
A Pseudo-Code for Algorithms

Algorithm 2 Value Iteration (with Min-Max Oracle)
Inputs: S,X ,Y, r, g, p, �, T
Outputs: v(T )

1: Initialize v(0) arbitrarily, e.g. v(0) = 0
2: for t = 1, . . . , T do

3: for s 2 S do

4: v(t+1)(s) = min
x2X

max
y2Y:g(s,x,y)�0

E
S0⇠p(·|s,x,y)

h
r(s,x,y) + �v(t)(S0)

i

5: return v(T )

Algorithm 3 Nested GDA for stochastic Fisher Markets with saving
Inputs: v,T , b, q, ⌘p, ⌘X , Tp, TX ,p(0),X(0),�(0)

Output: (p(t),X(t))Tt=1

1: for t = 1, . . . , Tp do

2: for s = 1, . . . , TX do

3: For all i 2 [n], x(t)
i = x(t)

i + ⌘X

0

@ bi � �(t)
i

ui

⇣
x(t)
i ; ti

⌘rxiui

⇣
x(t)
i ; ti

⌘
1

A

4: For all i 2 [n], �(t)
i = �(t)

i + ⌘X

✓
� log(ui(xi

(t); ti)) + �
@v(T , b, q)

@bi

◆

5: (X(t),�(t)) = ⇧{(X,�)2Rn⇥m
+ ⇥Rn

+:X·p(t�1)+�b}
�
(X(t),�(t))

�

6: p(t) = ⇧Rm
+

⇣
p(t�1)

� ⌘p(1 �
P

i2[n] x
(t)
i )

⌘

7: return (p(t),X(t))
Tp

t=1

B Omitted Results and Proofs Section 2

We first note the following fundamental relationship between the state-value and action-value func-
tions which is an analog of Bellman’s Theorem [66] and which follows from their definitions:

Theorem B.1. Given a stochastic min-max Stackelberg game (S,X ,Y, µ(0), r, g, p, �), for all v 2 V ,
q 2 Q, ⇡x 2 X

S , and ⇡y 2 Y
S , v = v⇡x⇡y and q = q⇡x⇡y iff:

v(s) = q(s,⇡x(s),⇡y(s)) (14)
q(s,x,y) = E

S0⇠p(·|s,x,y)
[r(s,x,y) + �v(S0)] (15)

Proof of Theorem B.1. By the definition of the state value function we have v
⇡x⇡y

i =
qi(s,⇡x(s),⇡y(s)), hence by Equation (14) we must have that vi = v

⇡x⇡y

i . Additionally, by
Equation (15) and the definition of the action-value functions this also implies that qi(s,x,y) =
q
⇡x⇡y

i (s,x,y)

Theorem 2.1. (⇡⇤
x,⇡

⇤
y) is a recSE of G(0) of v⇡x⇡y iff it induces a value function which is a fixed

point of C: i.e., (⇡⇤
x,⇡

⇤
y) is a Stackelberg equilbrium iff, for all s 2 S,

⇣
Cv⇡

⇤
x⇡

⇤
y

⌘
(s) = v⇡

⇤
x⇡

⇤
y (s).

Proof of Theorem 2.1. We prove one direction, the other direction follows symmetrically. (Fixed
Point =) recursive Stackelberg equilibrium) Suppose that a value function v⇡

⇤
x⇡

⇤
y which is induced
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by a policy profile (⇡⇤
x,⇡

⇤
y) is a fixed point of C, we then have for all states s 2 S:

v⇡
⇤
x⇡

⇤
y =

⇣
Cv⇡

⇤
x⇡

⇤
y

⌘
(s) (16)

= min
x2X

max
y2Y:g(s,x,y)�0

E
S0⇠p(·|s,x,y)

h
r(s,x,y) + �v⇡

⇤
x⇡

⇤
y (S0)

i
(17)

= min
x2X

max
y2Y:g(s,x,y)�0

q⇡
⇤
x⇡

⇤
y (s,x,y) (18)

Hence, by Definition 1.2, (⇡⇤
x,⇡

⇤
y) is recursive Stackelberg equilibrium.

Lemma 2.2. Suppose that f, h : X ⇥Y ! R, g : X ⇥Y ! Rd are continuous functions, and X ,Y
are compact sets. Then

��minx2X maxy2Y:g(x,y)�0 f(x,y)�minx2X maxy2Y:g(x,y)�0 h(x,y)
��

 max(x,y)2X⇥Y |f(x,y)� h(x,y)|.

Proof of Lemma 2.2. Let (x⇤,y⇤) be a Stackelberg equilibrium of
minx2X maxy2Y:g(x,y)�0 f(x,y), and (x0,y0) be a Stackelberg equilibrium of
minx2X maxy2Y:g(x,y)�0 h(x,y). Additionally, let ȳ 2 argmaxy2Y:g(x0,y)�0 f(x

0,y),
then by the the definition of a Stackelberg equilibrium, we have f(x⇤,y⇤) =
miny2Y maxx2X :g(x,y)�0 f(x,y)  maxy2Y:g(x0,y)�0 f(x

0,y) = f(x0, ȳ), and
h(x0,y0) = maxy2Y:g(x0,y)�0 h(x

0,y) � h(x0, ȳ).

Suppose that minx2X maxy2Y:g(x,y)�0 f(x,y) � minx2X maxy2Y:g(x,y)�0 , h(x,y) this gives
us: ����min

x2X
max

y2Y:g(x,y)�0
f(x,y)� min

x2X
max

y2Y:g(x,y)�0
h(x,y)

���� (19)

= |f(x⇤,y⇤)� h(x0,y0)| (20)
 |f(x0, ȳ)� h(x0,y0)| (21)
 |f(x0, ȳ)� h(x0, ȳ)| (22)
 max

(x,y)2X⇥Y
|f(x,y)� h(x,y)| (23)

The opposite case follows similarly by symmetry.

Theorem 2.3. Consider the operator C associated with a stochastic Stackelberg game G
(0). Under

Assumption 1.1, C is a contraction mapping w.r.t. to the sup norm k.k1 with constant �.

Proof of Theorem 2.3. We will show that C is a contraction mapping, which then by Banach fixed
point theorem establish the result. Let v, v 0

2 V be any two state value functions and q, q 0 2 Q be
the respective associated action-value functions. We then have:
kCv � Cv 0

k1 (24)

 max
s2S

����min
x2X

max
y2Y:g(s,x,y)�0

q(s,x,y)� min
x2X

max
y2Y:g(s,x,y)�0

q 0(s,x,y)

���� (25)

 max
s2S

max
(x,y)2X⇥Y

|q(s,x,y)� q 0(s,x,y)| (Lemma 2.2)

(26)

 max
s2S

max
(x,y)2X⇥Y

���� E
S0⇠p(·|s,x,y)

[r(s,x,y) + �v(S0)]� E
S0⇠p(·|s,x,y)

[r(s,x,y) + �v 0(S0)]

����
(27)

 max
s2S

max
(x,y)2X⇥Y

���� E
S0⇠p(·|s,x,y)

[�v(S0)� �v 0(S0)]

���� (28)

 �max
s2S

max
(x,y)2X⇥Y

���� E
S0⇠p(·|s,x,y)

[v(S0)� v 0(S0)]

���� (29)

 �max
s2S

max
(x,y)2X⇥Y

|v(s)� v 0(s)| (30)

= � kv � v 0
k1 (31)
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Since � 2 (0, 1), C is a contraction mapping.

Theorem 2.4. Consider a zero-sum stochastic Stackelberg game G
(0). Under Assumption 1.1, G(0)

has a unique value function v⇡
⇤
x⇡

⇤
y associated with all recSE (⇡⇤

x,⇡
⇤
y), which can be computed by

iteratively applying C to any initial state-value function v(0) 2 V: i.e., limt!1 v(t) = v⇡
⇤
x⇡

⇤
y .

Proof of Theorem 2.4. By combining Theorem 2.3 and the Banach fixed point theorem [57], we
obtain that a fixed point of C exists. Hence, by Theorem 2.1, a recursive Stackelberg equilibrium of
(S,X ,Y, µ(0), r, g, p, �) exists and the value function induced by all recursive Stackelberg equilibria
is the same, i.e., the optimal value function is unique. Additionally, by the second part of the Banach
fixed point theorem, we must then also have limt!1 v(t) = v⇡

⇤
x⇡

⇤
y .

For any q 2 Q, we define a greedy policy profile with respect to q as a pol-
icy profile (⇡

q
x,⇡

q
y) such that ⇡

q
x 2 argminx2X maxy2Y:g(s,x,y)�0 q(s,x,y) and ⇡

q
y 2

argmaxy2Y:g(s,⇡
q
x(x),y)�0 q(s,⇡

q
x(x),y). The following lemma provides a progress bound for

each iteration of value iteration which is expressed in terms of the value function associated with the
greedy policy profile.
Theorem 2.6 (Convergence of Value Iteration). Suppose value iteration is run on input G. Let
(⇡⇤

x,⇡
⇤
y) be recSE of G with value function v⇡

⇤
x⇡

⇤
y . Under Assumption 1.1, if we initialize v(0)(s) = 0,

for all s 2 S , then for k �
1

1�� log rmax
✏(1��) , it holds that v(k)(s)� v⇡

⇤
x⇡

⇤
y (s)  ✏.

Proof of Theorem 2.6. First note that by Assumption 1.1, we have that
���v⇡

⇤
x⇡

⇤
y

���
1


rmax
1�� . Applying

the operator C repeatedly and using the fact that v⇡
⇤
x⇡

⇤
y = Cv⇡

⇤
x⇡

⇤
y from Theorem 2.1, we obtain

kv(k) � v⇡
⇤
x⇡

⇤
yk1 (32)

= k(C)kv(0) � (C)kv⇡
⇤
x⇡

⇤
yk1 (33)

 �k
kv(0) � v⇡

⇤
x⇡

⇤
yk1 (34)

= �k
kv⇡

⇤
x⇡

⇤
yk1 (35)

 �k rmax

1� �
(36)

where Equation (35) was obtained as v(0) = 0 Since 1� x  e�x for any x 2 R, we have

�k = (1� (1� �))k  (e�(1��))k  e�(1��)k

Thus, for any s 2 S

v(k)(s)� v⇡
⇤
x⇡

⇤
y (s)  kv(k) � v⇡

⇤
x⇡

⇤
yk1

= �k rmax

1� �

 e�(1��)k rmax

1� �

Thus it suffices to solve for k such that

e�(1��)k rmax

1� �
 " .

which concludes the proof.

C Omitted Results and Proofs Section 3

Our characterization of the subdifferential of the value function associated with a Stackelberg
equilibrium w.r.t. its parameters relies on a slightly generalized version of the subdifferential envelope
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theorem (Theorem C.1, Appendix C) of Goktas and Greenwald [6], which characterizes the set of
subdifferentials of parametrized constrained optimization problems, i.e., the set of subgradients w.r.t.
x of f⇤(x) = maxy2Y:h(x,y)�0 f(x,y). In particular, we note that Goktas and Greenwald’s proof
goes through even without assuming the concavity of f(x,y), h1(x,y), . . . , hd(x,y) in y, for all
x 2 X .

Theorem C.1 (Subdifferential Envelope Theorem). Consider the function f⇤(x) =
maxy2Y:h(x,y)�0 f(x,y) where f : X ⇥ Y ! R, and h : X ⇥ Y ! Rd. Let Y

⇤(x) =
argmaxy2Y:h(x,y)�0 f(x,y). Suppose that 1. f(x,y), h1(x,y), . . . , hd(x,y) are continuous in
(x,y) and f⇤ convex in x; 2. rxf,rxh1, . . . ,rxhd are continuous in (x,y); 3. Y is non-empty
and compact, and 4. (Slater’s condition) 8x 2 X , 9by 2 Y s.t. gk(x, by) > 0, for all k = 1, . . . , d.
Then, f⇤ is subdifferentiable and at any point bx 2 X , @xf⇤(bx) =

conv

0

@
[

y⇤(bx)2Y⇤(bx)

[

�⇤
k(bx,y⇤(bx))2⇤⇤(bx,y⇤(bx))

(
rxf (bx,y⇤(bx)) +

dX

k=1

�⇤
k(bx,y⇤(bx))rxgk (bx,y⇤(bx))

)1

A ,

(37)

where conv is the convex hull operator and �⇤(bx,y⇤(bx)) = (�⇤
1(bx,y⇤(bx)), . . . ,�⇤

d(bx,y⇤(bx)))T 2

⇤⇤(bx,y⇤(bx)) are the optimal KKT multipliers associated with y⇤(bx) 2 Y
⇤(bx).

Theorem C.2 (Subdifferential Benveniste-Scheinkman Theorem). Consider the Bellman equation
associated with a recursive stochastic optimization problem where r : S ⇥ X ⇥ Y ! R, with state
space S and parameter set X , and � 2 (0, 1):

v(s,x) = max
y2Y:g(s,x,y)�0

⇢
r(s,x,y) + � E

S0⇠p(·|s,x,y)
[v(S0,x)]

�
(38)

Suppose that Assumption 1.1 holds, and that 1. for all s 2

S,y 2 Y , r(s,x,y), g1(s,x,y), . . . , gd(s,x,y) are concave in x,
2. rxr(s,x,y),rxg1(s,x,y), . . . ,rxgd(s,x,y),rxp(s0 | s,x,y) are continuous in
(s, s0,x,y), 3. v(s,x) is convex in x 4. Slater’s condition holds for the optimization problem, i.e.,
8x 2 X , s 2 S, 9by 2 Y s.t. gk(s,x, by) > 0, for all k = 1, . . . , d.
Let Y⇤(s,x) = maxy2Y:g(s,x,y)�0

�
r(s,x,y) + � Es0⇠p(·|s,x,y) [v(s

0,x)]
 

, then v is subdifferen-
tiable and @xv(s, x̂) =

conv

0

@
[

y⇤(s,bx)2Y⇤(s,bx)

[

�⇤
k(s,bx,y⇤(s,bx))2⇤⇤(s,bx,y⇤(bx))

⇢
rxr (s, bx,y⇤(s, bx)) + �rx E

S0⇠p(·|s,x̂,y⇤(s,bx))
[v(S0, x̂)]

+
dX

k=1

�⇤
k(s, bx,y⇤(s, bx))rxgk (s, bx,y⇤(s, bx))

)!
.

(39)

Suppose additionally, that for all s, s0 2 S,x 2 X , y⇤(s,x) 2 Y
⇤(s,x)rxp(s0 | s,x,y⇤(s,x)) >

0, then @xv(s, x̂) =

conv

0

@
[

y⇤(s,bx)2Y⇤(s,bx)

[

�⇤
k(s,bx,y⇤(s,bx))2⇤⇤(s,bx,y⇤(bx))

⇢
rxr (s, bx,y⇤(s, bx)) + � E

S0⇠p(·|s,x̂,y⇤(s,bx))
[rxv(S

0, x̂)]

+� E
S0⇠p(·|s,x̂,y⇤(s,bx))

[v(S0, x̂)rx log (p(S0
| s, x̂,y⇤(s, bx))] +

dX

k=1

�⇤
k(s, bx,y⇤(s, bx))rxgk (s, bx,y⇤(s, bx))

)!
.

(40)

where conv is the convex hull operator and �⇤(s, bx,y⇤(s, , bx)) =

(�⇤
1(s, bx,y⇤(s, bx)), . . . ,�⇤

d(s, bx,y⇤(s, bx)))T 2 ⇤⇤(s, bx,y⇤(s, bx)) are the optimal KKT multipliers
associated with y⇤(s, bx) 2 Y

⇤(s, bx).
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Proof of Theorem C.2. From Theorem C.1, we obtain the first part of the theorem:

@xv(s, x̂) (41)

= conv

0

@
[

y⇤(s,bx)2Y⇤(s,bx)

[

�⇤
k(s,bx,y⇤(s,bx))2⇤⇤(s,bx,y⇤(s,bx))

⇢
rxr (s, bx,y⇤(s, bx)) + �rx E

s0⇠p(·|s,x,y⇤(s,bx))
[v(S0,x)]

+
dX

k=1

�⇤
k(s, bx,y⇤(s, bx))rxgk (s, bx,y⇤(s, bx))

)!
. (42)

By the Leibniz integral rule [67], the gradient of the expectation can instead be expressed as an
expectation of the gradient under continuity of the function whose expectation is taken, in this case
v . In particular, if for all s, s0 2 S,x 2 X , y⇤(s,x) 2 Y

⇤(s,x) rxp(s0 | s,x,y⇤(s,x)) > 0 we
have:

rx E
S0⇠p(·|s,x,y)

[v(S0,x)] (43)

= rx

Z

z2S
p(z | s,x,y)v(z,x)dz (44)

=

Z

z2S
rx[p(z | s,x,y)v(z,x)]dz (Leibniz Integral Rule)

(45)

=

Z

z2S
[p(z | s,x,y)rxv(z,x) + v(z,x)rxp(z | s,x,y)] dz (Product Rule)

(46)

=

Z

z2S


p(z | s,x,y)rxv(z,x) + v(z,x)p(z | s,x,y)

rxp(z | s,x,y)

p(z | s,x,y)

�
dz (p(z | s,x,y) > 0)

(47)

=

Z

z2S
[p(z | s,x,y)rxv(z,x) + v(z,x)p(z | s,x,y)rx log p(z | s,x,y)] dz (48)

=

Z

z2S
[p(z | s,x,y)rxv(z,x)] dz +

Z

z2S
[v(z,x)p(z | s,x,y)rx log p(z | s,x,y)] dz

(49)
= E

S0⇠p(·|s,x,y)
[rxv(S

0,x)] + E
S0⇠p(·|s,x,y)

[v(S0,x)rx log p(S0
| s,x,y)] (50)

This gives us @xv(s, x̂) =

conv

0

@
[

y⇤(s,bx)2Y⇤(s,bx)

[

�⇤
k(s,bx,y⇤(s,bx))2⇤⇤(s,bx,y⇤(bx))

⇢
rxr (s, bx,y⇤(s, bx)) + � E

S0⇠p(·|s,x̂,y⇤(s,bx))
[rxv(S

0, x̂)]

+� E
S0⇠p(·|s,x̂,y⇤(s,bx))

[v(S0, x̂)rx log (p(S0
| s, x̂,y⇤(s, bx))] +

dX

k=1

�⇤
k(s, bx,y⇤(s, bx))rxgk (s, bx,y⇤(s, bx))

)!
.

(51)

Note that in the special case that the probability transition function is repre-
senting a deterministic recursive parametrized optimization problem, v(s,x) =
maxy2Y:g(s,x,y)�0 {r(s,x,y) + � [v(⌧(s,x,y),x)]} i.e., p(s0 | s,x,y) 2 {0, 1} for all
s, s0 2 S,x 2 X ,y 2 Y , and ⌧ : S ⇥ X ⇥ Y ! S is such that ⌧(s,x,y) = s0 iff
p(s0 | s,x,y) = 1, the CSD convexity assumption reduces to the linearity of the deterministic state
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transition function ⌧ (Proposition 1 of [68]). In this case, the subdifferential of the Bellman equation
reduces to

@xv(s, x̂) (52)

= conv

0

@
[

y⇤(s,bx)2Y⇤(s,bx)

[

�⇤
k(s,bx,y⇤(s,bx))2⇤⇤(s,bx,y⇤(s,bx))

{rxr (s, bx,y⇤(s, bx)) + �rx⌧(s, bx,y)rsv(⌧(s, bx,y), bx)

(53)

+rxv(⌧(s, x̂), bx) +
dX

k=1

�⇤
k(s, bx,y⇤(s, bx))rxgk (s, bx,y⇤(s, bx))

)!
(54)

Theorem 3.1. Consider a zero-sum stochastic Stackelberg game G, where X = {x 2 Rn
|

q1(x)  0, . . . , qp(x)  0} and Y = {y 2 Rm
| r1(y) � 0, . . . , rl(y) � 0} are convex. Let

Ls,x(y,�) = r(s,x,y) + � ES0⇠p(·|s,x,y) [v(S
0,x)] +

Pd
k=1 �kgk(s,x,y) where Cv = v .

Suppose that Assumption 1.1 holds, and that 1. for all s 2

S, maxy2Y:g(s,x,y)�0

�
r(s,x,y) + � ES0⇠p(·|s,x,y) [v(S

0,x)]
 

is con-
cave in x, 2. rxr(s,x,y),rxg1(s,x,y), . . . ,rxgd(s,x,y),
ryr(s,x,y),ryg1(s,x,y), . . . ,rygd(s,x,y) exist, for all s 2 S,x 2 X ,y 2 Y ,
4. p(s0 | s,x,y) is continuous and differentiable in (x,y), and 5. Slater’s condition holds,
i.e., 8s 2 S,x 2 X , 9by 2 Y s.t. gk(s,x, by) > 0, for all k = 1, . . . , d and rj(by) > 0, for all
j = 1, . . . , l, and 9x 2 Rn s.t. qk(x) < 0 for all k = 1 . . . , p. Then, there exists µ⇤ : S ! Rp

+,
�⇤ : S ⇥ X ! Rd

+, and ⌫⇤ : S ⇥ X ! Rl
+ s.t. a policy profile (⇡⇤

x,⇡
⇤
y) 2 X

S
⇥ Y

S is a recSE of
G only if it satisfies the following conditions, for all s 2 S:

rxLs,⇡⇤
x(s)

(⇡⇤
y(s),�

⇤(s,⇡⇤
x(s))) +

pX

k=1

µ⇤
k(s)rxqk(⇡

⇤
x(s)) = 0 (8)

ryLs,⇡⇤
x(s)

(⇡⇤
y(s),�

⇤(s,⇡⇤
x(s))) +

lX

k=1

⌫⇤k(s,⇡
⇤
x(s))rxrk(⇡

⇤
y(s)) = 0 (9)

µ⇤
k(s)qk(⇡

⇤
x(s)) = 0 qk(⇡

⇤
x(s))  0 8k 2 [p] (10)

gk(s,⇡
⇤
x(s),⇡

⇤
y(s)) � 0 �⇤

k(s,⇡
⇤
x(s))gk(s,⇡

⇤
x(s),⇡

⇤
y(s)) = 0 8k 2 [d] (11)

⌫⇤k(s,⇡
⇤
x(s))rxrk(⇡

⇤
y(s)) = 0 rk(⇡

⇤
x(s)) � 0 8k 2 [l] (12)

Proof of Theorem 3.1. By Theorem 2.1 and Theorem 2.3 we know that (⇡⇤
x,⇡

⇤
y) is a recursive

Stackelberg equilibrium iff

v⇡y⇡
⇤
y (s) =

⇣
Cv⇡y⇡

⇤
y

⌘
(s) . (55)

Note that for any policy profile (⇡⇤
x,⇡

⇤
y) that satisfies v⇡y⇡

⇤
y (s) =

⇣
Cv⇡y⇡

⇤
y

⌘
(s) by Definition 1.2

we have that (⇡⇤
x(s),⇡

⇤
y(s)) is a Stackelberg equilibrium of

min
x2X

max
y2Y:g(s,x,y)�0

⇢
r(s,x,y) + � E

S0⇠p(·|s,x,y)
[v(S0)]

�

for all s 2 S .

Fix a state s 2 S , under the assumptions of the theorem, the conditions of Theorem C.2 are satisfied
and u⇤(s,x) = maxy2Y:g(s,x,y)�0

�
r(s,x,y) + � ES0⇠p(·|s,x,y) [v(S

0)]
 

is subdifferentiable in
x. Since u⇤(s,x) is convex in x, and Slater’s condition are satisfied by the assumptions of the theo-
rem, the necesssary and sufficient conditions for ⇡⇤

x(s) to be an optimal solution to minx2X u⇤(s,x)
are given by the KKT conditions [69] for minx2X u⇤(s,x). Note that we can state the first order KKT
conditions explicitly thanks to the subdifferential Benveniste-Scheinkman theorem (Theorem C.2).
That is, ⇡⇤

x(s) is an optimal solution to minx2X u⇤(s,x) if there exists µ⇤(s) 2 Rp
+ such that:
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rxLs,⇡⇤
x(s)

(y⇤(s,⇡⇤
x(s)),�

⇤(s,⇡⇤
x(s),y

⇤(s,⇡⇤
x(s))) +

pX

k=1

µ⇤
k(s)rxqk(⇡

⇤
x(s)) = 0 (56)

µ⇤
k(s)qk(⇡

⇤
x(s)) = 0 8k 2 [p]

(57)
qk(⇡

⇤
x(s))  0 8k 2 [p]

(58)

where y⇤(s,⇡⇤
x(s)) 2 argmaxy2Y:g(s,⇡⇤

x(s),y)�0

�
r(s,⇡⇤

x(s),y) + � ES0⇠p(·|s,⇡⇤
x(s),y)

[v(S0)]
 

and
�⇤(s,⇡⇤

x(s),y
⇤(s,⇡⇤

x(s))) = (�⇤
1(s,⇡

⇤
x(s),y

⇤(s,⇡⇤
x(s))), . . . ,�

⇤
d(s,⇡

⇤
x(s),y

⇤(s,⇡⇤
x(s))))

T
2

⇤⇤(s,⇡⇤
x(s),y

⇤(s,⇡⇤
x(s))) are the optimal KKT multipliers associated with y⇤(s,⇡⇤

x(s)) 2

Y
⇤(s,⇡⇤

x(s)) which are guaranteed to exist since Slater’s condition is satisfied for
maxy2Y:g(s,x,y)�0

�
r(s,x,y) + � ES0⇠p(·|s,x,y) [v(S

0)]
 

.

Similarly, fix a state s 2 S and an action for the outer player x 2 X , since Slater’s condition is
satisfied for maxy2Y:g(s,x,y)�0

�
r(s,x,y) + � ES0⇠p(·|s,x,y) [v(S

0)]
 

, the necessary conditions
for ⇡⇤

y(s) to be a Stackelberg equilibrium strategy for the inner player at state s are given by the
KKT conditions for maxy2Y:g(s,x,y)�0

�
r(s,x,y) + � ES0⇠p(·|s,x,y) [v(S

0)]
 

. That is, there exists
�⇤(s,x) 2 Rd

+ and ⌫⇤(s,x) 2 Rl
+ such that:

ryLs,x(⇡
⇤
y(s),�

⇤(s,x)) +
lX

k=1

⌫⇤k(s)rxrk(⇡
⇤
y(s)) = 0 (59)

gk(s,x,⇡
⇤
y(s)) � 0 8k 2 [d] (60)

�⇤
k(s,x)gk(s,x,⇡

⇤
y(s)) = 0 8k 2 [d] (61)

⌫⇤k(s,x)rxrk(⇡
⇤
y(s)) = 0 8k 2 [l] (62)

rk(x) � 0 8k 2 [l] (63)

Combining the necessary and sufficient conditions in Equations (56) to (58) with the necessary
conditions in Equations (59) to (63), we obtain the necessary conditions for (⇡⇤

x,⇡
⇤
y) to be a

recursive Stackelberg equilibrium.

If additionally, the objective of the inner player at each state s 2 S, r(s,x,y) +
� ES0⇠p(·|s,x,y) [v(S

0,x)] is concave in y, then the above conditions become necessary and sufficient.
The proof follows exactly the same, albeit the optimality conditions on the inner player’s policy
become necessary and sufficient.

Theorem C.3 (Recursive Stackelberg Equilibrium Necessary and Sufficient Optimality Conditions).
Consider a zero-sum stochastic Stackelberg game G, where X = {x 2 Rn

| q1(x)  0, . . . , qp(x) 
0} and Y = {y 2 Rm

| r1(y) � 0, . . . , rl(y) � 0} are convex. Let Ls,x(y,�) = r(s,x,y) +

� ES0⇠p(·|s,x,y) [v(S
0,x)]+

Pd
k=1 �kgk(s,x,y) where Cv = v . Suppose that Assumption 1.1 holds,

and that 1. for all s 2 S,y 2 Y , maxy2Y:g(s,x,y)�0

�
r(s,x,y) + � ES0⇠p(·|s,x,y) [v(S

0,x)]
 

is convex in x and r1(s,x,y), g1(s,x,y), . . . , gd(s,x,y) are concave in y for
all x 2 X and s 2 S, 2. rxr(s,x,y),rxg1(s,x,y), . . . ,rxgd(s,x,y),
ryr(s,x,y),ryg1(s,x,y), . . . ,rygd(s,x,y) exist, for all s 2 S,x 2 X ,y 2 Y ,
4. p(s0 | s,x,y) is continuous and differentiable in (x,y) and CSD concave in y, and
5. Slater’s condition holds, i.e., 8s 2 S,x 2 X , 9by 2 Y s.t. gk(s,x, by) > 0, for all k = 1, . . . , d
and rj(by) > 0, for all j = 1, . . . , l, and 9x 2 Rn s.t. qk(x) < 0 for all k = 1 . . . , p. Then,
there exists µ⇤ : S ! Rp

+, �⇤ : S ⇥ X ! Rd
+, and ⌫⇤ : S ⇥ X ! Rl

+ s.t. a policy profile

22



(⇡⇤
x,⇡

⇤
y) 2 X

S
⇥ Y

S is a recSE of G only if it satisfies the following conditions, for all s 2 S:

rxLs,⇡⇤
x(s)

(⇡⇤
y(s),�

⇤(s,⇡⇤
x(s))) +

pX

k=1

µ⇤
k(s)rxqk(⇡

⇤
x(s)) = 0 (64)

ryLs,⇡⇤
x(s)

(⇡⇤
y(s),�

⇤(s,⇡⇤
x(s))) +

lX

k=1

⌫⇤k(s,⇡
⇤
x(s))rxrk(⇡

⇤
y(s)) = 0 (65)

µ⇤
k(s)qk(⇡

⇤
x(s)) = 0 qk(⇡

⇤
x(s))  0 8k 2 [p] (66)

gk(s,⇡
⇤
x(s),⇡

⇤
y(s)) � 0 �⇤

k(s,⇡
⇤
x(s))gk(s,⇡

⇤
x(s),⇡

⇤
y(s)) = 0 8k 2 [d] (67)

⌫⇤k(s,⇡
⇤
x(s))rxrk(⇡

⇤
y(s)) = 0 rk(⇡

⇤
x(s)) � 0 8k 2 [l] (68)

D Omitted Results and Proofs Section 4

Before, we introduce the stochastic Stackelberg game whose recursive Stackelberg equilibria corre-
spond to recursive competitive equilibria of an associated stochastic Fisher market, we introduce the
following technical lemma, which provides the necessary and sufficient conditions for an allocation
and saving system of a buyer to be expected utility maximizing.
Lemma D.1. Consider a stochastic Fisher market F such that the transition probability func-
tion p is continuous in �i and independent of xi. For any price system p 2 RS⇥m

+ , a tuple
(x⇤

i ,�
⇤
i ) 2 RS⇥m

+ ⇥ Rm
+ consisting of an allocation system and saving system for a buyer i 2 [n],

given by a continuous, and homogeneous utility function ui : Rm
+ ⇥ T ! R representing a locally

non-satiated preference, is expected utility maximizing constrained by the saving and spending con-
strains, i.e., (x⇤

i ,�
⇤
i ) is the optimal policy solving the following recursive Bellman equation ⌫i(s) =

max(xi,�i)2Rm+1
+ :xi·p⇤(s)+�ibi

n
ui (xi, ti) + � E(T 0,b0,q0)⇠p(·|s,(�i,�⇤

�i(s)))
[⌫i(T 0, b0 + �i, q0)]

o
,

only if we have for all states s 2 S , x⇤
i (T , b, q) · p(T , b, q) + �⇤

i (T , b, q)  bi, and,

x⇤
ij(s) > 0 =)

@ui
@xij

(x⇤
i (s); ti)

pj(s)
=

ui(x⇤
i (s); ti)

bi � �⇤
i (s)

8j 2 [m] (69)

�⇤
i (s) > 0 =)

@⌫⇤i
@bi

(s) = �
@

@�i
E

(T 0,b0,q0)
[⌫⇤i (T

0, b0 + �⇤
i (s), q

0)] (70)

If additionally, ui is concave and p is CSD concave in (xi,�i), then the above condition becomes
also sufficient.

Proof of Lemma D.1. Fix a buyer i 2 [n]. Throughout we use b+ �i as shortcut for b+ (�i,0�i).
Suppose that ⌫⇤i solves the following recursive Bellman equation:

⌫i(s) = max
(xi,�i)2Rm+1

+ :xi·p⇤(s)+�ibi

(
ui (xi, ti) + � E

(T 0,b0,q0)⇠p(·|s,(�i,�⇤
�i(s)))

[⌫i(T
0, b0 + �i, q

0)]

)

(71)

Define the Lagrangian associated with the consumption-saving problem:

max
(xi,�i)2Rm+1

+ :xi·p⇤(s)+�ibi

(
ui (xi, ti) + � E

(T 0,b0,q0)⇠p(·|s,(�i,�⇤
�i(s)))

[⌫⇤i (T
0, b0 + �i, q

0)]

)

(72)

as follows:

L(xi,�i,�,µ;p) = ui (xi; ti) + � E
(T 0,b0,q0)⇠p(·|T ,b,q,(�i,�⇤

�i(s)))
[⌫⇤i (T

0, b0 + �i, q
0)]

+ �(bi � xip) +
X

j2[m]

µjxij + µm+1�i (73)
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⌫⇤i (T , b, q) = max
(xi,�i)2Rm+1

+ :xi·p⇤(b)+�ibi
ui(xi, ti) + � E

(T 0,b0,q0)
[⌫⇤i (T

0, b0 + �i, q
0)] .

Assume that for any state s 2 S, we have bi > 0. We can ignore states such that bi > 0 since at
those states the buyer cannot be allocated goods, and can also not put aside savings. Then, Slater’s
condition holds and the necessary first order optimality conditions for an allocation x⇤

i (s) 2 Rm
+ ,

saving �⇤
i (s) 2 R+ and associated Lagrangian multipliers �⇤(s) 2 R+, µ⇤(s) 2 Rm+1 to be

optimal for any prices p(s) 2 Rm
+ and state s 2 S are given by the following pair of KKT conditions

[69] for all j 2 [m]:
@ui

@xij
(x⇤

i (s); ti)� �⇤(s)pj(s) + µ⇤
j (s)

.
= 0 (74)

�
@

@�i
E

(T 0,b0,q0)
[⌫⇤i (T

0, b0 + �⇤
i , q

0)]� �⇤
i (s) + µ⇤

m+1(s)
.
= 0 (75)

Additionally, by the KKT complimentarity conditions, we have for all j 2 j, µ⇤
jx

⇤
ij = 0 and

µ⇤
m+1�

⇤
i = 0, which gives us:

@ui

@xij
(x⇤

i (s); ti)� �⇤(s)pj(s) = 0 8j 2 [m] (76)

�⇤
i (s) > 0 =) �

@

@�i
E

(T 0,b0,q0)
[⌫⇤i (T

0, b0 + �⇤
i , q

0)]� �⇤(s) = 0 8j 2 [m] (77)

Re-organizing expressions, yields:

x⇤
ij(s) > 0 =) �⇤ =

@ui
@xij

(x⇤
i (s); ti)

pj(s)
8j 2 [m] (78)

�⇤
i (s) > 0 =) �⇤(s) = �

@

@�i
E

(T 0,b0,q0)
[⌫⇤i (T

0, b0 + �⇤
i , q

0)] (79)

Using the envelope theorem [70, 71], we can also compute @⌫⇤
i

@�i
(s) as follows:

@⌫⇤i
@bi

(s) = �⇤(s) (80)

We note that for all states s 2 S , @⌫⇤
i

@bi
(s) is well-defined since �⇤(s) is uniquely defined for all states

by Equation (78). Hence, combining the above with Equation (78) and Equation (79), we get:

x⇤
ij(s) > 0 =) �⇤ =

@ui
@xij

(x⇤
i (s); ti)

pj
8j 2 [m] (81)

�⇤
i (s) > 0 =)

@⌫⇤i
@bi

(s) = �
@

@�i
E

(T 0,b0,q0)
[⌫⇤i (T

0, b0 + �⇤
i , q

0)] (82)

Finally, going back to Equation (74), multiplying by x⇤
ij(s) and summing up across all j 2 [m], we

obtain:
X

j2[m]

x⇤
ij(s)

@ui

@xij
(x⇤

i (s); ti)� �⇤(s)pj(s)x
⇤
ij(s) + µ⇤

jx
⇤
ij(s) = 0 (83)

Using Euler’s theorem for homogeneous functions on the partial derivatives of the utility functions,
we then have:

ui(x
⇤
i (s); ti)� �⇤(s)

X

j2[m]

pj(s)x
⇤
ij(s) + µ⇤

jx
⇤
ij(s) = 0 (84)

Additionally, the KKT Slack complementarity conditions, we have �⇤(s)(bi � �⇤
i (s)) =

�⇤(s)
P

j2[m] pj(s)x
⇤
ij(s):

ui(x
⇤
i (s); ti)� �⇤(s)(bi � �⇤

i (s)) = 0 (85)

�⇤(s) =
ui(x⇤

i (s); ti)

bi � �⇤
i (s)

(86)
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Combining the above conditions, with Equation (98), and adding to it Equation (82), and ensuring
that the KKT primal feasibility conditions hold as well, we obtain the following necessary conditions
that need to hold for all states s 2 S:

x⇤
ij(s) > 0 =)

@ui
@xij

(x⇤
i (s); ti)

pj(s)
=

ui(x⇤
i (s); ti)

bi � �⇤
i (s)

8j 2 [m] (87)

�⇤
i (s) > 0 =)

@⌫⇤i
@bi

(s) = �
@

@�i
E

(T 0,b0,q0)
[⌫⇤i (T

0, b0 + �⇤
i (s), q

0)] (88)

If additionally the transition probability function p is CSD concave in �i, then ⌫i is concave and the
utility maximization problem is concave, which in turn implies that the above conditions are also
sufficient.

Theorem 4.1. A stochastic Fisher market with savings F in which U is a set of continuous and
homogeneous utility functions and the transition function is continuous in �i has at least one recCE.
Additionally, the recSE that solves the following Bellman equation corresponds to a recCE of F:

v(s) = min
p2Rm

+

max
(X,�)2Rn⇥(m+1)

+ :Xp+�b

X

j2[m]

qjpj +
X

i2[n]

(bi � �i) log(ui(xi, ti))

+� E
(T 0,b0,q0)⇠p(·|s,�)

[v(T 0, b0 + �, q0)] (13)

Proof of Theorem 4.1. Fix a buyer i 2 [n]. Suppose that v⇤ solves the following Stochastic Stackel-
berg game:

v(s) = min
p2Rm

+

max
(X,�)2Rn⇥(m+1)

+ :Xp+�b

X

j2[m]

qjpj +
X

i2[n]

(bi � �i) log(ui(xi, ti))

+� E
(T 0,b0,q0)⇠p(·|s,�)

[v(T 0, b0 + �, q0)] (89)

Define the Lagrangian associated with the following optimization problem:

min
p2Rm

+

max
(X,�)2Rn⇥(m+1)

+ :Xp+�b

X

j2[m]

qjpj +
X

i2[n]

(bi � �i) log(ui(xi, ti))

+� E
(T 0,b0,q0)⇠p(·|s,�)

[v⇤(T 0, b0 + �, q0)] (90)

as follows:

L(p,X,�,�) =
X

j2[m]

qjpj +
X

i2[n]

(bi � �i) log(ui(xi, ti)) + � E
(s0)⇠p(·|s,�)

[v(T 0, b0 + �, q0)]

+
X

j2[m]

�i (bi � xi · p+ �i) . (91)

By Theorem 3.1, the necessary optimality conditions for the stochastic Stackelberg game are that
for all states s 2 S there exists µ⇤(s) 2 Rn⇥(m+1), and ⌫⇤(s) 2 Rn⇥(m+1)

+ associated with the
non-negativity constraints for (X(s),�(s)), and p respectively, and �⇤(s) 2 Rm

+ associated with
the spending constraint for (X(s),�(s)) such that:

qj �
X

i2[n]

�⇤
i (s)x

⇤
ij(s)� ⌫⇤j (s)

.
= 0 8j 2 [m]

(92)
bi � �⇤

i (s)

ui(x⇤
i (s))

@ui

@xij
(x⇤

i (s); ti)� �⇤
i (s)pj(s) + µ⇤

ij(s)
.
= 0 8i 2 [n], j 2 [m]

(93)

� log (ui(x
⇤
i (s))) + �

@

@�i
E

(T 0,b0,q0)
[v(T 0, b0 + �⇤(s), q0)]� �⇤

i (s) + µ⇤
i(m+1)(s)

.
= 0 8i 2 [n]

(94)
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Note that by Theorem 3.1, we also have µ⇤
i(m+1)(s)�

⇤
i (s) = µ⇤

i+1)(s)x
⇤
ij(s) = 0 which gives us:

pj(s) > 0 =) qj �
X

i2[n]

�⇤
i (s)x

⇤
ij(s) = 0 8j 2 [m] (95)

x⇤
ij(s) > 0 =)

bi � �⇤
i (s)

ui(x⇤
i (s))

@ui

@xij
(x⇤

i (s))� �⇤
i (s)pj(s) = 0 8i 2 [n], j 2 [m]

(96)

�⇤
i (s) > 0 =) � log (ui(x

⇤
i (s); ti)) + �

@

@�i
E

(T 0,b0,q0)
[v(T 0, b0 + �⇤(s), q0)]

� �⇤
i (s) + µ⇤

i(m+1)(s) = 0 8i 2 [n] (97)

Re-organizing expressions, we obtain:

pj(s) > 0 =) qj =
X

i2[n]

�⇤
i (s)x

⇤
ij(s) 8j 2 [m] (98)

x⇤
ij(s) > 0 =)

ui(x⇤
i (s))

bi � �⇤
i (s)

�⇤
i (s) =

@ui
@xij

(x⇤
i (s))

pj(s)
8i 2 [n], j 2 [m]

(99)

�⇤
i (s) > 0 =) � log (ui(x

⇤
i (s))) + �

@

@�i
E

(T 0,b0,q0)
[v(T 0, b0 + �⇤(s), q0)]

� �⇤
i (s) = 0 8i 2 [n] (100)

Using the envelope theorem, we can compute @v
@bi

as follows:
@v⇤

@bi
(s) = log (ui(x

⇤
i (s); ti)) + �⇤

i (s) (101)

Once again note that @v
@bi

is well-defined by Equation (99).

Re-organizing expressions, we get:

�⇤
i (s) =

@v

@bi
(s)� log (ui(x

⇤
i (s); ti)) (102)

Combining Equation (102) and Equation (100), we obtain:

�⇤
i (s) > 0 =) � log (ui(x

⇤
i (s); ti)) + �

@

@�i
E

(T 0,b0,q0)
[v(T 0, b0 + �⇤(s), q0)]

�
@v

@bi
(s) + log (ui(x

⇤
i (b); ti)) = 0 8i 2 [n] (103)

�⇤
i (s) > 0 =) �

@

@�i
E

(T 0,b0,q0)
[v(T 0, b0 + �⇤(s), q0)]�

@v

@bi
(s) = 0 8i 2 [n] (104)

�⇤
i (s) > 0 =)

@v

@bi
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Going back to Equation (93), multiplying both sides by x⇤
ij(s) and summing up across all j 2 [m],

we get:
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By Theorem 3.1, we have that �⇤
i (s)

⇣
bi �

P
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⌘
= 0, which gives us:
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Combining the above with Equations (98) to (100) we obtain:
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Since the utility functions are non-satiated, and by the second equation, the buyers are utility
maximizing at state s over all allocations, we must also have that Walras’ law holds, i.e., p ·⇣
q �

P
i2[n] xi

⌘
�
P

i2[n] �i = 0. Walras’ law combined with the first equation above then imply
the second condition of a recursive competitive equilibrium. Finally, by Lemma D.1, the last two
equations imply the first condition of recursive competitive equilibrium.

E Experiment Details

E.1 Stochastic Fisher market without interest rates

For the without interest rates setup, we initialized a stochastic Fisher market with n = 2 buyers and
m = 2 goods. To simplify the analysis, we assumed deterministic transitions such that the buyers get
a constant new budgets of 9.5 at each time period, and their types/valuations as well as the supply of
goods does not change at each state, i.e., the type/valuation space and supply space has cardinality 1.
This reduced the market to a deterministic repeated market setting in which the amount of budget
saved by the buyers differentiates different states of the market. To initialize the state space of the
market, we first fixed a range of [10, 50]m for the buyers’ valuations and drew for all buyers i 2 [n]
valuations ✓i from that range uniformly at random at the beginning of the experiment. (We scaled
the valuations differently for different markets to ensure positive utilities though.) We have assumed
the supply of goods is 1m and that the budget space was [9, 10]n. This means that our state space
for our experiments was S = {(✓1,✓2)}⇥ {1m}⇥ [9, 10]n. We note that although the assumption
that buyers valuations/type space has cardinality one does simplify the problem, the supply of the
goods being 1 at each state is wlog because goods are divisible and the allocation of goods to buyers
at each state can then be interpreted as the percentage of a particular good allocated to a buyer. We
assumed initial budgets of b(0) = 10n for buyers.

Since the state space is continuous, the value function has continuous domain in the stochastic Fisher
market setting. As a result, we had to use fitted variant of value iteration. In particular, we assumed
that the value function had a linear form at each state such that v(T , b, q;a, c) = aT b+ c for some
parameters a 2 Rn, c 2 R, and we tried to approximate the value function at the next step of value
iteration by using linear regression. That is, at each value iteration step, we uniformly sampled 25
budget vectors from the range [9, 10]n. Next, for each sampled budget b, we solved the min-max
step given that budget as a state. This process gave us (budget, value) pairs on which we ran linear
regression to approximate the value function at the next iterate.

To solve the generalized min-max operator at each step of value iteration, we used the nested

gradient descent ascent (GDA) [6] (Algorithm 3) along with JAX gradients, which is not guaranteed
to converge to a global optimum since the min-max Stackelberg game for stochastic Fisher markets is
convex-non-concave. Then, we have run value iteration for 30 iterations. We ran nested GDA with
learning rates ⌘X = 1.4, ⌘p = 1.5⇥ 10�2 for linear, ⌘X = 1.5, ⌘p = 6.5⇥ 10�4 for leontief, and
⌘X = 1.4, ⌘p = 5⇥ 10�3 for Cobb-Douglas. The outer loop of nested GDA was run for Tp = 60
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iterations, while its inner loop was run for TX = 100 iterations, and break from the nested GDA if
we obtain an excess demand with norm lower than 0.01. We depict the trajectory of the average value
of the value function at each iteration of value iteration under nested GDA in Figure 1.

E.2 Stochastic Fisher market with interest rates

For the with interest rates setup, we initialized a stochastic Fisher market with n = 5 buyers and
m = 5 goods. This time, we implemented a stochastic transitions. Though buyers still get a constant
new budgets of 9.5 at each time step, and their types/valuations as well as the supply of goods
does not change at each state, their savings from last time step may decrease or increase according
to some probabilistic interest rates. In specific, at each time step, we consider five interest rates
{0.9, 1.0, 1.1, 1.2, 1.5}, each with probability 0.2. Thus, we have a stochastic market setting in
which the amount of budget possessed by the buyers at the beginning of each time step differentiates
different states of the market. To initialize the state space of the market, we first fixed a range of
[0, 1]m for the buyers’ valuations and drew for all buyers i 2 [n] valuations ✓i from that range
uniformly at random at the beginning of the experiment. (We scaled the valuations differently for
different markets to ensure positive utilities though.) We have assumed the supply of goods is 1m

and that the budget space was [9, 10]n. This means that our state space for our experiments was
S = {(✓1,✓2,✓3,✓4,✓5)} ⇥ {1m} ⇥ [9, 10]n. We note that although the assumption that buyers
valuations/type space has cardinality one does simplify the problem, the supply of the goods being 1
at each state is wlog because goods are divisible and the allocation of goods to buyers at each state
can then be interpreted as the percentage of a particular good allocated to a buyer. We assumed initial
budgets of b(0) = 10n for buyers.

Since the state space is continuous, the value function has continuous domain in the stochastic Fisher
market setting. As a result, we had to use fitted variant of value iteration. In particular, we assumed
that the value function had a linear form at each state such that v(T , b, q;a, c) = aT b+ c for some
parameters a 2 Rn, c 2 R, and we tried to approximate the value function at the next step of value
iteration by using linear regression. That is, at each value iteration step, we uniformly sampled 25
budget vectors from the range [9, 10]n. Next, for each sampled budget b, we solved the min-max
step given that budget as a state. This process gave us (budget, value) pairs on which we ran linear
regression to approximate the value function at the next iterate.

To solve the generalized min-max operator at each step of value iteration, we used the nested

gradient descent ascent (GDA) [6] (Algorithm 3) along with JAX gradients, which is not guaranteed
to converge to a global optimum since the min-max Stackelberg game for stochastic Fisher markets
is convex-non-concave. Then, we have run value iteration for 30 iterations. We ran nested GDA
with learning rates ⌘X = 1.7, ⌘p = 2⇥ 10�2 for linear, ⌘X = 2, ⌘p = 5⇥ 10�5 for leontief, and
⌘X = 1.8, ⌘p = 2.5⇥ 10�2 for Cobb-Douglas. The outer loop of nested GDA was run for Tp = 60
iterations, while its inner loop was run for TX = 100 iterations, and break from the nested GDA if
we obtain an excess demand with norm lower than 0.01. We depict the trajectory of the average value
of the value function at each iteration of value iteration under nested GDA in Figure 2.

E.3 Other Details

Programming Languages, Packages, and Licensing We ran our experiments in Python 3.7 [72],
using NumPy [73], CVXPY [74], and JAX [63]. Figure 1 and Figure 2 were graphed using Matplotlib
[75].

Python software and documentation are licensed under the PSF License Agreement. Numpy is
distributed under a liberal BSD license. Matplotlib only uses BSD compatible code, and its license is
based on the PSF license. CVXPY is licensed under an APACHE license.

Implementation Details In our execution of Algorithm 3, in order to project each allocation
computed onto the budget set of the consumers, i.e., {X 2 Rn⇥m

+ | Xp  b}, we used the CVXPY
with MOSEK solver with warm start option, a feature that enables the solver to exploit work from
previous solves.

Computational Resources Our experiments were run on Google Colab with 12.68GB RAM, and
took about 8 hours to run the Stochastic Fisher market without interest rates experiment (for each
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utility function class) and about 8.5 hours to run the Stochastic Fisher market with interest rates
experiment (for each utility function class). Only CPU resources were used.

Code Repository The data our experiments generated, and the code used to produce our visual-
izations, can be found in our code repository (https://github.com/Sadie-Zhao/Zero-Sum-Stochastic-
Stackelberg-Games-NeurIPS).
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