
Learning Invariant Graph Representations for
Out-of-Distribution Generalization

(Appendix)

Haoyang Li, Ziwei Zhang, Xin Wang, Wenwu Zhu
Tsinghua University

lihy18@mails.tsinghua.edu.cn, {zwzhang,xin_wang,wwzhu}@tsinghua.edu.cn

A Notations

We summarize the key notations and the corresponding descriptions in Table 1.

Table 1: Notations.
Notation Description

N The number of graphs in the dataset
G,Y The graph space and the label space
G,Y A random variable of graph and label
G,Y An instance of graph and label
GI = Φ(G) An instance of the invariant subgraph and the invariant subgraph generator
Φ∗ The optimal invariant subgraph generator
GV = G\GI An instance of the variant subgraph
AI/AV The adjacency matrix of the invariant/variant subgraph
ZI/ZV The node-level representations of the invariant/variant subgraph
hI/hV The graph-level representations of the invariant/variant subgraph
E/Etr A random variable on indices of all/training environments
Einfer A random variable on indices of the inferred environments
e An instance of environment
f The predictor from G to Y
w The classifier from Rd to Y
h The representation learning function from G to Rd

g The representation learning function for invariant subgraphs
IE The invariant subgraph generator set with respect to E
ℓ The loss function

B Training Procedure

To show the training procedure, we present the pseudocode of GIL in Algorithm 1.

C Explanations of Assumption

In the main paper, we denote the invariant subgraph generator as Φ(·) and make the following
assumption on Φ(G):
Assumption 3.1. Given G, there exists an optimal invariant subgraph generator Φ∗(G) satisfying:
a. Invariance property: ∀e, e′ ∈ supp(E), P e(Y|Φ∗(G)) = P e′(Y|Φ∗(G)).
b. Sufficiency property: Y = w∗(g∗(Φ∗(G))) + ϵ, ϵ ⊥ G, where g∗(·) denotes a representation
learning function, w∗ is the classifier, ⊥ indicates statistical independence, and ϵ is random noise.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Algorithm 1 The training procedure of our GIL.

Input: Graph dataset G = {(Gi, Yi)}Ni=1
Output: An optimized predictor f(·) : G → Y

1: for sampled minibatch B of graph dataset G do
2: for each graph instance (G, Y) ∈ B do
3: Generate the mask matrix M with the shared learnable GNNM by Eq. (2).
4: Obtain the invariant subgraph GI and the variant subgraph GV by Eq. (3).
5: Generate representations hV of variant subgraph GV by Eq. (4).
6: Generate representations hI of invariant subgraph GI by Eq. (9).
7: end for
8: Infer environments Einfer with clustering representations of variant subgraphs H by Eq. (5).
9: Calculate the objective function by Eq. (8).

10: Update model parameters using back propagation.
11: end for

The invariance assumption means that there exists a subgraph generator such that it can generate
invariant subgraphs across different environments. The sufficiency assumption means that the
generated invariant subgraphs should have sufficient predictive abilities in predicting the graph labels.
We make this assumption following the literature, e.g, [1–4].

To better illustrate this assumption is commonly satisfied, we provide real-world showcases in
Figure 1. For molecule graphs from [3], invariant subgraph GI (indicated by blue edges) represents
“hydrophilic R-OH group"/“non-polar repeated ring structures”, whose relationship with the label
solubility/anti-solubility is truly predictive and invariant across different environments. And variant
subgraph GV denotes carbon structure or scaffold [4]. For superpixel graphs from [2], GI and GV

represent the edges corresponding to the digit itself and other edges from the background, respectively.

delightful

a romantic

comedy

unbelievably

an stupid

film

onto

loudthe

screen

,

daniel

violent

,

mindless

and

the

world

's

best

actors

auteuil

,

delightful

a romantic

comedy

unbelievably

an stupid

film

onto

loudthe

screen

,

daniel

violent

,

mindless

and

the

world

's

best

actors

auteuil

,

delightful

a romantic

comedy

unbelievably

an stupid

film

onto

loudthe

screen

,

daniel

violent

,

mindless

and

the

world

's

best

actors

auteuil

,

delightful

a romantic

comedy

unbelievably

an stupid

film

onto

loudthe

screen

,

daniel

violent

,

mindless

and

the

world

's

best

actors

auteuil

,

delightful

a romantic

comedy

unbelievably

an stupid

film

onto

loudthe

screen

,

daniel

violent

,

mindless

and

the

world

's

best

actors

auteuil

,

delightful

a romantic

comedy

unbelievably

an stupid

film

onto

loudthe

screen

,

daniel

violent

,

mindless

and

the

world

's

best

actors

auteuil

,

delightful

a romantic

comedy

unbelievably

an stupid

film

onto

loudthe

screen

,

daniel

violent

,

mindless

and

the

world

's

best

actors

auteuil

,

delightful

a romantic

comedy

unbelievably

an stupid

film

onto

loudthe

screen

,

daniel

violent

,

mindless

and

the

world

's

best

actors

auteuil

,

po
si
tiv
e

ne
ga
tiv
e

Train set Test set

(b) Invariant subgraphs in the
superpixel graphs of digits 0 and 6.

O
OH

O

NH

O

OHso
lu
bi
lit
y

an
ti-

so
lu
bi
lit
y

(a) Invariant subgraphs in the molecules
with solubility and anti-solubility.

la
be
l0

la
be
l6

!!: non-polar repeated rings

!!: hydrophilic R-OH group

!!: edges corresponding to the digit 6

!!: edges corresponding to the digit 0

Invariant subgraph !!
variant subgraph !"

Figure 1: Graph examples in real-world scenarios that include invariant GI (blue edges) and variant
GV (gray edges) subgraphs.

D Proofs

In this section, we provide the proofs of Theorem 3.2 and 4.1. We also theoretically analyze that our
GIL satisfies permutation invariance in Section D.3.

D.1 Proof of Theorem 3.2

Theorem 3.2. A generator Φ(G) is the optimal generator that satisfies Assumption 3.1 if and only if
it is the maximal invariant subgraph generator, i.e.,

Φ∗ = arg max
Φ∈IE

I (Y; Φ(G)) , (1)

where I(·; ·) is the mutual information between the label and the generated subgraph.

2

Proof. Denote Φ̂ = argmaxΦ∈IE I (Y; Φ(G)). From the invariance property of Assumption 3.1,
Φ∗ ∈ IE . Therefore, we prove the theorem by showing that I(Y; Φ̂(G)) ≤ I(Y; Φ∗(G)) and
consequently, Φ̂ = Φ∗.

To show the inequality, we use the functional representation lemma [5], which states that for any
random variables X1 and X2, there exists a random variable X3 independent of X1 such that X2 can
be represented as a function of X1 and X3. So for Φ∗(G) and Φ̂(G), there exists Φ′(G) satisfying that
Φ′(G) ⊥ Φ∗(G) and Φ̂(G) = γ (Φ∗(G),Φ′(G)), where γ(·) is a function. Then, we can derive that:

I(Y; Φ̂(G)) = I (Y; γ (Φ∗(G),Φ′(G)))

≤ I (Y; Φ∗(G),Φ′(G))

= I (w∗(g∗(Φ∗(G))); Φ∗(G),Φ′(G))

= I (w∗(g∗(Φ∗(G))); Φ∗(G)) = I (Y; Φ∗(G)) ,

(2)

which finishes the proof.

D.2 Proof of Theorem 4.1

Theorem 4.1. Let Φ∗ be the optimal invariant subgraph generator in Assumption 3.1 and denote the
complement as G\Φ∗(G), i.e., the corresponding variant subgraph. Then, we can obtain the optimal
predictor under distribution shifts, i.e., the solution to Problem 1, as follows:

argmin
w,g

w ◦ g ◦ Φ∗(G) = argmin
f

sup
e∈supp(E)

R(f |e), (3)

if the following conditions hold: (1) Φ∗(G) ⊥ G\Φ∗(G); and (2) ∀Φ ∈ IE , ∃ e′ ∈ supp(E) such
that P e′(G,Y) = P e′(Φ(G),Y)P e′(G\Φ(G)) and P e′(Φ(G)) = P e(Φ(G)).

Proof. Denote the function to obtain the complement of invariant subgraph as Ψ(G) = G\Φ(G) and
Ψ∗(G) = G\Φ∗(G). By assumption, Φ∗(G) ⊥ Ψ∗(G). Further denote f̂ = argminw,g w◦g◦Φ∗(G).
By Assumption 3.1, we have

f̂(G) = w∗ ◦ g∗ ◦ Φ∗(G). (4)

To show that f̂ is f∗, our proof strategy is to show that ∀e ∈ supp(E), for any possible f , R(f̂ |e) ≤
R(f |e′) and therefore supe∈supp(E) R(f̂ |e) ≤ supe∈supp(E) R(f |e).

To show the inequality, we have:

R(f̂ |e) = Ee
G,Y[ℓ(f̂(G),Y)] =

∑
G,Y

P e(G,Y)ℓ(f̂(G),Y) (5)

=
∑

Ψ∗(G)

P e(Ψ∗(G))
∑

Φ∗(G),Y

P e(Φ∗(G),Y)ℓ (w∗(g∗(Φ∗(G))),Y) (6)

=
∑

Φ∗(G),Y

P e(Φ∗(G),Y)ℓ(w∗(g∗(Φ∗(G))),Y) (7)

≤
∑

Φ(G),Y

P e(Φ(G),Y)ℓ(w(g(Φ(G))),Y) (8)

=
∑
Ψ(G)

P e′(Ψ(G))
∑

Φ(G),Y

P e(Φ(G),Y)ℓ(w(g(Φ(G))),Y) (9)

=
∑
Ψ(G)

∑
Φ(G),Y

P e′(Φ(G),Y)P e′(Ψ(G))ℓ(w(g(Φ(G))),Y) (10)

=
∑
G,Y

P e′(G,Y)ℓ(f(G),Y) = Ee′

G,Y[ℓ(f(G),Y)] = R(f |e′). (11)

3

D.3 Proof of Permutation-invariance of GIL

Theorem D.3. Our proposed GIL model is permutation-invariant if GNNM and GNNI are
permutation-equivariant and READOUTI is permutation-invariant.

Proof. The theorem is straight-forward from the compositionality of permutation-equivariant and
invariant functions. Concretely, recall our learned model f = w ◦ g ◦ Φ is formulated as:

Φ : AI = Topt (M⊙A) ,Mi,j = Z
(m)
i

⊤
· Z(m)

j ,Z(m) = GNNM(G).

g : hI = READOUTI(ZI),ZI = GNNI(GI)

w : Ŷ = MLP(hI).

(12)

Consider G′ = π(G), where π is a permutation of nodes. We denote all variables for G′ with a prime
symbol in the top right corner. Since GNNM is permutation-equivariant, we have:

Z(m)′ = GNNM(G′) = GNNM(π(G)) = π(GNNM(G)) = π(Z(m)). (13)

Since the inner product matrix and Topt(·) are also equivariant with respect to permutations, we
easily have:

M′
i,j = Z

(m)′
i

⊤
· Z(m)′

j = π(Z
(m)
i)⊤ · π(Z(m)

j) = π(Z
(m)
i

⊤
· Z(m)

j) = π(Mi,j)

A′
I = Topt(M

′ ⊙A′) = Topt(π(M)⊙ π(A)) = π(Topt(M⊙A)) = π(AI)
(14)

Since GNNI are permutation-equivariant and READOUTI is permutation-invariant, we have:

Z′
I = GNNI(G′

I) = GNNI(π(GI)) = π(GNNI(GI)) = π(ZI)

h′
I = READOUTI(Z′

I) = READOUTI(π(ZI)) = hI .
(15)

Therefore, we have Ŷ ′ = MLP(h′
I) = MLP(hI) = Ŷ , i.e., f is permutation-invariant.

The theorem shows that while learning invariant graph representations under distribution shifts, our
proposed method naturally holds permutation-invariance as other GNNs.

E Experimental Details

E.1 Datasets

Table 2: The statistics of the datasets. #Graphs(Train/Val/Test) is the number of graphs in the train-
ing/validation/testing set of the dataset. #Classes is the number of classes. Average #Nodes/#Edges
are the average number of nodes and edges in the graph of the dataset, respectively.

SP-Motif MNIST-75sp Graph-SST2 OGBG-MOLSIDER OGBG-MOLHIV
#Graphs(Train/Val/Test) 1,500/500/500 5,000/1,000/1,000 28,327/3,147/12,305 1,141/143/143 32,901/4,113/4,113
#Classes 3 10 2 2 2
Avg #nodes 26.7 66.8 13.7 33.6 25.5
Avg #edges 36.7 600.2 25.3 35.4 27.5

We adopt one synthetic dataset with controllable ground-truth environments and four real-world
benchmark datasets for the graph classification task. The statistics of these datasets are provided in
Table 2.

• SP-Motif: Following [6, 2], we generate a synthetic dataset where each graph consists of
one variant subgraph and one invariant subgraph, i.e., motif. The variant subgraph includes
Tree, Ladder, and Wheel (denoted by V = 0, 1, 2, respectively) and the invariant subgraph
includes Cycle, House, and Crane (denoted by I = 0, 1, 2). The ground-truth label Y only
depends on the invariant subgraph I , which is sampled uniformly. Besides, we inject a
spurious correlation between V and Y by controlling the variant subgraphs distribution as:

P (V) =

{
r, if V = I

(1− r)/2, if V ̸= I
. (16)

4

Intuitively, r controls the strength of the spurious correlation between V and Y . We set
r to different values in the testing and training set to simulate the distribution shifts, i.e.,
rtrain ∈ {1/3, 0.5, 0.6, 0.7, 0.8, 0.9} and rtest ∈ {1/3, 0.2}. For this dataset, we adopt
random node features and constant edge weights.

• MNIST-75sp [7]: Each graph is converted from an image in MNIST [8] using superpix-
els [9]. We sample 7,000 images to build our dataset. The nodes are superpixels, and the
edges are calculated by the spatial distance between nodes. The node features are set as the
super-pixel coordinates and intensity. The task is to classify each graph into the correspond-
ing handwritten digit labeled from 0 to 9. To simulate distribution shifts with respect to
graph features, we follow [7] and generate testing graphs by colorizing images, i.e., adding
two more channels and adding independent Gaussian noise, drawn from N (0, 0.6), to each
channel.

• Graph-SST2 [10]: Each graph is converted from a text sequence, where nodes represent
words, edges indicate relations between words, and label is the sentence sentiment. Graphs
are split into different sets according to their average node degree to create distribution shifts.
We use constant edge weights and filter out the graphs with edges less than three. The node
features are initialized by the pre-trained BERT word embedding [11].

• Open Graph Benchmark (OGB) [4]: We consider two graph property prediction datasets
with distribution shifts, i.e., OGBG-MOLSIDER and OGBG-MOLHIV. The task is to
predict the target molecular properties. We adopt the default scaffold splitting procedure,
i.e., splitting the graphs based on their two-dimensional structural frameworks. Note that
this scaffold splitting strategy aims to separate structurally different molecules into different
subsets, which provides a more realistic and challenging scenario for testing graph out-of-
distribution generalization.

The real-world datasets are publicly available as follows:

• MNIST-75sp: http://yann.lecun.com/exdb/mnist/ with license unspecified

• Graph-SST2: https://github.com/divelab/DIG/tree/main/dig/xgraph/
datasets with GPL-3.0 License

• Open Graph Benchmark (OGB): https://ogb.stanford.edu/docs/graphprop/
with MIT License

E.2 GNN Configurations

We summarize the backbone GNN for GNNM, GNNV, GNNI and readout function READOUTV,
READOUTI in Table 3. These settings are set the same as [2] for a fair comparison. For GNNM,
the number of layers is 2. GNNV and GNNI adopt shared parameters, and the number of layers is
4. The dimensionality of the graph-level and node-level representations d is 300 for OGB, 128 for
Graph-SST2, and 32 for other datasets.

Table 3: The backbone GNNs and global pooling function of each dataset.
SP-Motif MNIST-75sp Graph-SST2 OGBG-MOLSIDER OGBG-MOLHIV

GNNM/GNNV/GNNI Backbone
Local Extremum GNN k-GNNs ARMA GIN + Virtual nodes GIN + Virtual nodes

[12] [13] [14] [15, 4] [15, 4]
READOUTI/READOUTV Mean Pooling Max Pooling Mean Pooling Add Pooling Add Pooling

E.3 Baselines

We provide detailed descriptions and links to code repository of baselines in our experiments as
follows:

• ERM: We use ERM to denote the backbone GNN models listed in Table 3, which are trained
with the standard empirical risk minimizing.

5

http://yann.lecun.com/exdb/mnist/
https://github.com/divelab/DIG/tree/main/dig/xgraph/datasets
https://github.com/divelab/DIG/tree/main/dig/xgraph/datasets
https://ogb.stanford.edu/docs/graphprop/

• Attention1 [16]: For this baseline, we replace the default layers of GNNM into graph
attention layers. GNNI and GNNV are kept the same as ERM, which adopt the default
layers shown in Table 3.

• Top-k Pool2 [17]: This method implements the regular global top-k pooling operation on
graph data. It selects a subset of important nodes to enable high-level feature encoding and
receptive field enlargement. We add this pooling layer after the last layer of GNNM.

• SAG Pool3 [18]: It exploits the self-attention mechanism to distinguish between the nodes
that should be neglected and the nodes that should be chosen genearting the subgraph.
Thanks to the self-attention mechanism which uses graph convolutions to calculate attention
scores, node features and graph topology are jointly considered. We add this pooling layer
after the last layer of GNNM.

• ASAP4 [12]: It adopts self-attention with a modified GNN formulation to identify the
importance of nodes in the graph and learns a sparse soft cluster assignment for nodes at
each layer to effectively pool the subgraphs.

• GroupDRO5 [19]: It seeks to optimize the worst-performance over a distribution set to
achieve OOD generalization performance.

• IRM6 [20]: It is a representative invariant learning method, seeking to find data representa-
tions or features for which the optimal predictor is invariant across all environments. We
conduct random environment partitions on the input graph datasets for training.

• V-REx7 [21]: This method is proven to be able to recover the causal mechanisms of the tar-
gets and is robust to distribution shifts. Since this method relies on the explicit environment
labels that are unavailable for the graph datasets in a mixture of latent environments, we
conduct random environment partitions on the input graph datasets during the training stage.

• DIR8 [2]: It conducts interventions on graphs to create interventional distributions and
improve generalization.

• GSAT9 [22]: It aims to build inherently interpretable GNNs and expects GNNs to be more
generalizable by penalizing the amount of information from the input data.

E.4 Additional Details of Optimization and Hyper-parameters

The number of epochs for optimizing our proposed method and baselines is set to 100. We adopt
Stochastic Gradient Descent (SGD) for the optimization on Graph-SST2 and OGB datasets (the
batch size is 32), and Gradient Descent (GD) for SP-Motif and MNIST-75sp, following the setting
in [2] for a fair comparison. Each model is evaluated on the provided validation set for OGB or a
holdout in-distribution validation set for the other datasets for each epoch. We adopt an early stopping
strategy, i.e., stop training if the performance on the validation set does not improve for 5 epochs.
Since we focus on graph classification tasks, we use the cross-entropy loss as the loss function ℓ. The
activation function is ReLU [23]. The evaluation metric is ROC-AUC for OGB datasets and accuracy
for the others. In the invariant subgraph indentification module, the invariant subgraph generator
selects t × |E| edges for each graph, i.e., Topt in Eq. (3), to generate the invariant subgraph. For
a fair comparison, we uniformally set the hyper-parameter t for our method and baselines as 0.25,
0.9, 0.6, and 0.8 on SP-Motif, MNIST-75sp, Graph-SST2, and two OGB datasets, respectively. The
hyper-parameter λ is chosen from {10−5, 10−3, 10−1} and the number of environments |Einfer| is
chosen from [2, 4] based on the results of the validation set. The selected λ and |Einfer| are reported
in Table 4.

1https://github.com/PetarV-/GAT with MIT License
2https://github.com/HongyangGao/Graph-U-Nets with GPL-3.0 License
3https://github.com/inyeoplee77/SAGPool with license unspecified
4https://github.com/malllabiisc/ASAP with Apache-2.0 License
5https://github.com/kohpangwei/group_DRO with license unspecified
6https://github.com/facebookresearch/InvariantRiskMinimization with Attribution-

NonCommercial 4.0 International License
7https://github.com/capybaralet/REx_code_release with license unspecified
8https://github.com/wuyxin/dir-gnn with MIT License
9https://github.com/Graph-COM/GSAT with MIT License

6

https://github.com/PetarV-/GAT
https://github.com/HongyangGao/Graph-U-Nets
https://github.com/inyeoplee77/SAGPool
https://github.com/malllabiisc/ASAP
https://github.com/kohpangwei/group_DRO
https://github.com/facebookresearch/InvariantRiskMinimization
https://github.com/capybaralet/REx_code_release
https://github.com/wuyxin/dir-gnn
https://github.com/Graph-COM/GSAT

Table 4: The chosen hyper-parameters of λ and |Einfer| on each dataset.
SP-Motif MNIST-75sp Graph-SST2 OGBG-MOLSIDER OGBG-MOLHIV

λ 10−5 10−5 10−1 10−3 10−3

|Einfer| 3 2 2 2 2

E.5 Additional Details on Silhouette Score

Silhouette score [24], a commonly used evaluation metric for clustering, is defined as the mean
Silhouette coefficient over all samples. The Silhouette coefficient is calculated using the mean
intra-cluster distance (denoted as di) and the mean nearest-cluster distance (denoted as dn) for each
sample. The Silhouette coefficient for a sample is (dn − di)/max(di, dn). Therefore, Silhouette
score falls within the range [−1, 1]. A silhouette score close to 1 means that the clusters become
dense and nicely separated. The score close to 0 means that clusters are overlapping. And the score
of smaller than 0 means that data belonging to clusters may be wrong/incorrect.

E.6 Hardware and Software Configurations

We conduct the experiments with:

• Operating System: Ubuntu 18.04.1 LTS

• CPU: Intel(R) Xeon(R) CPU E5-2699 v4@2.20GHz

• GPU: NVIDIA GeForce GTX TITAN X with 12GB of Memory

• Software: Python 3.6.5; NumPy 1.19.2; PyTorch 1.10.1; PyTorch Geometric 2.0.3 [25].

E.7 Additional Experiments on Environment Inference

E.7.1 Experiments with Ground-truth Environments

We further conduct empirical analyses to investigate the performances of our model with the ground-
truth environments. We compare our original model (GIL) with the model directly using the ground-
truth environments (termed as GIL w. GT Env.) on the synthetic SP-Motif dataset (rtest = 1/3).
The results in Table 5 show that the performance of using the inferred environments by our model
and the ground-truth environments are comparable, even under different strengths of distribution
shifts. The results are also expected since our inferred latent environments are largely aligned with
the ground-truth labels, as shown in Figure 5 of the main paper. We think it would be interesting to
conduct more explorations for real-world graphs when their environment labels are available.

Table 5: The accuracy (%) on SP-Motif (rtest = 1/3) when directly adopting the ground-truth
environments (GIL w. GT Env.) compared with the original model (GIL).

rtrain r = 1/3 r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9

GIL 55.44±3.11 54.56±3.02 53.60±4.82 53.12±2.18 51.24±3.88 46.04±3.51

GIL w. GT Env. 55.42±2.98 54.63±3.10 53.58±4.67 53.18±3.02 51.01±4.02 46.23±3.16

E.7.2 Experiments with Different Clustering Algorithms

As discussed in the main paper, we adopt the k-means clustering algorithm [26] to infer the environ-
ment labels. In addition, we explore another popular clustering algorithm [27] (termed as convex
clustering) to infer the environment labels. The results on the synthetic SP-Motif dataset (rtest = 1/3)
are shown in Table 6. These results indicate that the clustering algorithm could have a slight influence
on the model performance and overall our model is not sensitive to the choice for clustering algorithm.
Our proposed model does not rely on specific clustering algorithm to infer the environment labels
and can also be compatible with other clustering algorithms.

7

Table 6: Environment inference with different clustering algorithms on the SP-Motif (rtest = 1/3).
rtrain r = 1/3 r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9

GIL (k-means) 55.44±3.11 54.56±3.02 53.60±4.82 53.12±2.18 51.24±3.88 46.04±3.51

GIL (convex clustering) 55.21±2.45 53.60±4.74 54.01±5.13 53.43±1.94 50.12±4.15 47.01±2.54

E.8 Sensitivity of READOUT Functions and GNN Architectures

We conduct the sensitivity analysis on the READOUT functions and GNN architectures in Table 7.
The results show that the choices of READOUT functions and GNN architectures have a slight
influence on the performances. Overall, our model is not very sensitive to their choices and can be
compatible with most common READOUT functions and GNN backbones.

Table 7: The performance (ROC-AUC, %) with different READOUT functions and GNN architec-
tures.

MOLSIDER MOLHIV

GIN + add pooling 63.50±0.57 79.08±0.54

GIN + max pooling 63.37±0.72 79.10±0.42
GIN + mean pooling 61.91±0.75 78.16±0.47

GCN + add pooling 62.31±1.12 77.23±0.61

GCN + max pooling 63.68±0.91 77.61±0.59

GCN + mean pooling 61.33±0.45 76.98±0.36

References
[1] Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, and Jonas Peters. Invariant models

for causal transfer learning. The Journal of Machine Learning Research, 19(1):1309–1342,
2018.

[2] Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. In International Conference on Learning Representations,
2022.

[3] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. Advances in neural information processing systems, 28, 2015.

[4] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Neural Information Processing Systems (NeurIPS), 2020.

[5] Abbas El Gamal and Young-Han Kim. Network information theory. Cambridge university
press, 2011.

[6] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32:9240, 2019.

[7] Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and gener-
alization in graph neural networks. Advances in Neural Information Processing Systems, 32:
4202–4212, 2019.

[8] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[9] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine
Süsstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE transactions
on pattern analysis and machine intelligence, 34(11):2274–2282, 2012.

8

[10] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. arXiv preprint arXiv:2012.15445, 2020.

[11] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pages
4171–4186, 2019.

[12] Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure aware pooling
for learning hierarchical graph representations. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 5470–5477, 2020.

[13] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4602–4609, 2019.

[14] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural
networks with convolutional arma filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

[15] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[16] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[17] Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning,
pages 2083–2092. PMLR, 2019.

[18] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International
Conference on Machine Learning, pages 3734–3743. PMLR, 2019.

[19] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[20] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

[21] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrap-
olation (rex). In International Conference on Machine Learning, pages 5815–5826. PMLR,
2021.

[22] Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic
attention mechanism. In ICML, 2022.

[23] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

[24] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[25] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[26] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm.
Journal of the royal statistical society. series c (applied statistics), 28(1):100–108, 1979.

[27] Danial Lashkari and Polina Golland. Convex clustering with exemplar-based models. Advances
in neural information processing systems, 20, 2007.

9

	Notations
	Training Procedure
	Explanations of Assumption
	Proofs
	Proof of Theorem 3.2
	Proof of Theorem 4.1
	Proof of Permutation-invariance of GIL

	Experimental Details
	Datasets
	GNN Configurations
	Baselines
	Additional Details of Optimization and Hyper-parameters
	Additional Details on Silhouette Score
	Hardware and Software Configurations
	Additional Experiments on Environment Inference
	Experiments with Ground-truth Environments
	Experiments with Different Clustering Algorithms

	Sensitivity of READOUT Functions and GNN Architectures

