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1 Proof of Theorem

Proof. We first solves the recursive formulation for the RFAuM Rk. According to the Woodbury
matrix identity, for any invertible square matrices A and C, we have

(A + UCV )−1 = A−1 −A−1U(C−1 + V A−1U)V A−1.

Let A = R−1
k−1, U = X (fe)T

k , V = X (fe)
k , and C = I . Hence, from Rk = (R−1

k−1 + X (fe)T
k X (fe)

k )−1

and the Woodbury matrix identity, we have

Rk = Rk−1 −Rk−1X
(fe)T
k (I + X (fe)

k Rk−1X
(fe)T
k )X (fe)

k Rk−1 (a)

which completes the proof for the recursive formulation of RFAuM. Let Qk−1 =

[X (fe)T
0 Y0 . . . X (fe)T

k−1Yk−1]. According to (7), (8) and (a), we have

Ŵ
(k)
FCN = Rk

[
Qk−1 X (fe)T

k Y train
k

]
=
[
RkQk−1 RkX

(fe)T
k Y train

k

]
(b)

where

RkQk−1 = Rk−1Qk−1 −Rk−1X
(fe)T
k (I + X (fe)

k Rk−1X
(fe)T
k )−1X (fe)

k Rk−1Qk−1

= Ŵ
(k−1)
FCN −Rk−1X

(fe)T
k (I + X (fe)

k Rk−1X
(fe)T
k )−1X (fe)

k Ŵ
(k−1)
FCN . (c)

Let Kk = (I + X (fe)
k Rk−1X

(fe)T
k )−1. Since,

I = KkK
−1
k = Kk(I + X (fe)

k Rk−1X
(fe)T
k ),

we have Kk = I −KkX
(fe)
k Rk−1X

(fe)T
k . Therefore,

Rk−1X
(fe)T
k (I + X (fe)

k Rk−1X
(fe)T
k )−1 = Rk−1X

(fe)T
k Kk

= Rk−1X
(fe)T
k (I −KkX

(fe)
k Rk−1X

(fe)T
k )

= (Rk−1 −Rk−1KkX
(fe)
k Rk−1)X (fe)T

k = RkX
(fe)T
k

which allows (c) to be reduced to

RkQk−1 =Ŵ
(k−1)
FCN −RkX

(fe)T
k X (fe)

k Ŵ
(k−1)
FCN . (d)

By substituting (d) into (b), we complete the proof.
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2 Strict-Memory Setting

Here we also give the average incremental accuracy (see Table A) for the compared methods for
strict-memory setting (i.e., only a fixed memory is allowed for the CIL). We adopt the memory budget
used in the RMM paper [12]. In details, for each benchmark data, the memory budget is determined
according to the phase number K. For instance [12], on CIFAR-10, the budget is 7k samples for
K = 5 (7k samples = 10 classes per phase × 500 samples per class + 2k samples). The numbers
reported in Table A are duplicated from [12] where the compared methods are implemented in the
same setting.

The ACIL gives identical results either in growing-exemplar or fixed memory settings. This is because
the ACIL does not belong to the branch of replay-based CIL.

Table A: Comparison of average incremental accuracy among compared methods for strict-memory
setting.

Metric Method Privacy CIFAR-100 ImageNet-Subset ImageNet-Full
K=5 10 25 50 K=5 10 25 50 K=5 10 25 50

Ā(%)

LwF (TPAMI 2018) X 56.79 53.05 50.44 - 58.83 53.60 50.16 - 52.00 47.87 47.49 -
iCaRL (CVPR 2017) × 60.48 56.04 52.07 - 67.33 62.42 57.04 - 50.57 48.27 49.44 -
LUCIR (CVPR 2019) × 63.34 62.47 59.69 - 71.21 68.21 64.15 - 65.16 62.34 57.37 -
PODNet (ECCV 2020) × 64.60 63.13 61.96 - 76.45 74.66 70.15 - 66.80 64.89 60.28 -
LUCIR+Mnemonics (CVPR 2020) × 64.59 62.59 61.02 - 72.60 71.66 70.52 - 65.40 64.02 62.05 -
POD+AANets (CVPR 2021) × 66.61 64.61 62.63 - 77.36 75.83 72.18 - 67.97 65.03 62.03 -
POD+AANets+RMM (NeuriPS 2021) × 68.86 67.61 66.21 - 79.52 78.47 76.54 - 69.21 67.45 63.93 -
ACIL X 66.30 66.07 65.95 66.01 74.81 74.76 74.59 74.13 65.34 64.84 64.63 64.35
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