating in the GAL system initialized
by Alice. Apart from single-model stealing, Alice may also perform multi-model stealing, aiming
to learn Bob’s capability to generate predictive models for different pseudo-labels across rounds. If
successful, Alice can imitate Bob’s functionality and assist other learners as if she were Bob.

B Theoretical Analysis

To develop a convergence analysis of the GAL algorithm, we use the following notations. We still let
Fm (for each m = 1, . . . ,M) denote a set of real-valued functions defined on organization m’s data
xm. For notational simplicity, for each fm ∈ Fm, we also treat it as a function of the (artificially)
extended variable x = [x1, . . . , xM]. So, we may write a function in the form of f1 + f2, which
basically means [x1, x2] 7→ f1(x1)+ f2(x2). Let L denote the overarching loss function to minimize
(for the agent to assist), and PM the probability simplex.

As a summary, we abstract the core steps in Algorithm 1 below. For each organization m at assistance
round t, it optimizes each local model by solving

(αt, f
t
m) = argmin

α∈[−at,at],fm∈Fm

L(F t−1 + αfm). (6)

Alice then gathers predictions f tm,m = 1, . . .M from all the organizations and optimizes the gradient
assistance weights and learning rate by solving

(ŵt, η̂t) = argmin
w∈PM ,η∈[−at,at]

L
(
F t−1 + η

M∑
m=1

wmf
t
m

)
. (7)

At round t = 0, we initialize with any F 0 ∈ F1. At each round t, each organization first runs a
greedy boosting step to obtain (αt, f

t
m). The f tm will be sent to us (the organization to assist). Then,

we run another greedy step to optimize the assistance weights ŵt and learning rate η̂t, with fixed f tm,
m = 1, . . . ,M . The weighted function will be added to F t−1 to generate the latest F t.

For each m, we let

span(Fm) =

{Km∑
j=1

µjfj : µj ∈ R, fj ∈ Fm,Km ∈ N+

}
,

which is the function space formed from linear combinations of elements in Fm. Let

span(F1, . . . ,FM) =

{ M∑
m=1

wmfm : wm ∈ R, fm ∈ span(Fm)

}
denote the linear span of the union of F1, . . . ,FM . An equivalent way to write it is span(∪Mm=1Fm).

We will show the following convergence result. With a suitable choice of step parameters at and
regularity conditions of the loss L, the abstract form of GAL can produce F t that asymptotically
attains the minimum loss within the function class span(F1, . . . ,FM). We make the following
technical assumptions.

(A1) The loss (functional) f 7→ L(f) is convex and differentiable on F , with gradient ∇L. Also,
for all f ∈ span(F1, . . . ,FM) and g ∈ ∪Mm=1Fm, the function u 7→ L(f + ug) has a second order
derivative ∂2L(f + ug)/∂u2, and it is upper bounded by a fixed constant C.

(A2) The ranges of learning rates {at}t=1,2,... satisfy
∑∞
t=1 at =∞,

∑∞
t=1 a

2
t <∞.

Theorem 1: Under Assumptions (A1) and (A2), the GAL algorithm satisfies L(F t) →
inff∈span(F1,...,FM) L(f) as t→∞, with a convergence rate at the order of O(

∑t
τ=1(a1:τ/a1:t)a

2
τ).

17

Remarks on Theorem 1: The result says that with suitable control of the learning rates, the greedy
procedure in Algorithm 1 can converge to the oracle one could obtain within span(F1, . . . ,FM). Sup-
pose that an organization, say the one indexed by m = 1, does not collaborate with others. Likewise,
we have the convergence for that particular organization, limt→∞ L(F t) = inff∗∈span(F1) L(f∗). It
can be seen that the GAL will produce a significant gain for this organization as long as

inf
f∗∈span(F1,...,FM)

L(f∗) < inf
f∗∈span(F1)

L(f∗). (8)

It is conceivable that (8) is easy to meet in many practical scenarios since each Fm is operated on
a particular modality of data that belongs to organization m. On the other hand, a skeptical reader
may wonder how the GAL solution compares with a function learned from the pulled data. It is
possible that the global minimum of L (over functions that operate on the pulled data) does not
belong to span(F1, . . . ,FM). If that is the case, the best we can do is to find f that attains the limit
inff∈span(F1,...,FM) L(f). This is a limitation due to the constraint that organizations cannot share
data and the additive structure of span(F1, . . . ,FM). Fortunately, in various real-data experiments
we performed, the GAL often performs close to the centralized learning within only a few assistance
rounds.

In the technical result, we could allow the approximate minimization of (6) and (7), meaning that the
loss of the produced solution is δt-away from the optimal loss. In that case, it can be verified that∑∞
t=1 δt <∞ is sufficient to derive the same asymptotic result in Theorem 1.

The proof of Theorem 1 uses the same technique as was used in [69]. The technical result here
is nontrivial, because f tm (m = 1, . . . ,M) in each round t are not jointly minimized with ŵt and
η̂t in (7), and thus their linear combination may not be the most greedy solution of minimizing
L(F t−1 + f) within f ∈ span(F1, . . . ,FM).

Proof of Theorem 1:

Let f∗ ∈ span(F1, . . . ,FM) be an arbitrary fixed function. It is introduced for technical convenience
and can be treated as the function that (approximately) attains the infimum of L(f).

For every f ∈ span(F1, . . . ,FM), we define the following norm with respect to the basis functions,

‖f‖1 = inf

{
‖µ‖1 :

M∑
m=1

Km∑
j=1

µm,jfm,j : µm,j ∈ R, fm,j ∈ Fm,Km ∈ N+

}
where ‖µ‖1 denotes the abstract sum of its entries, namely

∑
m=1,...,M,j=1,...,Km

|µm,j |.

For each t, let St ⊂ ∪Mm=1Fm denote the finite set of functions such that
1) fτm ∈ St for all 0 < τ < t, and
2) f∗ =

∑
g∈St

µgf∗g (µg ∈ R), with ‖µf∗‖1 ≤ ‖f∗‖1 + ε.
Note that St exists due to the definition of ‖·‖1 and the construction of each fτm. Suppose that F t−1

admits the representation F t−1 =
∑
g∈St

µgF t−1g.

From (7), we have

L(F t) ≤ L
(
F t−1 + η̂tf

t
m

)
, ∀m = 1, . . . ,M. (9)

Meanwhile, it follows from (6) that for each m, and each g ∈ St ∩ Fm,

L
(
F t−1 + η̂tf

t
m

)
≤ L

(
F t−1 + ats

gg
)
. (10)

where sg ∆
= sign(µgf∗ − µgF t−1). Combining (9) and (10), we obtain

L(F t) ≤ L
(
F t−1 + ats

gg
)
, ∀g ∈ St. (11)

Applying Taylor expansion to f 7→ L(f) at f = F t−1, and invoking (11) and Assumption (A1), we
have

L(F t)− L(F t−1) ≤ L(F t−1 + ats
gg)− L(F t−1) ≤ atsg∇L(F t−1)Tg +

C

2
a2
t (12)

18

for all sufficiently small at > 0. Let ‖µf∗ − µF t−1‖1
∆
=
∑
g∈St
|µgf∗ − µgF t−1 |. Multiplying both

sides by |µgf∗ − µgF t−1 |, and add up all the g ∈ St, we have

‖µf∗ − µF t−1‖1 · {L(F t)− L(F t−1)} ≤ at∇L(F t−1)T(f∗ − F t−1) + ‖µf∗ − µF t−1‖1 ·
C

2
a2
t

≤ at{L(f∗)− L(F t−1)}+ ‖µf∗ − µF t−1‖1 ·
C

2
a2
t (13)

where the last inequality is due to the convexity of L. If ‖µf∗−µF t−1‖1 = 0, F t−1 already converges
to f∗. Otherwise, we rearrange (13) to obtain

L(F t)− L(f∗) ≤
(
1− at
‖µf∗ − µF t−1‖1

)
{L(F t−1)− L(f∗)}+ C

2
a2
t (14)

≤
(
1− at

‖µf∗‖1 + 1 +
∑t−1
τ=0 aτ

)
{L(F t−1)− L(f∗)}+ C

2
a2
t , (15)

where the last inequality is due to the triangle inequality, the way F t−1 is constructed, and the fact
that ε can be arbitrarily chosen. Here, we defined a0

∆
= 0. Let a1:t =

∑t
τ=1 aτ for each t ≥ 1.

Applying (15) and the Lemma 4.2 in [69], we have

max(0,L(F t)− L(f∗)) ≤ ‖µf∗‖1 + 1

‖µf∗‖1 + a1:t
+
C

2

t∑
τ=1

‖µf∗‖1 + a1:τ

‖µf∗‖1 + a1:t
a2
τ . (16)

Since f∗ is arbitrarily chosen, it can be seen from Inequality (16) and Assumption (A2) that
limt→∞ L(F t) = inff∗∈span(F1,...,FM) L(f∗), and the rate of convergence is at the order of
O(
∑t
τ=1(a1:τ/a1:t)a

2
τ) as t→∞.

19

C Experimental Setup

C.1 Dataset

In Table 7, we illustrate the statistics of datasets used in our experiments. In Figure 6, we show how
MNIST and CIFAR10 images are split into 2, 4, and 8 image patches. The left upper image patch
(labeled as [1]) of the MNIST image is less informative, which demonstrates that an organization with
little informative data can leverage other organizations’ local data and models. The central image
patches (labeled [2, 3, 6, 7]) of MNIST and CIFAR10 images are more informative than others, which
leads to larger corresponding gradient assistance weights.

Table 7: Detailed statistics used in each data experiment. The variables d and K respectively
denote the number of features (or the shape of the image) and the length of the prediction vector (or
equivalently, the number of classes in the classification task).

Dataset Ntrain Ntest d K M

Diabetes 353 89 10 1 {2, 4, 8}
BostonHousing 404 102 13 1 {2, 4, 8}

Blob 80 20 10 10 {2, 4, 8}
Iris 120 30 4 3 {2, 4}

Wine 142 36 13 3 {2, 4, 8}
BreastCancer 455 114 30 2 {2, 4, 8}

QSAR 844 211 41 2 {2, 4, 8}
MNIST 60000 10000 (1, 28, 28) 10 {2, 4, 8}

CIFAR10 50000 10000 (3, 32, 32) 10 {2, 4, 8}
ModelNet40 3163 800 (12, 3, 32, 32,3 2) 40 {12}
ShapeNet55 35764 5159 (12, 3, 32, 32, 32) 55 {12}

MIMICL 34387 6057 22 1 {4}
MIMICM 17902 3236 22 1 {4}

M = 2

M = 4

M = 8
Service

Receiver
Collaborator

M = 2

M = 4

M = 8
Service

Receiver
Collaborator

1 2 1 2

21

1

3 4

2 3 4

5 6 7 8

3 4

21

7

1 2 43

865

(a) (b)

Figure 6: An illustration of (a) MNIST and (b) CIFAR10 data split into 2, 4, and 8 image patches.
The left upper image patch (labeled [1]) of MNIST images is less informative in general. In contrast,
the central image patches (labeled [2, 3, 6, 7]) of MNIST and CIFAR10 images are more informative.

20

C.2 Model and hyperparameters

Table 8 summarizes the deep neural network architecture used for the MNIST, CIFAR10, ModelNet40,
and ShapeNet55 datasets. Table 9 shows the hyperparameters used in our experiments.

Table 8: The model architecture of Convolutional Neural Networks (CNN) used in our experiments
of the MNIST, CIFAR10, ModelNet40, and ShapeNet55 datasets. The nc, H,W represent the shape
of images, namely the number of image channels, height, and width, respectively. K is the number
of classes in the classification task. The BatchNorm and ReLU layers follow Conv2d(input channel
size, output channel size, kernel size, stride, padding) layers. The MaxPool2d(output channel size,
kernel size) layer reduces the height and width by half.

Image x ∈ Rnc×H×W

Conv2d(nc, 64, 3, 1, 1)

MaxPool2d(64, 2)

Conv2d(64, 128, 3, 1, 1)

MaxPool2d(128, 2)

Conv2d(128, 256, 3, 1, 1)

MaxPool2d(256, 2)

Conv2d(256, 512, 3, 1, 1)

MaxPool2d(512, 2)

Global Average Pooling

Linear(512, K)

Table 9: Hyperparameters used in our experiments for training local models, gradient assisted learning
rates, and gradient assistance weights.

Dataset UCI MNIST CIFAR10 ModelNet40 ShapeNet55 MIMICL MIMICM

Architecture Linear CNN LSTM

Local

Epoch 100 10

Batch size 1024 512 64 8

Optimizer SGD Adam

Learning rate 1.0E-01 1.0E-03

Weight decay 5.0E-04

Gradient assisted learning rate

Epoch 10

Batch size Full

Optimizer L-BFGS

Learning rate 1

Gradient assistance weights

Epoch 100

Batch size 1024

Optimizer Adam

Learning rate 1.0E-01

Weight decay 5.0E-04

Assistance rounds 10

21

D Experimental Results

D.1 Model Autonomy

In Tables 10 and 11, we demonstrate the results of our experiments related to model autonomy for
M = 2 and 4 respectively. Our method significantly outperforms the baselines ‘Alone’ and ‘AL.’ The
results also demonstrate that with GAL, an organization with little informative data and free choice
of its local model (model autonomy) can leverage other organizations’ local data and models and
even achieve near-oracle performance.

Table 10: Results of the UCI datasets (M = 2) with Linear, GB, SVM and GB-SVM models. The
Diabetes and Boston Housing (regression) are evaluated with Mean Absolute Deviation (MAD), and
the rest (classification) are evaluated with Accuracy.

Dataset Model Diabetes(↓) BostonHousing(↓) Blob(↑) Iris(↑) Wine(↑) BreastCancer(↑) QSAR(↑)
Late Linear 120.2(0.1) 3.6(0.1) 100.0(0.0) 100.0(0.0) 100.0(0.0) 99.3(0.4) 81.4(0.4)
Joint Linear 43.4(0.3) 3.0(0.0) 100.0(0.0) 99.2(1.4) 100.0(0.0) 99.1(0.4) 84.0(0.2)

Alone Linear 46.8(3.5) 4.1(0.7) 100.0(0.0) 92.5(6.0) 93.1(6.4) 98.9(0.6) 79.9(1.0)
AL Linear 63.7(1.5) 3.9(0.6) 98.8(2.2) 95.0(2.9) 95.1(2.3) 97.6(0.7) 80.6(1.6)

GAL Linear 43.2(0.8) 2.9(0.1) 100.0(0.0) 99.2(1.4) 96.5(2.3) 98.9(0.4) 83.8(0.4)
GAL GB 49.1(2.7) 3.0(0.3) 97.5(2.5) 95.8(1.4) 98.6(1.4) 95.6(1.1) 85.1(1.0)
GAL SVM 42.6(1.9) 2.5(0.1) 100.0(0.0) 96.7(0.0) 95.1(1.2) 99.6(0.4) 87.3(1.0)
GAL GB-SVM 50.9(2.9) 3.1(0.5) 96.3(6.5) 96.7(0.0) 93.7(4.6) 94.7(0.6) 82.7(0.4)

Table 11: Results of the UCI datasets (M = 4) with Linear, GB, SVM and GB-SVM models. The
Diabetes and Boston Housing (regression) are evaluated with Mean Absolute Deviation (MAD), and
the rest (classification) are evaluated with Accuracy.

Dataset Model Diabetes(↓) BostonHousing(↓) Blob(↑) Iris(↑) Wine(↑) BreastCancer(↑) QSAR(↑)
Late Linear 129.5(0.1) 4.7(0.0) 100.0(0.0) 100.0(0.0) 100.0(0.0) 98.5(0.7) 79.7(1.2)
Joint Linear 43.4(0.3) 3.0(0.0) 100.0(0.0) 99.2(1.4) 100.0(0.0) 98.9(0.4) 84.0(0.2)

Alone Linear 56.6(8.2) 4.8(0.6) 80.0(6.1) 79.2(13.0) 84.7(1.4) 97.1(1.0) 73.0(1.0)
AL Linear 58.3(2.4) 5.2(0.3) 100.0(0.0) 88.3(8.3) 92.4(2.3) 98.9(1.1) 76.8(2.5)

GAL Linear 43.3(1.1) 3.0(0.1) 100.0(0.0) 100.0(0.0) 97.9(2.3) 99.1(0.6) 83.3(0.5)
GAL GB 56.8(3.9) 3.2(0.4) 98.8(2.2) 96.7(0.0) 94.4(2.0) 95.2(0.8) 84.8(1.1)
GAL SVM 44.7(2.6) 2.7(0.1) 100.0(0.0) 96.7(0.0) 96.5(2.3) 99.8(0.4) 86.6(1.1)
GAL GB-SVM 50.0(2.9) 3.3(0.4) 92.5(4.3) 97.5(1.4) 88.9(3.9) 95.0(1.8) 84.2(1.5)

D.2 Deep Model Sharing

In Tables 12 and 13, we demonstrate the results of our experiments related to deep model sharing
for M = 2 and 4 respectively. The results show that sharing the feature extractor across multiple
assistance rounds can still outperform the ‘Alone’ case. Thus, DMS can provide a trade-off between
predictive performance and computation space.

Table 12: Results of the MNIST and CIFAR10 (M = 2) datasets with CNN model. The MNIST and
CIFAR10 are evaluated with Accuracy. GALDMS represents the results with Deep Model Sharing.

Dataset MNIST(↑) CIFAR10(↑)
Interm 99.4(0.0) 81.1(0.3)
Late 99.0(0.0) 81.0(0.2)
Joint 99.4(0.0) 80.1(0.2)

Alone 96.7(0.2) 72.7(0.2)
AL 96.4(0.1) 74.7(0.3)

GAL 98.5(0.2) 78.7(0.4)
GALDMS 98.7(0.1) 74.3(0.5)

22

Table 13: Results of the MNIST and CIFAR10 (M = 4) datasets with CNN model. The MNIST and
CIFAR10 are evaluated with Accuracy. GALDMS represents the results with Deep Model Sharing.

Dataset MNIST(↑) CIFAR10(↑)
Interm 99.1(0.0) 79.8(0.1)
Late 98.4(0.1) 77.5(0.2)
Joint 99.4(0.0) 80.1(0.2)

Alone 81.2(0.1) 60.0(0.4)
AL 82.5(0.1) 64.8(0.3)

GAL 96.6(0.2) 77.3(0.2)
GALDMS 96.7(0.3) 71.3(0.2)

D.3 Comparison with AL

In Table 14, we demonstrate the comparison of computation and communication complexity between
GAL and AL. We compare the computation and communication complexity between AL and GAL
under the constraint of the same communication cost as demonstrated. Because AL sequentially
trains each organization while GAL allows organizations to train locally in parallel, the computation
time and communication round of AL is M× those of GAL. The GAL with Deep Model Sharing
(GALDMS) saves T× computation space by sharing the feature extractor of deep models. In summary,
GAL generalizes the problem scope, reduces the computation and communication complexity, and
achieves significantly better results.

Table 14: Comparison of computation and communication complexity between GAL and AL. M and
T represent the number of organizations and assistance rounds, respectively.

Complexity Computation Time Computation Space Communication Round Communication Cost

AL M× T× M× 1×
GAL 1× T× 1× 1×

GALDMS 1× 1× 1× 1×

D.4 Ablation studies

D.4.1 Privacy enhancement

Our learning framework does not require organizations to share local data, models, and objective
functions. One potential limitation of our approach is that assisting organizations may infer Alice’s
information based on shared the pseudo-residuals. Therefore, we suggest further enhancing privacy
by adopting the framework of Differential Privacy (DP) [39] or Interval Privacy (IP) [40]. We use
the Laplace mechanism with α = 1 for DP and set the number of intervals of IP to be 1. We add a
moderate amount of noise to the pseudo-residuals in hindsight. In Tables 15 and 16, we demonstrate
that privacy-enhanced GAL can still outperform the ‘Alone’ case.

Table 15: Ablation study on the privacy enhancement (M = 2). GALDP and GALIP represent
privacy-enhanced by DP and IP, respectively.

Dataset Diabetes(↓) BostonHousing(↓) Blob(↑) Iris(↑) Wine(↑) BreastCancer(↑) QSAR(↑) MNIST(↑) CIFAR10(↑)
Alone 46.8(3.5) 4.1(0.7) 100.0(0.0) 92.5(6.0) 93.1(6.4) 98.9(0.6) 79.9(1.0) 96.7(0.2) 72.7(0.2)

GALDP 52.1(1.1) 3.5(0.2) 66.3(5.4) 83.3(4.1) 88.2(9.3) 93.9(1.2) 81.9(1.4) 95.7(0.4) 59.0(0.9)
GALIP 52.1(0.9) 3.4(0.1) 100.0(0.0) 92.5(2.8) 99.3(1.2) 96.3(0.7) 86.3(1.3) 97.2(0.4) 71.7(0.4)

Table 16: Ablation study on the privacy enhancement (M = 4). GALDP and GALIP represent
privacy-enhanced by DP and IP, respectively.

Dataset Diabetes(↓) BostonHousing(↓) Blob(↑) Iris(↑) Wine(↑) BreastCancer(↑) QSAR(↑) MNIST(↑) CIFAR10(↑)
Alone 56.6(8.2) 4.8(0.6) 80.0(6.1) 79.2(13.0) 84.7(1.4) 97.1(1.0) 73.0(1.0) 81.2(0.1) 60.0(0.4)

GALDP 52.0(0.8) 3.4(0.1) 47.5(14.8) 85.8(6.4) 91.0(6.3) 95.2(1.0) 81.9(3.2) 94.7(0.4) 57.6(0.1)
GALIP 52.0(0.2) 3.4(0.1) 97.5(4.3) 89.2(3.6) 97.9(1.2) 96.1(0.8) 86.0(1.9) 95.6(0.4) 71.1(0.3)

23

D.4.2 Noisy training with gradient assistance weights

To optimize gradient assistance weights, we use the Adam optimizer and enforce the parameters to
sum to one by using the softmax function. The cost to optimize the gradient assistance weights w and
gradient assisted learning rate η is often negligible compared with the cost to fit the pseudo-residuals
since the number of parameters involved in w ∈ RM and η ∈ R1 is small. In Tables 17 and 18, we
demonstrate the results of our ablation studies of gradient assistance weights by adding noise to the
predicted pseudo-residuals (namely the outputs) from half of the organizations. In Tables 19-21,
we demonstrate the results of our ablation studies of gradient assistance weights when half of the
organizations have no predictive power for the target, i.e., data features sampled from N (0, 1).

Table 17: Ablation study (M = 2) of gradient assistance weights by adding noises to the predicted
outputs from half of the organizations.

Noise Weight Diabetes(↓) BostonHousing(↓) Blob(↑) Iris(↑) Wine(↑) BreastCancer(↑) QSAR(↑) MNIST(↑) CIFAR10(↑)

σ = 1
7 50.1(1.9) 4.4(0.2) 62.5(2.5) 80.8(6.4) 86.8(2.3) 89.9(3.1) 73.2(1.3) 79.7(0.3) 48.8(0.3)
3 47.8(2.4) 3.5(0.5) 97.5(4.3) 95.0(3.7) 96.5(3.0) 98.7(1.0) 80.2(0.5) 96.8(0.1) 71.4(0.1)

σ = 5
7 58.8(1.3) 6.1(0.2) 25.0(9.4) 52.5(10.9) 63.9(3.4) 73.2(1.0) 63.3(0.5) 34.8(0.5) 22.0(0.2)
3 46.5(3.1) 4.1(0.8) 83.8(7.4) 90.0(4.1) 93.1(4.2) 97.6(1.1) 78.3(1.0) 96.3(0.1) 65.9(0.3)

Table 18: Ablation study (M = 4) of gradient assistance weights by adding noises to the predicted
outputs from half of the organizations.

Noise Weight Diabetes(↓) BostonHousing(↓) Blob(↑) Iris(↑) Wine(↑) BreastCancer(↑) QSAR(↑) MNIST(↑) CIFAR10(↑)

σ = 1
7 46.7(1.0) 4.1(0.1) 46.3(6.5) 80.0(5.3) 85.4(3.0) 91.2(1.4) 72.6(2.2) 78.7(0.1) 47.6(0.3)
3 45.0(2.8) 3.7(0.5) 90.0(5.0) 95.8(4.3) 94.4(3.4) 97.8(1.0) 79.1(1.1) 94.1(0.1) 65.4(0.3)

σ = 5
7 59.4(1.1) 5.7(0.4) 13.8(4.1) 54.2(7.6) 61.1(7.1) 75.9(2.9) 64.1(1.8) 38.4(0.3) 22.6(0.5)
3 49.6(3.7) 4.1(0.7) 66.3(9.6) 93.3(2.4) 93.7(3.6) 97.8(0.4) 76.7(1.6) 93.0(0.2) 59.9(0.6)

Table 19: Ablation study (M = 2) of gradient assistance weights when half of the organizations have
no predictive power for the target, i.e. data features sampled from N (0, 1).

Weight Diabetes(↓) BostonHousing(↓) Blob(↑) Iris(↑) Wine(↑) BreastCancer(↑) QSAR(↑)
7 50.7(4.6) 4.3(0.7) 97.5(4.3) 92.5(6.0) 91.7(6.2) 82.9(5.3) 76.9(3.0)
3 46.8(3.6) 4.1(0.7) 97.5(2.5) 92.5(6.0) 92.4(7.4) 97.6(1.7) 80.2(1.7)

Table 20: Ablation study (M = 4) of gradient assistance weights when half of the organizations have
no predictive power for the target, i.e. data features sampled from N (0, 1).

Weight Diabetes(↓) BostonHousing(↓) Blob(↑) Iris(↑) Wine(↑) BreastCancer(↑) QSAR(↑)
7 50.9(4.7) 4.5(0.6) 83.8(5.4) 91.7(5.5) 93.1(3.1) 87.1(5.8) 77.0(0.5)
3 49.6(3.7) 4.2(0.7) 95.0(6.1) 93.3(6.7) 94.4(5.2) 98.2(0.9) 78.3(0.8)

Table 21: Ablation study (maximal M) of gradient assistance weights when half of the organizations
have no predictive power for the target, i.e. data features sampled from N (0, 1).

Weight Diabetes(↓) BostonHousing(↓) Blob(↑) Wine(↑) BreastCancer(↑) QSAR(↑)
7 53.3(6.8) 5.3(0.2) 81.3(6.5) 86.8(5.0) 88.2(2.0) 75.9(1.0)
3 50.2(4.3) 4.8(0.6) 93.8(5.4) 88.9(6.2) 96.5(1.1) 77.9(1.5)

24

D.5 Additional Results

In Figure 7-19, we illustrate results of all datasets (maximal M).

(a) (b) (c)

Figure 7: Results of the Diabetes (M = 8) dataset.

(a) (b) (c)

Figure 8: Results of the BostonHousing (M = 8) dataset.

(a) (b) (c)

Figure 9: Results of the Blob (M = 8) dataset.

(a) (b) (c)

Figure 10: Results of the Iris (M = 4) dataset.

(a) (b) (c)

Figure 11: Results of the BreastCancer (M = 8) dataset.

25

(a) (b) (c)

Figure 12: Results of the Wine (M = 8) dataset.

(a) (b) (c)

Figure 13: Results of the QSAR (M = 8) dataset.

(a) (b) (c)

Figure 14: Results of the MNIST (M = 8) dataset.

(a) (b) (c)

Figure 15: Results of the CIFAR10 (M = 8) dataset.

(a) (b) (c)

Figure 16: Results of the ModelNet40 (M = 12) dataset.

26

(a) (b) (c)

Figure 17: Results of the ShapeNet55 (M = 12) dataset.

(a) (b) (c)

Figure 18: Results of the MIMICL (M = 4) dataset.

(a) (b) (c)

Figure 19: Results of the MIMICM (M = 4) dataset.

27

	Additional Discussions
	Application scenario
	Future work on adversarial learning

	Theoretical Analysis
	Experimental Setup
	Dataset
	Model and hyperparameters

	Experimental Results
	Model Autonomy
	Deep Model Sharing
	Comparison with AL
	Ablation studies
	Privacy enhancement
	Noisy training with gradient assistance weights

	Additional Results

