
A. Overview1

In this document, we explain more details to the main paper and provide more ablation experiments2

on hyperparameters.3

In Section B., we describe the implementation of sparse operation (Section 3.1). In Section C., we4

provide more details of our network architecture (Section 4.1). In Section D., we conduct ablation5

studies on some critical hyperparameters to prove the effectiveness of the model design. In Section E.,6

we provide more visualization results on Waymo [2].7

B. Sparse Operation8

In this section, we describe in detail how to implement window-based attention on sparse voxels.9

Hash Table Establishment Given the input sparse voxel V = {vi|vi = (xi,fi)}|V|
i=1, we first10

build a hash table for convenient voxel searching. The key of hash table is the flattened voxel11

coordinate bxmaxymaxzmax + xymaxzmax + yzmax + z while the value stores the voxel features,12

where b, x, y, z denote batch index and voxel coordinates, and xmax, ymax, zmax are the max range13

of voxel space. The hash function adopts the modulus strategy, and utilizes the linear probing method14

to find the empty address when hash collision occurs. In this way, we can only reserve the non-empty15

voxels, and establish the connection between voxel coordinates and their features. Once a voxel16

coordinate is given, we can rapidly check whether it is empty and extract the feature data according17

to the coordinate for non-empty location. It is worth noting that the hash table can be processed by18

CUDA in parallel so that the voxel searching process can be further accelerated.19

Sparse Window Partition In Section 3.1.1, we partition the voxels into non-overlap 3D windows20

according to window size s0 and obtain their window centers {ci|ci ∈ Z3}Li=0 as:21

ci = (⌊xi/s0⌋+ 0.5)× s0, (1)
Note that we further merge the repeated centers and generate a unique set of centers to save computa-22

tion cost.23

Voxel Gathering With ready of the window centers, we further search for non-empty voxels around24

the centers within the query or key windows. Benefit from the pre-built hash table, the voxel searching25

process can be converted to finding the existing hash keys via the hash function. In this way, we26

first get the non-empty voxel coordinates within all non-empty windows then leverage balanced27

multi-window sampling to obatin the final sampled voxel coordinates. Finally we can quickly gather28

the voxel features from the hash table with the sampled voxel coordinates. These voxel coordinates as29

well as their features are then fed to the attention mechanism as mentioned in the main paper (Section30

3.1.2).31

C. More Architectural Details32

Following the classic 3D detection paradigm in OpenPCDet [3], our single-stage network consists33

of a VFE layer, a 3D backbone, a 2D backbone and a detection head. We also add a ROI head34

implemented by CT3D [1] on our single-stage architecture to build the two-stage network. In Section35

4.1, we elaborate 3D backbone and detection head, and now we will detail the implementation of36

VFE layer and 2D backbone.37

VFE. We apply the dynamic VFE [5] to convert N irregular points into L voxels with 128 channels,38

since it can reduce the information loss caused by voxelization. For the original point cloud in each39

voxel, we obtain the feature P0 ∈ RN×(C0+6) by concatenating the relative coordinates offset to40

voxel centers and cluster centers with the original channels C0. After that, the features are transformed41

into F1 ∈ RN×64 through linear projection as:42

P1 = MLP(P0). (2)
Then we compute the average of features in each voxel and cat it back to all points within the voxel43

as:44

F1 = Average(P1), (3)

1

Table 1: Ablations on grouping setup. s1 represents the key window of 3× 3× 5 and s2 represents
the key window of 7× 7× 7.

Group Veh / Ped / Cyc

8s1 71.26/74.19/65.35
6s1 + 2s2 71.96/75.65/67.65
4s1 + 4s2 72.37/75.99/67.90
2s1 + 6s2 72.23/75.81/68.08

8s2 72.06/74.40/66.73

Table 2: Ablations on window size setup. s1 represents the size of query window and the inner key
window. s2 represents the size of query window and the outer key window. "3,3,5", "7,7,7" and other
numbers represent the window size alone xyz axes.

Window Size Veh / Ped / Cyc

s1 = 3, 3, 5, s2 = 7, 7, 7 72.37/75.99/67.90
s1 = 5, 5, 5, s2 = 9, 9, 9 72.04/75.37/67.75

s1 = 7, 7, 5, s2 = 11, 11, 10 70.48/73.84/65.71

45

P2 = Concat(P1,F1), (4)

where F1 ∈ RL×64, and P2 ∈ RN×128. A new linear layer is used to transform the features into46

P3 ∈ RN×128 and finally we can obtain the voxelwise encoded features F2 ∈ RL×128 through47

another average pooling operation:48

P3 = MLP(P2), (5)
49

F2 = Average(P3). (6)

2D Backbone. Following the implementation of SECOND [4] on OpenPCDet, the input 2D BEV50

features go through six 2D convolution layers at the original resolution and another six 2D convolution51

layers at 1/2 resolution, then are upsampled to the original resolution by the trans-convolution layers52

to obtain the final output.53

D. Ablation experiments of hyperparameters54

We conduct a series of ablation experiments for the important hyperparameters in MsSVT and report55

the L1 mAP for three categories. All ablation experiments used 20% waymo data and were trained56

for 12 epochs.57

Effect of Window Grouping. In Table 1, we study the impact of different window head grouping58

settings. Note that the size of the query window is always 3, 3, 5. Generally, our model is robust59

to different window head grouping settings, except for 8s1 and 8s2, our model degenerates into a60

single-scale model in this case, which causes the decline of the performance.61

Effect of Window Size. We investigate the effects of window size in Table 2. It can be seen that62

too large window size will lead to performance degradation. This may be because the key voxels are63

too sparse in a large window. A possible solution is to increase the number of sampled key voxels,64

Table 3: Ablations on number of blocks.

Blocks Veh / Ped / Cyc Mem(G) Lat(ms)

2 71.79/74.66/66.36 8.3 91
3 72.06/75.24/66.41 10.2 103
4 72.37/75.99/67.90 12.2 121
5 72.69/75.74/66.88 14.1 145

2

Figure 1: More visualization results on Waymo. The red and green boxes denote ground-truth and
prediction, respectively. The pink dots represent query positions. The attention weight is reflected in
the color of the point.

3

which however causes a huge computing cost and can not be adopted in implementation. Therefore,65

we select s1 = 3, 3, 5, s2 = 7, 7, 7 for our model.66

Effect of Block Number. Table 3 shows the effect of different block numbers. Generally, our67

model is robust to the number of blocks. More blocks lead to the improvement of vehicle category,68

while other categories rise first then fall. Notably, more blocks can bring larger receptive field and69

help to extract higher-level semantic information, which is beneficial to the larger objects. To make a70

trade off between efficiency and performance, we finally use 4 blocks in our MsSVT by default.71

E. More Visualization72

We show more visualization results of our prediction bounding boxes and the attention weights73

in Fig. 1. It can be seen that most of the objects in Fig. 1 are accurately detected. Some "hard"74

bounding boxes are indicated with dotted rectangles, i.e., only 1~5 points are in the boxes. These75

boxes are still correctly regressed and even have a high confidence score of more than 0.5. By76

visualizing the attention weight, we find that in these hard cases, the few points left in the bounding77

boxes pay more attention to their surrounding objects to search for more information as the points78

within boxes themselves are too sparse to provide confident information, which demonstrates that79

MsSVT can gather a long range of contextual information to infer the location and size of the box80

when the fine-grained details are missing. A representative example is shown in Fig. 1: in a row of81

side-by-side vehicles, even if one of the vehicles is covered by very few points, its bounding box can82

still be predicted by understanding the scene semantics and analysing the locations and sizes of the83

surrounding vehicles.84

References85

[1] Hualian Sheng, Sijia Cai, Yuan Liu, Bing Deng, Jianqiang Huang, Xian-Sheng Hua, and Min-Jian86

Zhao. Improving 3d object detection with channel-wise transformer. In ICCV, 2021.87

[2] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul88

Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for89

autonomous driving: Waymo open dataset. In CVPR, 2020.90

[3] OpenPCDet Development Team. Openpcdet: An open-source toolbox for 3d object detection91

from point clouds. https://github.com/open-mmlab/OpenPCDet, 2020.92

[4] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors,93

18(10):3337, 2018.94

[5] Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang Gao, Tom Ouyang, James Guo, Jiquan95

Ngiam, and Vijay Vasudevan. End-to-end multi-view fusion for 3d object detection in lidar point96

clouds. In Conference on Robot Learning, pages 923–932. PMLR, 2020.97

4

https://github.com/open-mmlab/OpenPCDet

	Overview
	Sparse Operation
	More Architectural Details
	Ablation experiments of hyperparameters
	More Visualization

