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Abstract

Considering the ever-increasing scale of data, which may contain tens of thou-
sands of data points or complicated latent structures, the issue of scalability and
algorithmic efficiency becomes of vital importance for clustering. In this paper,
we propose cluster-wise amortized mixing coupling processes (AMCP), which
is able to achieve efficient amortized clustering in a well-defined non-parametric
Bayesian posterior. Specifically, AMCP learns clusters sequentially with the aid of
the proposed intra-cluster mixing (IntraCM) and inter-cluster coupling (InterCC)
strategies, which investigate the relationship between data points and reference dis-
tribution in a linear optimal transport mixing view, and coupling the unassigned
set and assigned set to generate new cluster. IntraCM and InterCC avoid pairwise
calculation of distances between clusters and reduce the computational complexity
from quadratic to linear in the current number of clusters. Furthermore, cluster-
wise sequential process is able to improve the quick adaptation ability for the
next cluster generation. In this case, AMCP simultaneously learns what makes a
cluster, how to group data points into clusters, and how to adaptively control the
number of clusters. To illustrate the superiority of the proposed method, we per-
form experiments on both synthetic data and real-world data in terms of clustering
performance and computational efficiency.

1 Introduction

Clustering aims to group samples into a certain number of clusters, such that similar samples belong
to the same cluster, while dissimilar ones to different clusters. Aside from its usefulness in many
downstream tasks, clustering is an important but challenging topic which has seen applications in
various settings including social-media recommendation [32], customer partitioning [5], discovering
social networks [7] and partitioning protein-protein interaction networks [3]. Among various clus-
tering algorithms [37], probabilistic generative clustering models [39] have been widely concerned
because of its flexibility and interpretability.

Probabilistic generative clustering models (as known as, mixture models) are a staple of statistical
modeling in which a discrete latent variable is introduced for each observation, indicating its mixture
component identity. These generative clustering models can be roughly divided into two categories:
finite mixture model [6] and infinite mixture model [31]. In recent years, finite mixture models have
been increasingly applied in unsupervised learning problems with the aid of deep neural networks.
Instead of using an arbitrary prior for the latent variable, these methods adopted finite mixture prior,
such as Gaussian mixture model (GMM) [14, 38]. A finite mixture model with a fixed number of
clusters may fit the given dataset well, while it may be sub-optimal to use the same number of clus-
ters if more data comes under a slightly changed distribution [31]. It would be ideal if the clustering
models can figure out the unknown number of clusters automatically. Alternatively, infinite mixture
model is the application of nonparametric Bayesian techniques to mixture modeling, which allows
for the automatic determination of an appropriate number of mixture components. The prior dis-
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tribution can be specified in terms of a data point sequential process called Dirichlet process (e.g.,
Chinese restaurant process (CRP)[29]), where the number of clusters can arbitrarily grow to bet-
ter accommodate data as needed [12]. However, the inference of nonparametric posterior largely
rely on the sequential data point modeling (e.g., Markov Chain Monte Carlo (MCMC)), which is
time-consuming, with convergence that is difficult to assess.

While above probabilistic clustering is generally approached as an unsupervised learning problem,
the amortization power of non-linear transformation (e.g., neural networks) has recently spurred
progress on supervised formulations, based on novel tractable objective functions for generic data
and an arbitrary number of clusters [20, 21, 27]. In exchange for the additional cost of procuring
labeled training data and training the model, amortized clustering offers several benefits on top of
time efficiency at test time. Traditional unsupervised clustering, especially probabilistic clustering,
defines specific likelihood and prior on the data geometry, even without any prior knowledge of the
data, which are not needed with amortized clustering, since the model learns based on the statistics
of the labeled training data [21]. Moreover, to achieve the best result (e.g., agreement with human
labeling or with a well-defined posterior), unsupervised methods usually need parameter tuning
and post-processing (e.g., cluster merging) [15], which are obviated with amortized inference by
implicitly learning the definition of clusters underlying the training datasets. In a sense this shares
a similar philosophy as Neural Processes [10, 9, 16], which learns from multiple datasets to learn a
prior over functions in a meta learning manner.

In this paper, motivated by these prior work, we propose cluster-wise Amortized Mixing Coupling
Processes (AMCP), which is able to provides an efficient clustering architecture by grouping data
points in an optimal transport cluster-wise view. In each cluster-wise step, AMCP generates clus-
ter sequentially and finds one cluster a time. In this case, two key strategies, Intra-Cluster Mixing
(IntraCM) and Inter-Cluster Coupling (InterCC), are proposed to measure the relations between
different data points and generate cluster. Specifically, IntraCM focus on investigating the relation-
ship between data points and reference distribution in a linear optimal transport view [33], which
avoid pairwise calculation of distances between clusters and reduce the computational complexity
from quadratic to linear in the current number of clusters. Then, InterCC leverages new insights
on defining dissimilarity between assigned data points and the unassigned data points based on the
couplings obtained in IntraCM, which is able to select the dissimilar data points to form the next
cluster and update existing clusters. The key contributions of our work are as follows: (1) Efficiency.
The proposed AMCP not only inherent the efficient cluster-wise learning manner, but also reduce
the quadratic cost of traditional similarity weight computation with the aid of optimal transport mix-
ing. (2) Novelty. To the best of our knowledge, AMCP is the first to introduce optimal transport for
amortized clustering and effectively correlate the relationship between optimal transport and mixture
models. (3) Adaptivity. Non-parametric learning manners exist not only in model parameter learning
but also in cluster generation, which allows unsupervised parameter learning and non-handcrafted
intervention. (4) Flexibility. Different from existing amortized clustering methods without changing
the already-generated clusters, AMCP is able to dynamically adjust the previous generated clusters
to avoid the accumulated errors with the aid of mixing and coupling manners. (5) Effectiveness.
Extensive experiments conducted on both synthetic and real-world datasets demonstrate that AMCP
can cluster data effectively and efficiently.

2 Related Work

In this section, we briefly introduce some recent developments in several related topics, namely
probabilistic clustering and amortized clustering.

Probabilistic Clustering Probabilistic clustering models (or equivalently, mixture models) are a sta-
ple of statistical modeling in which a discrete latent variable is introduced for each observation, indi-
cating its mixture component identity. There is a growing interest in developing probabilistic cluster-
ing methods using parametric or nonparametric prior for complex data modeling [6, 31, 14, 38], and
finite and infinite mixture models were developed. The main focus of finite model introduces finite
mixture prior with a fixed number of cluster to clustering. In this case, Gaussian distribution or non
Gaussian distributions [24, 23] are widely used to model data distribution [6]. Alternately, infinite
mixture models [2] adopt non-parametric prior to control the number of clusters dynamically, such
as Dirichlet process and its variants [29]. Recently, researchers focus on deep generative clustering
by combining probabilistic clustering modeling and neural networks [14, 22, 27, 38, 21, 36, 4]. The
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main focus of these methods is to learn a representation of input data amenable to clustering via
deep neural networks.

Amortized Clustering Clustering is generally formulated as an unsupervised learning manner and
while amortized clustering [27, 20, 21] investigates the amortized power steam from a predefined
supervised formulation to achieve an arbitrary number of clusters in new task. Lee et al. [20, 21]
adopt attention networks to output instead the cluster labels of each data point, for general mixture
model, with an arbitrary number K of clusters and a cost of O(K) forward passes. Later, Pakman
et al. [27] presented Neural Clustering Process (NCP), which sequentially computes the conditional
probability of assigning the current data point to one of already constructed clusters or a new one.
The most similar work to our methods is NCP [27] and CHiGac [25]. Both of them explain cluster-
ing from the perspective of generative models, which similar in spirit to the popular Gibbs sampling
algorithm for Dirichlet process mixture models, but without positing particular priors on partitions.
Besides, NCP and CHiGac rely heavily on the selecting of anchor points and the processing ordering
and often exhibits unstable properties. Different from previous work, AMCP connects the relation-
ship of mixture model and optimal transport to describe the cluster’s summary statistics well, and
seamlessly combines mixing and coupling to achieve efficient amortized clustering.

3 Method
3.1 Notations and Problem Formulation

Given N data points D = {x1,x2, · · · ,xN}, where xi ∈ Rd indicates feature representation for
the i-th data point represented in d-dim latent space. Probabilistic models for clustering is usually
presented by sequential sampling procedure to generate clusters. Usually, the generative process is
ci ∼ p(ci|α1), µk ∼ p(µk|α2), xi ∼ p(xi|µci), here ci ∈ {1, 2, · · · ,K} encodes the cluster assign-
ment of the data point xi. α1 and α2 are hyperparameters. The integer random variable K indicates
the number of distinct values among the sampled ci, and µk denotes a parameter controlling the
distribution of the k-th cluster. Specifically, these models include Gaussian mixture model [14, 38],
Dirichlet process mixture model [8] and etc.

Point-wise Clustering Posterior Probabilistic model for clustering is usually presented by sequen-
tial sampling procedure to generate clusters. One of the prototypical tools for nonparametric cluster-
ing modeling is the Dirichlet Process. It allows for a discrete distribution of observations drawn from
an arbitrary base measure over the domain in such a way as that the marginals match draws from,
while simultaneously obtaining a countable set of distinct data points. A useful view of the Dirichlet
process mixture model is the Chinese restaurant metaphor [12], which sequentially computes the
conditional probability of assigning the current data point to one of already constructed clusters or
a new one. The cluster assignment for each data point can be sampled by ci ∼ p(ci|c1:i−1,D). Here
c1:i−1 = {c1, c2, · · · , ci−1} indicates the existing clusters formed by already assigned data points
{x1,x2, · · · ,xi−1}. Based on existing clusters c1:i−1 and observations D, the cluster assignment for
the i-th data point is sampled.

Given N data points X = {xi}Ni=1, it is natural to draw independent samples to form clusters using
decomposition

p(c1:N |D) = p(c1|D)p(c2|c1,D) · · · p(cN |c1:N−1,D) (1)

After all data points are assigned, the final clusters are formed. Inference proceeds by traversing
data points and re-sampling their cluster assignments in sequence.

Challenges The above process sequentially computes the conditional probability of assigning the
current data point to one of already constructed clusters or a new one, and does not posit any par-
ticular prior on partitions. The sequential sampling procedure makes it process data points one by
one, which limits its scalability on large datasets (the computational cost for full i.i.d. sampling
{c1, c2, · · · , cN} is high) [13]. Furthermore, the clustering result is sensitive to the sequential pro-
cessing order. It needs a sufficient number of random samples to obtain stable result, which is
time-consuming.

3.2 Amortized Mixing Coupling Processes

For the seek of effective cluster generative process and preventing the effect of sequential processing
order, we focus on an alternative of clustering generative process from the view of cluster rather
than the view of data point [27, 25]. Let C = {C1, C2, · · · , CK} indicate K clusters, we define Ck
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as Ck = (C(1)k , · · · , C(i)k , · · · , C(Nk)
k ), where C(i)k is the i-th data point of the k-th cluster. Nk is the

number of data points belonging to the k-th cluster. Based on the above definition, we are interested
in sampling each cluster assignment by Ck ∼ p(Ck|C1:k−1,Sk), k = 1, · · · ,K, where Sk indicates the
conditional information containing Mk available unassigned data points for constructing the k-th
cluster. Mk is the number of left data points after generating the previous k − 1 clusters, defined by
Mk = N −

∑k−1
j=1 Nj (Nj is the number of data points belonging to the j-th cluster).

We formulate cluster assignment process in the form of cluster-wise (C1 → C2 → · · · → CK) rather
than point-wise (c1 → c2 → · · · → cN ), which enables an efficient clustering process. We are
interested in sampling {C1, C2, · · · , CK} via a decomposition as follows:

p(C1:K |D) = p(C1|S1)p(C2|C1,S2) · · · p(CK |C1:K−1,SK), (2)

which is easy to model cluster sequentially, and the arbitrary number of clusters can be adaptively
determined until there is no remaining point in Sk. The sampling process defined in Eq.(2) indicates
a clustering posterior using K sets of indices.

To model the above cluster-wise sequential posterior, we propose a cluster-wise amortized mix-
ing coupling processes (AMCP), which is able to provides an efficient amortized clustering ar-
chitecture by grouping data points in a cluster-wise view rather than point-wise view. As shown
in Figure 1(a), AMCP generates clusters sequentially and two key strategies, Intra-Cluster Mix-
ing (IntraCM) and Inter-Cluster Coupling (InterCC), are proposed. Specifically, as shown in Fig-
ure 1, IntraCM focus on investigating the relationship between data points and reference distribution
ϕ(k,T ) = [ϕ

(k,T )
1 ,ϕ

(k,T )
2 , · · · ,ϕ(k,T )

k ] with ϕ
(k,T )
j ∈ Rd in a linear optimal transport view [33] with

T inner update steps. Then, InterCC leverages new insights on defining dissimilarity between unas-
signed data points in Sk and assigned data points in {C1, C2, · · · , Ck−1} based on the learned optimal
transport plan Q(k,T ) obtained in IntraCM in a coupling manner, which is able to select the dissimilar
data points to form the next cluster Ck and update existing clusters {C1, C2, · · · , Ck−1}.

3.2.1 Intra-Cluster Mixing
We present intra-cluster mixing (IntraCM) from generative mixing view, a novel and fast framework
for embedding each cluster in a vector space and defining the relations of each data point from the
reference distribution, which give a clear evidence or constraint that the learned distributions could
describe the cluster’s summary statistics well, as shown in Figure 1(b). Specifically, in the k-th
cluster generation step, data points are partitioned into several subsets, i.e., D(k) has structures with
{C1, C2, · · · , Ck−1,Sk}. We model each data point xi ∈ D(k) as a Bayesian mixture model with k
component parametrized by reference vectors ϕ(k) = [ϕ

(k)
1 ,ϕ

(k)
2 , · · · ,ϕ(k)

k ] ∈ Rk×d and non-fixed
mixing proportions over k − 1 clusters {C1, C2, · · · , Ck−1} and unassigned data points Sk, as shown
in Figure 1(a). A differentiable non-linear function fθ(·) (a neural network) is used to transform
these representations ϕ

(k)
j into parameters fθ(ϕ

(k)
j ). By introducing latent variable b

(k)
i,j indicating

the data point xi comes from the j-th component, we can get the full mixing likelihood related to
the k-th cluster generation as follows:

p(D(k)|ϕ(k)) =
∏
D(k)

∑
b
(k)
i

p
(
xi,b

(k)
i |fθ(ϕ

(k))
)
=

∏
D(k)

k∑
j=1

p(b
(k)
i,j )︸ ︷︷ ︸

π
(k)
j

p
(
xi|fθ(ϕ(k)

j ), b
(k)
i,j

)
, (3)

where b
(k)
i = [b

(k)
i,1 , b

(k)
i,2 , · · · , b

(k)
i,k ] encodes the data point assignments. π(k) = [π

(k)
1 , π

(k)
2 , · · · , π(k)

k ]
are the mixing coefficients.

However, directly optimizing log
∏

D(k) p(xi|fθ(ϕ(k))) with respect to ϕ(k) is difficult due to
marginalization over b(k)

i , while for many distributions optimizing log
∏

D(k) p(xi,b
(k)
i |fθ(ϕ

(k)
j )) is

much easier. In order to reflect the relationship of data in different sets, we introduce a variational
distribution q

(k)
i,j = q(b

(k)
i,j |xi) indicating a variational probability that the data point xi belongs to

the j-th component. In this case, we introduce a constrained variational lower bound to satisfy the
optimal transport measure among different components and focus on performing the expected log
likelihood by optimizing a lower bound:∑

D(k)

log

k∑
j=1

p
(
xi, b

(k)
i,j |fθ(ϕ

(k))
)
≥

∑
D(k)

k∑
j=1

q(b
(k)
i,j |xi) log

p
(
xi, b

(k)
i,j |fθ(ϕ

(k))
)

q(b
(k)
i,j |xi)

=: J(ϕ(k),Q(k))

(4)
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Figure 1: The architecture of the proposed AMCP.

Optimal Transport View of IntraCM Here we give a detailed analysis to connect the proposed mix-
ing strategy with optimal transport measure [33, 11, 17], which defines the transport plan between
data points as weighted points clouds or discrete measures. We aim to formulate an optimization
problem for q(b(k)i,j |xi) given in Eq.(4). By replacing the variational distribution to a joint distribution,
i.e., q(k)i,j = q(b

(k)
i,j |xi)q(xi), the optimization problem of maximizing the lower bound in Eq.(4) with

respect to the transport plan matrix Q(k) = (q
(k)
i,j ) ∈ RN×k is equivalent to solving following entropic

regularized Kantorovich relaxation of optimal transport [28]:

J(ϕ(k),Q(k)) = min
Q(k)

∑
D(k)

k∑
j=1

− log p
(
xi, b

(k)
i,j |fθ(ϕ

(k))
)
q
(k)
i,j − ϵH(Q(k)), (5)

where− log p(xi, b
(k)
i,j |fθ(ϕ

(k))) indicates the pairwise transport cost between data point and reference
vector. If Gaussian distribution is used as data likelihood, the transport cost − log p(xi, b

(k)
i,j |fθ(ϕ

(k)))

is equivalent to a negative kernel −K(xi, fθ(ϕ
(k)
j )). The ϵ impacted entropic regularized term

H(Q(k)) = −
∑

i,j q
(k)
i,j log q

(k)
i,j controls the sparsity of Q(k).

In original entropic regularized Kantorovich relaxation of optimal transport [28], there are some
constraints on transport plan Q(k), i.e.,

∑N
i=1 q

(k)
i,j = 1/k and

∑k
j=1 q

(k)
i,j = 1/N. If we set the factorized

variational distribution to q(xi) = 1/N, the constraint
∑

j q
(k)
i,j = 1/N is automatically met. Optimal

transport view induces various advantages of our proposed mixing strategy. First, it is is computa-
tionally efficient, scalable to vary large dataset. Unlike the quadratic cost of traditional similarity
weight computation (e.g., the attention score in self-attention), our optimal transport mixing uses a
fixed number (k) of references serving as queries and the number of references is set depends on
data without manual setting. Secondly, it allows unsupervised learning where the model parameters
{ϕ(k)

j }
k
j=1 can be learned without target (class) labels. Third, it is able to sufficiently exploit pairwise

interactions between data points in intra-cluster level and benefit for the next inter-cluster coupling,
which is useful to sufficiently mine the hidden structure among data.

Expectation Maximization for IntraCM Considering the latent variable b(k) is introduced, natu-
rally the expectation maximization (EM) method can be utilized [11]. Iterative optimization of this
bound alternates between two steps:

• E-step: The E-step focuses on maximizing the above bound with respect to the variational prob-
ability q(b

(k,t)
i,j |xi). We compute a new estimate of the posterior probability distribution over the
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latent variables from the previous iteration, which yields a soft-assignment of the data points to

the components q(b(k,t)i,j |xi) =
π
(k,t−1)
j p

(
xi|b

(k,t−1)
i,j ,fθ(ϕ

(k,t−1))
)

∑k
j=1 π

(k,t−1)
j p

(
xi|b

(k,t−1)
i,j ,fθ(ϕ

(k,t−1))
) , where π

(k,t−1)
j and ϕ(k,t−1) in-

dicates model parameters from previous iteration. This soft-assignment is a regular E-step without
the balanced assignment constraints. Furthermore, the variational lower bound can be formulated
as the optimal transport setting (as shown in Eq.(5)), yielding an Sinkhorn-based optimal transport
solution [30] as follows:

q(b
(k,t)
i,j |xi) = ui exp

(
p
(
xi|b(k,t−1)

i,j , fθ(ϕ
(k,t−1))

)
/ϵ
)
vj , (6)

where ui =
1

N
∑k

j=1 exp(p(xi|b
(k,t−1)
i,j ,fθ(ϕ

(k,t−1)))/ϵ)vj
and vj =

1

k
∑N

i=1 exp(p(xi|b
(k,t−1)
i,j ,fθ(ϕ

(k,t−1)))/ϵ)ui

.

Note that above solution usually converges quickly after a few iterations. Hence, the E-step coin-
cides with the optimal transport based similarity weight computation, which leads to the various
advantages of our proposed mixing strategy and forms the transport plan Q(k,t) for all data points.

• M-step: Once the E-step is done (i.e., Q(k,t) is found), we perform the M-step, that is, maximiz-
ing the lower bound in Eq.(4) with respect to ϕ(k,t) when Q(k,t) is fixed. Due to the non-linearity
of fθ(·) there exists no analytical solution to argmaxϕ(k) J(ϕ(k),Q(k,t)). With the benefit of dif-
ferentiable fθ(·), we can solve it with the aid of gradient-based strategy. Assume that likelihood
p(xi|fθ(ϕ(k)

j ), b
(k)
i,j ) follows a Gaussian distribution with fixed covariance, we can obtain following

update rule:

ϕ
(k,t)
j = ϕ

(k,t−1)
j + η

∑
D(k)

q(b
(k,t)
i,j |xi)

(
fθ(ϕ

(k,t−1)
j )− xi

)
∇fθ(ϕ(k,t−1)

j ). (7)

For simplicity, if we assume the parameters ϕ(k) in likelihood with a linear transformation
fθ(ϕ

(k)) = Wϕ(k), it can yield an optimal transport kernel embedding solution [26] when we

set it as Gaussian distribution with fixed variance, e.g., π
(k,t)
j =

∑
i q(b

(k,t−1)
i,j |xi)

N
and ϕ

(k,t)
j =∑

i

exp(ϕ
(k,t−1)
j

⊤
(Wxi)/

√
d)∑

i exp(ϕ
(k,t−1)
j

⊤
(Wxi)/

√
d)
Wxi, which is equivalent to induced self-attention introduced in Lee

et al. [20] providing an efficient solution for pairwise weights measuring.

Usually, we can take multiple EM steps for further optimization (e.g., ϕ(k,0) → ϕ(k,1) → · · · →
ϕ(k,T )). Here T is the number of EM steps. IntraCM belongs to the class of generalized EM
algorithms and is guaranteed to converge to a local optimum of the data log likelihood [35].

3.2.2 Inter-Cluster Coupling

After T EM steps, the variational probability q
(k,T )
i,j = q(b

(k,T )
i,j |xi) can be regarded as the optimal

transport plan, which carries the information on how to distribute the mass of data points xi to
reference vectors ϕ

(k,T )
j . By regarding ϕ

(k,T )
j as couplings between unassigned set and assigned

set, we propose inter-cluster coupling (InterCC) to generate the next cluster, as shown in Figure 1.
Considering the current data points have structures with k different sets, C1, C2, · · · , Ck−1,Sk, we can
get k − 1 transport plan matrices {U(k)

1 ,U
(k)
2 , · · · ,U(k)

k−1} related to k − 1 existing clusters and V(k)

related to the unassigned set Sk,

U
(k)
l = [q(b

(k,T )
i,j |xi ∈ Cl)]|Cl|×k l = {1, 2, · · · k} and V(k) = [q(b

(k,T )
i,j |xi ∈ Sk)]Mk×k. (8)

We can measure the relations between unsigned data points in Sk and existing assigned data points
in k − 1 existing clusters C1, C2, · · · , Ck−1 with the aid of couplings ϕ(k) as follows

M(k) =
[
⊕k−1

l=1 (U
(k)
l ϕ(k,T )v

(k)
1

⊤
)︸ ︷︷ ︸

m
(k)
1

, · · · ,⊕k−1
l=1 (U

(k)
l ϕ(k,T )v

(k)
Mk

⊤︸ ︷︷ ︸
m

(k)
Mk

)
]
∈ R(N−Mk)×Mk , (9)

where ⊕ is a column-wise concatenation operation and v
(k)
i is the i-th column of V(k). It is reason-

able to select dissimilar data point in unassigned data points set Sk to form a new cluster Ck, i.e.,

Ck ∼ MULT
(

SOFTMAX
([

1− I⊤m
(k)
1 , 1− I⊤m

(k)
2 , · · · , 1− I⊤m

(k)
Mk

]))
. (10)

Here Multinomial distribution is used to model the generation of Ck. I ∈ RN−Mk is a vector of whose
elements are all 1s. m

(k)
j is the i-th column of M(k). Thus, the data points related to dissimilar
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indices in each matrix are selected to generate the new cluster Ck. Furthermore, previous existing
clusters C1, C2, · · · , Ck−1 can be updated based on dissimilarity matrix. For a given cluster Cl, it can
be updated by Cl := Cl∪Cnew

l , where Cnew
l := MULT(SOFTMAX[1−I(l)

⊤
M(k,l)]). I(l) ∈ R|Cl| is a vector

of all 1s and M(k,l) = U
(k)
l ϕ(k,T )V(k)⊤.

3.2.3 Iterative Unrolling Inference
IntraCM and InterCC are both differentiable procedures for optimal transport measuring and next
cluster constructing, whose outcome relies on the current existing clusters and the statistical model
parameters ϕ(k). As shown in Eq.(2), the whole cluster-wise clustering procedure can be regarded
as a recurrent IntraCM with InterCC until there are no available data point left. In this case, the
information about statistical regularities in our model that is required for generating the sequential
clusters is encoded in a series of parameters {ϕ(1,T ),ϕ(2,T ), · · · ,ϕ(K,T )}. By unrolling the itera-
tions of the presented mixing process, we obtain an end-to-end differentiable clustering procedure
based on the statistical model parameterized by {ϕ(1,T ),ϕ(2,T ), · · · ,ϕ(K,T )}. We can therefore use
(stochastic) gradient descent and fit the statistical model to capture the regularities corresponding to
clusters for a given dataset.

Ep(C1:K ,D)logpθ(C1:K |D)≥Ep(C1:K ,D)

K∑
k=1

[
k∑

j=1

q(b
(k)
i,j |xi)log

p
(
xi, b

(k)
i,j |fθ(ϕ

(k))
)

q(b
(k)
i,j |xi)︸ ︷︷ ︸

IntraCM

+p(Ck|fθ(ϕ(k)))︸ ︷︷ ︸
InterCC

]

(11)

The likelihood is derived from approximating the pθ(C1:K |D) to true posterior via KL divergence.
Note that samples from p(C1:K ,D) are obtained from the explicit generative model, such as Gaussian
mixture model, Dirichlet process mixture model. With infinite generated samples, we can train a
model to approximate pθ(C1:K |D) accurately. The whole inference procedure is given in Algorithm 1.
By repeating the cluster generative process until there are no data points left, IntraCM and InterCC
are processed alternatively, and the clusters are iteratively refined by deriving the explicit supervisory
signal from the already formed clusters. Note that the complexity of traditional methods measuring
weights between data points acquires O(KN2) (e.g., self-attention) which may be too expensive for
large sets, and our AMCP only acquires O(KNk) in the EM-step for the k-th iteration, which is
more efficient.
Algorithm 1 Iterative Unrolling Inference for for AMCP
Input: D = {x1,x2, · · · ,xN} with N data points. Randomly initialized parameters {ϕ(k,0)}Kk=1.
1: Establish the first cluster C1 by selecting cluster with the highest probability from k-means or GMM
2: while not new cluster Ck is generated do
3: // Intra-Cluster Mixing
4: Establish expected lower bound J(ϕ(k,0),Q(k,0)) via Eq.(4)
5: for t = 1, 2, · · · , T do ▷ Multiple EM steps
6: Q(k,t) ← J(ϕ(k,t−1),Q(k,t−1)), ϕ(k,t) ← argmaxϕ(k) J(ϕ(k,t−1),Q(k,t)) ▷ EM-step
7: end for
8: // Inter-Cluster Coupling
9: Establish k transport plan matrices {U(k)

l }
k−1
l=1 and V(k), and similarity matrix M(k)

10: Generate Ck
11: Update existing clusters C1, C2, · · · , Ck−1 ▷ Optional
12: if Sk ̸= ∅ then
13: Establish unassigned set Sk+1

14: end if
15: end while
Output: updated parameters ϕ(K,T ), generated clusters C1, C2, · · · , CK

4 Experiments

In this section, we evaluate the proposed AMCP in terms of synthetic and real-world datasets by
comparing with the state-of-the-art methods.

4.1 Experiments on Synthetic Datasets

The first experiment was conducted on synthetic data with arbitrary number of clusters. Thus, five
existing methods handling variable number of clusters, MCMC[1], VI[2], DAC[21], NCP[27] and
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Table 1: Clustering performance on synthetic 2D GMM. The numbers below Scenario 1 and 2 are
oracle LL values computed by the true parameters. The average on 5 runs are reported.

Scenario Metric MCMC [1] VI [2] DAC [21] NCP [27] ST-ACT [20] AMCP
LL -1.5111±0.021 -1.4230±0.081 -1.2671±0.041 -1.3251±0.042 -1.2928±0.051 -1.2517±0.035

Scenario 1 ACC 0.7066±0.003 0.6832±0.004 0.7923±0.001 0.8131±0.002 0.7680±0.003 0.8532±0.002

(-1.2452) NMI 0.8731±0.004 0.8531±0.002 0.8983±0.003 0.8923±0.004 0.9123±0.003 0.9334±0.001

Time[s] 0.0832±0.032 0.0332±0.045 0.0124±0.047 0.0343±0.026 0.0114±0.002 0.0113±0.003

LL -1.924±0.022 -2.9026±0.022 -1.847±0.034 -1.8551±0.042 -1.8918±0.051 -1.8420±0.025

Scenario 2 ACC 0.6531±0.002 0.5944±0.003 0.7021±0.004 0.7233±0.002 0.6926±0.002 0.7574±0.003

(-1.8242) NMI 0.7931±0.005 0.8123±0.003 0.8231±0.002 0.8089±0.004 0.8412±0.002 0.8592±0.002

Time[s] 0.0953±0.053 0.0362±0.056 0.0151±0.044 0.0366±0.035 0.0166±0.001 0.0124±0.002

ST-ACT[20] are used as baselines. Among them, MCMC and VI are traditional approximation
methods, and DAC, NCP and ST-ACT are deep amortized clustering methods. The synthetic data
is generated via a 2D Gaussian mixture model (GMM) which is defined by the following process
α ∼ EXP(1), c1:N ∼ CRP(α), µk ∼ N (0, σ2

µ1), xi ∼ N (µci , σ
2I). We set σµ = σ = 10.

At each training step, we generate 10 random datasets according to the above generative process.
Each dataset contains 200 points on a 2D plane, and each sampled from one of 4 Gaussians. Two
testing scenarios (Scenario 1 and Scenario 2) are constructed to evaluate the effectiveness of the
proposed method. The test set in Scenario 1 has the same configuration (200 samples and 4 clusters)
as training set, while Scenario 2 contains different numbers of samples and clusters (400 samples
and 6 clusters) in order to verify whether the clustering method can generalize to the unseen clusters.
Table 1 summarizes the results in terms of two testing scenarios. Here we report log-likelihood (LL),
clustering accuracy (ACC), Normalized Mutual Information (NMI) and running time (seconds). The
best and second results are marked in bold and underlined. As expected, the proposed AMCP con-
sistently outperforms baselines on both scenarios. Although Scenario 2 is more challenging, amor-
tized clustering methods (DAC, NCP, ST-ACT and our AMCP) can capture cluster uncertainty and
obtain competitive results. For testing time, amortized methods are obviously faster than traditional
sampling based method (MCMC). Although VI is much fast than MCMC, it is still lower than amor-
tized methods. In cluster-wise amortized clustering methods, DAC, ST-ACT and our ACMP achieve
competitive running time since cluster-wise sequential modeling is more efficient than point-wise
sequential modeling.

4.2 Experiments on Real-world Datasets

Real-world datasets, MNIST [19], Tiny-ImageNet [18] and CIFAR-10 [34], are used to validate the
performance. To formulate the amortized mechanism, we generate training and test data via fol-
lowing Dirichlet process mixture model: α ∼ EXP(1), c1:N ∼ CRP(α),K − 1 ∼ BINOMIAL(Kg −
1, 0.5), lk ∼ U(0,K−1), xi ∼ U [D, lci ]. Here xi ∼ U [D, lci ] indicates sampling xi with label lci uni-
formly from dataset D, which can be training set or test set. Kg indicates the number of clusters we
can sample. For all original dataset, data containing half of the classes is used to generate the training
sets, and the remaining half is used to generate the test sets, with no overlap between training classes
and test classes. We sample multiple clustered datasets to form training sets with N ∈ {1000, 10000}.
For test set, we generate 1000 randomly clustered datasets with N ∈ {1000, 5000}. More information
is given in Appendix.

In Table 2, we depict the quantitative clustering results in real-world datasets. The best and sec-
ond results are marked in bold and underlined. The average clustering results are recorded over
5 runs with different random parameter initialization. It can be seen that our AMCP outperforms
all baselines. The main reason, we believe, is that AMCP not only exploits amortized properties
between data points in both inter- and intra-clusters, but also has flexible clustering process, which
simultaneously generate the new cluster and update the summary statistics for previous clusters. In
model efficiency evaluation, the DAC, ST-ACT and AMCP consume a more competitive running
time, which outperform other methods by a large margin. The reason is that DAC and ST-ACT iden-
tify each cluster after one forward pass, and AMCP generates clusters in cluster-wise manner and
exploits data relations via the efficient optimal transport. However, DAC, ST-ACT are pretty worse
than AMCP on clustering performance.

Among amortized clustering methods, DAC, NCP, ST-ACT and AMCP are able to process arbitrary
number of clusters. For better visualization of cluster generative process, a digit subset from MNIST
test set is randomly sampled. To illustrate how the clustering models capture the shape ambiguity
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Table 2: Clustering performance on real-world datasets. The average on 5 runs are reported.
Dataset Metric MCMC [1] VI [2] DAC [21] NCP [27] ST-ACT [20] AMCP

MNIST
ACC 0.8630±0.004 0.9758±0.004 0.9796±0.001 0.9633±0.004 0.9596±0.003 0.9845±0.001

NMI 0.9124±0.005 0.9482±0.002 0.9542±0.001 0.9321±0.002 0.9465±0.002 0.9624±0.001

Time[s] 56.33±6.42 63.46±6.42 24.33±3.53 73.34±2.42 22.56±2.57 18.22±3.74

Tiny- ACC 0.0637±0.005 0.0785±0.001 0.0907±0.004 0.1028±0.002 0.0892±0.003 0.1324±0.002

ImageNet NMI 0.3212±0.002 0.3231±0.004 0.2894±0.005 0.3254±0.002 0.2832±0.003 0.3421±0.003

Time[s] 3140.8±18.26 3450.5±19.15 1415.6±16.57 4732.8±32.11 1316.6±21.15 1186.4±19.37

CIFAR-10
ACC 0.6322±0.005 0.8742±0.002 0.8835±0.003 0.7641±0.005 0.8632±0.003 0.9024±0.002

NMI 0.6782±0.004 0.7765±0.004 0.7873±0.002 0.7431±0.004 0.7673±0.005 0.8042±0.001

Time[s] 174.42±6.12 192.42±5.11 78.33±4.51 239.33±9.17 68.32±6.51 59.33±5.59

Table 3: A toy clustering results comparisons among different amortized clustering methods (DAC,
NCP, CHiGac and AMCP) on MNIST dataset.

Ground-truth:

DAC:

NCP:

CHiGac:

AMCP:

of some of the digits, we plot the ground-truth digit clusters and clustering results in Table 3. Com-
paring with DAC, NCP and ST-ACT, the proposed AMCP can get the most accurate results. For
example, DAC assigns the digit 7 (with similar appearance to 9) to cluster 9, and NCP generates a
new cluster for it. Fortunately, AMCP correctly assigns it to cluster 7. All baselines are unable to
assign the digit 4 written in a strange way to the right cluster, and our AMCP correctly assigns it to
cluster 4. Results on Tiny-ImageNet and CIFAR-10 can be obtained in Appendix.

4.3 Model Analysis

We empirically analyze the proposed model from the impact of various hyper-parameters. They are
summarized as follows: (1)The Number of EM Steps T : AMCP can apply multiple EM steps
to achieve more accurate ϕ(K,T ). Here we conduct experiments on varying T in {1, 2, 3, 4, 5} to
investigate the effect of T . Figure 2(a) and (b) show the effect of T on synthetic data (Scenario 1)
and real-world data (CIFAR-10). We can see that, the performance (LL and ACC) become better and
better with the increasing of T , while the running time is linearly scalable to the number of steps.
(2) OT E-step vs. Regular E-step We introduce two different ways to conduct E-step in IntraCM:
regular soft-assignment E-step and Sinkhorn-based optimal transport E-step. Figure 2(c) and (d)
show the comparison between regular E-step and OT E-step on synthetic data (Scenario 1) and real-
world data (CIFAR-10). The maximum number of Sinkhorn-Knopp iterations for solving the OT
problem is set to 10. While the regular E-step is consistently faster than the OT E-step since it’s
closed-form solution, OT E-step can achieve more accurate likelihood and accuracy. Furthermore,
we compare the difference between the strategy of updating the existing clusters and the strategy of
not updating. More empirical results are given in Appendix.

0
0.005
0.01
0.015
0.02

-1.35

-1.3

-1.25

-1.2

1 2 3 4 5

Ti
m
e[
s]

LL

T

LL
Time[s]

(a) T -(Scenario 1)

30

50

70

90

0.88
0.89
0.9

0.91
0.92

1 2 3 4 5

Ti
m
e[
s]

AC
C

T

ACC
Time[s]

(b) T -(CIFAR-10)

-1.3
-1.28
-1.26
-1.24
-1.22

regular-E OT-E

LL

(c) E-step (Scenario 1)

0.885
0.89

0.895
0.9

0.905

regular-E OT-E

AC
C

(d) E-step (CIFAR-10)

Figure 2: The impact of hyper-parameters.

5 Conclusion
In this paper, we studied the problem of amortized clustering, and presented our approach that
perform cluster-wise amortized mixing coupling processes via intra-cluster mixing and inter-cluster
coupling. An interesting direction for future research is to explore more complicated and realistic
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hidden structure (e.g., hierarchical clusters) that is not possible with our approach. Furthermore, it is
interested to explore novel applications that can be enabled by the interpretability and controllability
brought by the amortized clustering.
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