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Abstract

Algorithmic fairness has received increased attention in socially sensitive domains.
While rich literature on mean fairness has been established, research on quantile
fairness remains sparse but vital. To fulfill great needs and advocate the significance
of quantile fairness, we propose a novel framework to learn a real-valued quantile
function under the fairness requirement of Demographic Parity with respect to sen-
sitive attributes, such as race or gender, and thereby derive a reliable fair prediction
interval. Using optimal transport and functional synchronization techniques, we
establish theoretical guarantees of distribution-free coverage and exact fairness for
the induced prediction interval constructed by fair quantiles. A hands-on pipeline
is provided to incorporate flexible quantile regressions with an efficient fairness
adjustment post-processing algorithm. We demonstrate the superior empirical
performance of this approach on several benchmark datasets. Our results show
the model’s ability to uncover the mechanism underlying the fairness-accuracy
trade-off in a wide range of societal and medical applications.

1 Introduction

We are increasingly leaning on machine learning systems to tackle human problems. A primary
objective is to develop intelligent algorithms that can automatically produce accurate decisions which
also enjoy equitable properties, as unintended social bias has been identified as a rising concern in
various fields [13, 18, 14].

As a means of providing quantitative measures of fairness, a number of metrics have been proposed.
These metrics can be categorized into three broad categories: group fairness [3], individual fairness
[25], and causality-based fairness [31]. In contrast to causality-based fairness that requires domain
knowledge to develop a fair causal structure and individual fairness that seeks equality only between
similar individuals, group fairness does not require any prior knowledge and seeks equality for groups
as a whole [6]. Among the metrics defined for group fairness such as equalized odds [9, 29] and
predictive rate parity [10], demographic parity (DP) is generic since it does not allow prediction
results in aggregate to depend on sensitive attributes [1, 21, 12, 39]. In particular, an algorithm is said
to satisfy DP if its prediction is independent of any given sensitive attribute [1].

There have been a number of studies on algorithmic fairness concerning DP [1, 11, 12, 21, 32, 39].
In the context regression analysis, much attention have been paid on conditional mean inferences
[1, 11, 12, 32], few are concerned with conditional quantiles [37, 39]. As real-world data often
exhibit heterogeneity, contain extreme outliers, or do not meet satisfactory distributional assumptions,
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like Gaussianity, a fairness discussion on conditional quantiles may be more rational and essential
since they are able to provide a more complete understanding of the dependence structure between
response and explanatory variables [39], as well as better accommodate asymmetry and extreme
tail behavior [38]. It should also be noted that bias or unfairness that arises in mean regression may
also be propagated through quantile regression, therefore it must be properly dealt with separately:
a graphic demonstration can be found in Figure 1. More intuitively, we may take an example
from a Spanish labor market study [17, 18]. The study found that in Spain, also in line with other
countries, the mean wage gap between men and women is quite substantial: on average, women
earn around 70 percent of what men earn. While wage gaps are not uniform across all pay scales,
they are greater at higher quantiles than at lower quantiles. As biases and disparities at different
quantiles tend to be overshadowed by the mean behavior of the entire population, we propose a
novel framework to seek fair predictions at different quantiles. It uses optimal transport techniques
[2, 12] by transforming bias-affected distributions into an only-fair Wasserstein-2 barycenter through
a kernel-based functional synchronization method [8, 45], in order to provide fair quantile estimators.

Figure 1: An illustration of quantile fairness: for a skewed and heteroscedastic quantile estimation
{qα,i}Ni=1 affected by the sensitive attribute S ∈ {0, 1}, for example, the higher quantile of the
salary distribution, the optimal fair quantile prediction Qgα(t), t ∈ (0, 1) is derived through a convex
combination of the conditional quantile functions of Qqα|S=0 and Qqα|S=1.

Since quantile fairness poses a number of theoretical challenges, no previous literature has been
able to provide any inference results such as prediction intervals concerning quantile fairness. It
is imperative to keep in mind that fairness is only one of two legs of the primary goal of modern
machine learning algorithms, the other being accuracy. Building a reliable prediction with valid
confidence is a significant challenge that is encountered by many machine learning algorithms [44].
Towards this end, we propose the conformalized fair quantile prediction (CFQP) inspired by the
works of Romano et al. [33, 34]. Our analysis demonstrates, both mathematically and experimentally,
that CFQR provides finite sample, distribution-free validity, DP fairness for different quantiles, and
precise control of the miscoverage rate, regardless of the underlying quantile algorithm.

Contributions and Outlines. In this paper, we propose a new quantile based method with valid
inference that enhances both accuracy and fairness while maintaining a balance between the two. It is
a novel framework that allows an exact control of prediction miscoverages while ensuring quantile
fairness simultaneously. The main contributions are summarized as follows:

i. We successfully transform the problem of searching quantiles under DP fairness to the construc-
tion of multi-marginal Wasserstein-2 barycenters via the optimal transport theory [2, 12, 19].
We incorporate a novel kernel smoothing step into the preceding method, which is particularly
advantageous for subgroups whose sample sizes are too small to obtain reliable quantile function
estimations.

ii. In Section 4, we propose a conformalized fair quantile regression prediction interval (CFQP)
inspired by the works of Romano et al. [33, 34]. It is mathematically proved to achieve a
distribution-free validity, demographic parity on different quantiles, and an exact control of
miscoverage rates, regardless of the quantile algorithm used. The theoretical validity of prediction
interval constructed by CFQP and exact DP of the fair quantile estimators are given in Section 5
and the supplement.

iii. The experimental results presented in Section 6 include a numerical comparison of the proposed
CFQP and fair quantile estimation with both state-of-the-art conformal and fairness-oriented
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methods. By reducing the discriminatory bias dramatically, our method outperforms the state-of-
the-art methods while maintaining reasonable short interval lengths.

Related works. Existing approaches for building a fair mean regression broadly fall into three classes:
pre-processing, in-processing and post-processing. In particular, preprocessing methods focus on
transforming the data to remove any unwanted bias [5, 31, 43]; in-processing methods aim to build
in fairness constraints into the training step [1, 4, 25, 29]; post-processing methods target to modify
the trained predictor [11, 12, 28]. As few previous works have focused on the quantile fairness of
and fair prediction interval, the most related are Yang et al. [39], where a different fairness measure
was used. While Agarwal et al. [1] mentioned that their reduction-based approach can be adapted
into quantile regression, Williamson and Menon [37] brought forward a novel conditional variance
at risk fairness measure aiming to control the largest subgroup risk. For interval fairness measure,
the approach by Romano et al. [33] achieved equalized coverage among groups without fairness
on interval endpoints. Methodologically, integrating algorithmic fairness with Wasserstein distance
based barycenter problem has been studied in [2, 11, 12, 19, 23]. Both in-processing [1, 23] and
post-processing [11, 12] methods were proposed to solve classification and mean regression problems.
As a post-processing method, our work is distinct from above-mentioned methods by constructing
the DP-fairness for each population quantile, and generating a fair prediction interval accordingly.

Notations. We denote by [K] the set {1, . . . ,K} for arbitrary integer K. |S| represents the cardinality
for a finite set S . E and P represent the expectation and probability and 1{·} is the indicator function.
Let {Zn}∞n=1 be a sequence of random variables, and {kn}∞n=1 be a sequence of positive numbers,
we say that Zn = Op(kn), if limT→∞ lim supn→∞ P (|Zn| > Tkn) = 0, then Zn/kn = Op(1). To

denote the equality in distribution of two random variables A and B, we write A
d
= B.

2 Problem statement

Consider the regression problem where a “sensitive characteristic” S is available, which by the
U.S. law [19, 33] can be enumerated as sex, race, age, disability, etc. We observe the triplets
(X1, S1, Y1) , . . . , (Xn, Sn, Yn), denote (Xi, Si, Yi) by Zi, i = 1, . . . , n and Zi is a random variable
in Rp × [K]× R. The aim is to predict the unknown value of Yn+1 at a test point Xn+1, Sn+1. Let
P be the joint distribution of Z, we assume that all the samples {Zi}n+1

i=1 are drawn exchangeable,
where i.i.d. is a special case.

Our goal is to construct a marginal distribution-free prediction band C (Xn+1, Sn+1) ⊆ R that is
likely to cover the unknown response Yn+1 with finite-sample (nonasymptotic) validity. Formally,
given a desired miscoverage rate α, the predicted interval satisfies

P {Yn+1 ∈ C (Xn+1, Sn+1)} ≥ 1− α (1)

for any joint distribution P and any sample size n, while the left and right endpoint of C (Xn+1, Sn+1)
satisfies the fairness constraint of Demographic Parity concerning the sensitive variable S.

Demographic Parity. We introduce the quantitative definition of DP in fair regression and connect the
DP-fairness with a quantile regressor qα. The result that qα can be projected to the fair counterparts
using optimal transport will be invoked later.

Given a fixed quantile level α (it may refer to αlo or αhi indicating the upper and lower quantile
estimates for the prediction band C(Xn+1, Sn+1)). Let qα : Rp × [K]→ R represent an arbitrary
conditional quantile predictor. Denote by νqα|s the distribution of (qα(X,S) | S = s), the Cumulative
Distribution Function (CDF) of νqα|s is given by

Fνqα|s(t) = P (qα(X,S) ≤ t | S = s). (2)

The quantile function Qνqα|s = F−1
νqα|s

: [0, 1]→ R ,namely, the generalized inverse of Fνqα|s , can
thus be defined as for all levels t ∈ (0, 1],

Qνqα|s(t) = inf{y ∈ R : Fνqα|s(y) ≥ t} with Qνqα|s(0) = Qνqα|s(0+). (3)

To simplify the notations, we will write Fqα|s and Qqα|s instead of Fνqα|s and Qνqα|s respectively,
for any prediction rule qα.

In the following, we introduce the definition of Demographic Parity (DP), which is most commonly
used in the context of fairness research [1, 11, 12, 21, 29].
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Definition 1 (Demographic Parity). An arbitrary prediction g : Rd× [K]→ R satisfies demographic
parity under a distribution P over (X,S, Y ), if g(X,S) is statistically independent of the sensitive
attribute S. Formally, for every s, s′ ∈ [K],

sup
t∈R
|P (g(X,S) ≤ t | S = s)− P (g(X,S) ≤ t | S = s′)| = 0.

Demographic Parity (DP) requires the predictions to be independent of the sensitive attribute, and it
demands the Kolmogorov-Smirnov distance [26] (the difference between CDFs measured in the l∞
norm) between νg|s and νg|s′ to vanish for all categories s, s′.

3 Quantile Regression and Conformal Prediction

In this section, we recall the CQR approach for finite sample, distribution-free prediction interval
inference. Quantile regression was proposed by Koenker and Bassett [24] to estimate the α-th quantile
of the conditional distribution of Y given X̃ := (X,S) for some quantile level α ∈ (0, 1), since
then it has become more pervasive with various applications, such as providing prediction intervals,
detecting outliers, or perceiving the entire distribution [27, 20]. Denote the conditional cumulative
distribution of Y given X̃ by F (y | X̃ = x̃) := P{Y ≤ y | X̃ = x̃}. The α-th conditional quantile
prediction is defined as qα(x̃) := inf{y ∈ R : F (y | X̃ = x̃) ≥ α}. Quantile regression can be cast
as an optimization problem [27, 42, 30, 36, 41], by minimizing the expected check loss function
E(ρα) = E[ρα(y, q)|X̃ = x̃], where

ρα(y, qα(x̃)) =

{
α|y − qα(x̃)| if y ≥ qα(x̃),

(1− α)|y − qα(x̃)| if y < qα(x̃).
(4)

Quantile regression offers a principled way of judging the reliability of predictions by building
a prediction interval for the new observation (X̃n+1, Yn+1). In contrast to asymptopia, Romano
et al. [33, 34] brought forward the conformalized quantile regression (CQR) by combining the
merits of robust quantile regression with conformal prediction, thus finite sample validity in Eq.
(1) is guaranteed. Inspired by the split conformal method, a split CQR likewise starts with split-
ting the data into a proper training set and a calibration set, indexed by I1, I2 respectively. Given
any quantile regression algorithm Q, we then fit two conditional quantile functions q̂αlo

and q̂αhi

on the proper training set: {q̂αlo
, q̂αhi

} ← Q
({(

X̃i, Yi

)
: i ∈ I1

})
. The conformity scores are

calculated to quantify the error made by the plug-in prediction interval Ĉ(x̃) = [q̂αlo
(x̃), q̂αhi

(x̃)].
We evaluate the scores on the calibration set as Ek := max

{
q̂αlo

(X̃k)− Yk, Yk − q̂αhi
(X̃k)

}
for each k ∈ I2, where both undercoverage and overcoverage of the interval are taken into
consideration [34]. Given a new input data X̃n+1, we construct the prediction interval for
Yn+1 as C

(
X̃n+1

)
=

[
q̂αlo

(
X̃n+1

)
−Q1−α (E, I2) , q̂αhi

(
X̃n+1

)
+Q1−α (E, I2)

]
, where

Q1−α(E, I2) := (1 − α)(1 + 1/|I2|)-th empirical quantile of {Ek : k ∈ I2} conformalizes the
plug-in prediction interval. Note that the constructed interval C(X̃n+1) could be highly influenced
by the sensitive variable S.

4 Conformal fair quantile prediction (CFQP)

We formally describe our proposed conformal fair prediction (CFQP) framework for constructing
DP fairness constrained prediction intervals in this section. A kernel smoothing quantile function
is introduced during the functional synchronization, which can improve the estimation when some
subgroups are too small to give reliable sample quantile function estimations.
Definition 2 (Wasserstein-2 distance). Let µ and ν be two univariate probability measures with finite
second moments. The squared Wasserstein-2 distance between µ and ν is defined as

W2
2 (µ, ν) = inf

{∫
R×R
|x− y|2dγ(x, y), γ ∈ Γµ,ν

}
where Γµ,ν is the set of probability measures (couplings) on R× R having µ and ν as marginals.
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Proposition 1 (Fair optimal prediction [12]). Assume, for each s ∈ [K], that the univariate measure
νqα|s has a density and let ps = P (S = s). Then,

min
gα is fair

E (qα(X,S)− gα(X,S))
2
= min

ν

∑
s∈[K]

psW2
2

(
νqα|s, ν

)
. (5)

Moreover, if gα and ν solve the l.h.s. and the r.h.s. problems respectively, then ν = νgα and
specifically,

gα(x, s) =
∑

s′∈[K]

ps′Qqα|s′ ◦ Fqα|s ◦ qα(x, s). (6)

Proposition 1 implies that the optimal fair quantile predictor for an input (x, s) is obtained by a non-
linear transformation of the vector [qα(x, s)]Ks=1 linking to a Wasserstein barycenter problem[2, 12].
The explicit closed form solution comes from [2, 12, 16], which relies on the classical characterization
of optimal coupling in one dimension of the Wasserstein-2 distance. A rigorous proof is given in
[12, 23]. It shows that a minimizer gα of the L2-risk can be used to construct ν and vice-versa, given
ν, there is a explicit expression Eq. (6) for the multi-marginal Wasserstein barycenter [2].

First, we provide a sketch of the CFQP approach. We start with splitting the whole training data into
a proper training set I1 and a calibration set I2, then fit an arbitrary quantile regression algorithm Q
on I1, {q̂αlo

, q̂αhi
} ← Q

({(
X̃i, Yi

)
: i ∈ I1

})
. We apply the fitted quantile algorithm Q on the

calibration set I2 to obtain the predicted {q̂αlo
(X̃i), q̂αhi

(X̃i)}i∈I2 . Since the quantile estimates for
I2 will be used for conformalization, it is essential to transform them into fair ones, i.e. ĝα,i,∀i ∈ I2
(Eq. (9)), through Algorithm 2. Finally, for a test point X̃n+1, we will predict two quantile estimates
q̂α(x, s) affected by the sensitive variable S by Q, then apply the functional synchronization (details
in Algorithm 2) and calibration (Algorithm 1) steps in turn to generate the fair constraint prediction
interval C(X̃n+1) for Yn+1.

Next, we explicate in detail how to remove the effect of the sensitive variable for the predicted
quantile estimates. By Proposition 1, the optimal fair quantiles take the form of Eq. (6). Therefore,
we propose an empirical optimal fair quantile estimator ĝα that relies on the plug-in principle. In
particular, Eq.(6) indicates that for each quantile level α and each category s ∈ [K], we only need
estimators for the regression function q̂α, the proportion p̂s, the cumulative distribution function
Fq̂α|s and the quantile function Qq̂α|s.

Note that we can empirically estimate the CDF and quantile function for each sensitive group in
the calibration set I2 separately. Hence for each quantile level α, let Ns := |Is2 |, and the quantile
estimators (q̂s1, q̂

s
2, . . . , q̂

s
Ns

)2 are calculated through the fitted quantile regression Q with training set
I1. We define the augmented random variable for each data point in I2,

q̃si := q̂si + Us
i ([−σ, σ]) ∀i ∈ Is2 , s ∈ [K],

where Us
i are i.i.d. random variables, uniformly distributed on [−σ, σ] for some small positive σ, and

independent from all the previously introduced random variables. It serves as a smoothing random
variable, for the random variables q̃si are i.i.d. continuous for any P (Y |X̃) and Q. Otherwise, the
original q̂si might have atoms resulting in a non-zero probability to observe ties in the group {q̂si }
for s = 1, . . . ,K. This trick, also called jittering [7, 12] is often used for data visualization for
tie-breaking. Using the above quantities, we build the CDF and quantile function estimators for each
subgroup s′ ∈ [K] as follows,

F̂qα|s′(t) = N−1
s

Ns∑
i=1

1

{
q̃s

′

i ≤ t
}
, for all t ∈ R, (7)

Q̂2,qα|s′(t) =

∫ 1

0

F̂−1
qα|s′(v)Kh(t− v)dv, t ∈ (0, 1). (8)

The smoothed kernel estimator Eq.(8) was firstly proposed by Cheng and Parzen [8], where Kh(·) =
K(·/h)/h is a kernel function chosen as a probability density function that is symmetric around zero
with bandwidth parameter h > 0.

2q̂si depends on the quantile level α, we suppress α for notational simplification.
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If the quantile functions Q2,qα|s′ is differentiable, the derivative Q′
s′(t) := Q′

2,qα|s′(t) for t ∈ (0, 1)

is the quantile density function [8, 45]. We hereby give an estimation bound for Eq. (8) using kernel
smoothing. For this purpose, we invoke the conditions (A1) - (A3) that are needed for deducing
the following proposition. They can also be found from [45] and are included in the supplementary
material.
Proposition 2. Under conditions (A1), (A2), and (A3), we have

sup
s′

sup
t∈[0,1]

∣∣∣Q̂2,qα|s′(t)−Qqα|s′(t)
∣∣∣ = Op

(
N−1/2

)
, s′ = 1, . . . ,K.

The motivation for including a smoothing step is twofold: First, smoothing the quantile function
eliminates the troublesomeness in defining arbitrary quantiles from the empirical one when the
sample sizes of subgroups are small. Second, the proposed kernel smoothing improves second-order
efficiency by alleviating the relative deficiency [15, 45].
Remark 1. One can utilize various kernels such as the Gaussian or Epanechnikov kernel with
adaptive bandwidth for better practical performance. Other smoothing methods such as splines or
local linear fitting can likewise be applied with equal effectiveness.

Consequently, for each quantile level α, the functional synchronized quantile estimator is

ĝα,i =

K∑
s′=1

p̂s′Q̂2,qα|s′ ◦ F̂qα|s ◦ q̃si , ∀i ∈ I2. (9)

The proposed estimator can be deemed as the empirical counterpart with additional randomization of
the explicit fair optimal formula Eq.(6).

To conformalize the adjusted fair quantiles Eq (9), we need to compute the conformity scores
Ei for each i ∈ I2 that quantify the error made by the plug-in fair prediction interval Ĉg(x̃) =
[ĝαlo

(x̃), ĝαhi
(x̃)]. The scores are evaluated on the calibration set as

Ei := max{ĝαlo,i − Yi, Yi − ĝαhi,i}. (10)

At the last stage, for a new data point X̃n+1 = (x, s), and α ∈ {αlo, αhi}, by defining

q̃s1,i = q̂si + Us
i ([−σ, σ]) ∀i ∈ Is1 and q̃α(x, s) = q̂α(x, s) + U([−σ, σ]).

We use the empirical CDF of training set 3

F̂1,qα|s(t) :=
1

|Is
1 |+1

(∑|Is
1 |

i=1 1
{
q̃s1,i < t

}
+ U([0, 1])

(
1 +

∑|Is
1 |

i=1 1
{
q̃s1,i = t

}))
(11)

to estimate the location F̂1,qα|s ◦ q̃α(x, s). Thus the fair quantile estimator is built as follows

ĝα(x, s) =

K∑
s′=1

p̂s′Q̂2,qα|s′ ◦ F̂1,qα|s ◦ q̃α(x, s),∀α ∈ {αlo, αhi}. (12)

The fair prediction interval for Yn+1 is constructed as

C(X̃n+1) = [ĝαlo
(x, s)−Q1−α(E, I2), ĝαhi

(x, s) +Q1−α(E, I2)], (13)

where Q1−α(E, I2) := (1− α)(1 + 1/|I2|)-th empirical quantile of {Ei : i ∈ I2} will adjust the
plug-in fair prediction interval. We present the pseudo-codes of CFQP as well as the construction of
ĝα for Eq. 9 in Algorithm 1, 2 respectively.

5 Theoretical results

We provide a statistical analysis of the proposed algorithm with coverage and DP-fairness guarantees
in this part.

3Still, q̂si depends on quantile level α.
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Algorithm 1 Split Conformal Fair Prediction (CFQP)

Input: D = {(Xi, Si, Yi)}ni=1; miscoverage level α ∈ (0, 1); quantile regression algorithmQ.
1: Randomly split [n] into disjoint proper training and calibration indices I1, I2.
2: Fit two conditional quantile functions on the training set {q̂αlo , q̂αhi} ← Q({(Xi, Si, Yi), i ∈ I1}).
3: Call functional Synchronization (Algorithm 2) to calculate {ĝαlo , ĝαhi} for each i ∈ I2.
4: Compute Ei ← max {ĝαlo (Xi)− Yi, Yi − ĝαhi (Xi)} for ∀ i ∈ I2.
5: Compute Q1−α(E, I2)← (1− α)(1 + 1/|I2|)-th empirical quantile of {Ei : i ∈ I2}.
6: For a new test point (x, s), compute {ĝαlo(x, s), ĝαhi(x, s)} through Algorithm 2

Output: Fair prediction interval C(x, s) = [ĝαlo(x, s) − Q1−α(E, I2), ĝαhi(x, s) + Q1−α(E, I2)] for
(Xn+1, Sn+1) = (x, s).

Algorithm 2 Functional Synchronization

Input: Calibration set {(Xi, Si)}i∈I2 or new point (x, s); base quantile estimatorQ;
slack parameter σ; training set {(Xi, Si)}i∈I1 ;

1: if Calibration set {(Xi, Si)}i∈I2 then
2: for α ∈ {αlo, αhi} do
3: {q̃α(Xi, Si)} ← {qα(Xi, Si) + U([−σ, σ])}i∈I2 ▷ U([−σ, σ]) are used for tie-breaking
4: for s′ ∈ [K] do
5: Compute F̂qα|s′(t), and F̂−1

2,qα|s′(t) by Eq. (7) and (8).

6: Obtain ĝα(Xi, Si)←
∑K

s′=1 p̂s′ F̂
−1
2,qα|s′ ◦ F̂qα|s′ ◦ q̃α(Xi, Si), ∀i ∈ I2

7: end for
8: end for
9: else if New test point (x, s) then

10: for α ∈ {αlo, αhi} do
11: {q̃s1,α} ← {q̂sα + U([−σ, σ])}i∈Is

1
and q̃α(x, s)← qα(x, s) + U([−σ, σ])

12: Compute ĝα(x, s)←
∑K

s′=1 p̂s′ F̂
−1
2,qα|s′ ◦ F̂1,qα|s ◦ q̃α(x, s) by Eq. (8) and (7)

13: end for
14: end if
Output: fair quantile prediction ĝα for calibration set or new test point (x, s).

Theorem 1 (Prediction coverage guarantee). If (X̃i, Yi), i = 1, . . . , n+ 1 are exchangeable, then
the prediction interval C(X̃n+1) constructed by the split CFQP algorithm satisfies

P{Yn+1 ∈ C(X̃n+1)} ≥ 1− α.

Moreover, if the conformity scores Ei are almost surely distinct, the prediction interval is nearly
exactly calibrated,

P{Yn+1 ∈ C(X̃n+1)} ≤ 1− α+ 1/(|I2|+ 1).

Remark 2. Corollary 1 in the supplementary material gives an extension for the conformalization
step which allows coverage errors to be spread arbitrarily over the left and right tails. Controlling the
left and right tails independently yields a stronger coverage guarantee.

Theorem 2 (Demographic parity guarantee). For any joint distribution P of (X,S, Y ), any σ > 0,
as well as the base quantile estimator q̂α : Rp × [K]→ R constructed on labeled data, the estimator
ĝα defined in Eq. (12) satisfies

(ĝα(X,S) | S = s)
d
= (ĝα(X,S) | S = s′) ∀s, s′ ∈ [K].

Quantile DP guarantees provided by Theorem 2 are derived directly from distribution-free properties
on rank and order statistics in Lemma E.1., Theorem 7.2, of Chzhen and Schreuder [11]. Further
information can be found in their papers and the references they provide. We extend the estimator ĝ for
quantile regression based on the estimators developed in their work with solid theoretical foundations.
In contrast to the seminal work of Chzhen and Schreuder [11], we regard the densities and quantile
functions as functional data, namely, as samples of stochastic processes. Typically, this approach is
used by economists when dealing with the densities of income distribution across populations. As a
result of introducing the kernel smoothing step, potential performance improvements are demonstrated
in the supplemental material.
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6 Experiments

To evaluate our proposed method 4, we report the performance of post-processing fairness adjustment
on quantiles through four benchmark datasets: Law School (LAW), Community&Crime (CRIME),
MEPS 2016 (MEPS), Government Salary (GOV). A detailed description of these datasets can be
found in the supplementary material. The code for reproducing our results is avaiable at https:
//github.com/Lei-Ding07/Conformal_Quantile_Fairness.

LAW CRIME

Coverage Length KS(lo) KS(hi) Coverage Length KS(lo) KS(hi)

Ln-CQR 90.16±0.47 0.46±.004 0.39±0.03 0.11±0.02 90.22±1.88 1.30±0.05 0.62±0.06 0.53±0.06
Ln-CFQP 90.02±0.51 0.46±.004 0.02±0.01 0.02±0.01 90.44±1.84 1.64±0.05 0.11±0.03 0.12±0.04

RF-CQR 90.25±0.55 0.39±.005 0.20±0.02 0.15±0.02 90.27±1.66 1.15±0.03 0.64±0.05 0.59±0.05
RF-CFQP 90.11±0.48 0.38±.004 0.02±.008 0.02±.009 90.34±1.84 1.54±0.04 0.12±0.04 0.12±0.03

NN-CQR 90.00±0.50 0.40±0.02 0.41±0.07 0.18±0.05 90.01±1.89 1.16±0.05 0.70±0.05 0.63±0.06
NN-CFQP 90.01±0.51 0.39±0.01 0.02±.009 0.03±.009 89.95±1.62 1.54±0.12 0.12±0.04 0.12±0.03

MEPS GOV

Coverage Length KS (lo) KS(hi) Coverage Length KS (lo) KS(hi)

Ln-CQR 89.92±0.66 0.66±0.01 0.09±0.03 0.33±0.05 90.00±0.19 0.79±.002 0.26±.014 0.44±0.02
Ln-CFQP 89.99±0.69 0.66±0.01 0.03±0.01 0.03±0.01 90.02±0.19 0.78±.002 0.05±0.01 0.04±0.01

RF-CQR 90.07±0.65 0.38±.009 0.19±0.02 0.30±0.03 90.03±0.17 0.61±.002 0.29±0.01 0.28±0.02
RF-CFQP 90.38±0.60 0.39±0.01 0.02±0.01 0.03±0.01 90.03±0.17 0.62±.002 0.05±0.01 0.04±0.01

NN-CQR 89.95±0.68 0.37±0.04 0.24±0.09 0.37± 0.06 90.01±0.19 0.58±0.01 0.28±0.03 0.32±0.04
NN-CFQP 89.97±0.61 0.37±0.04 0.03±0.01 0.04±0.01 90.01±0.18 0.59±0.01 0.05±0.01 0.05±0.01

Table 1: Results reported on test set of 200 repeated experiments with α = 0.1. CQR refers to the
conformalized quantile regression in [34]. Ln, RF, and NN denote the linear, random forest, and
neural network quantile regression models. Our methods are shown in bold.

Figure 2: Results for estimating the lower (αlo) and upper (αhi) quantiles using some state-of-the-art
DP-fairness requirement methods on all the datasets. ‘Unfair’, ‘Chzhen’, and ‘Agarwal’ stand for
the linear quantile model without fairness adjustment, barycenter method [12] and reduction-based
algorithm [1] respectively. We present the MAE and KS of lower and upper quantile estimations. A
Linear quantile model is implemented in this comparison.

We measure the violation of DP-fairness of the quantiles required by Definition 1 through the
empirical Kolmogorov-Smirnov (KS) distance. The value represents the disparity between groups

4We utilize the local linear fitting smoothing method in the experiments.
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Zs = {(X,S, Y ) ∈ Z : S = s} for all s ∈ [K],

KS(gα) = max
s,s′∈[K]

sup
t∈R

∣∣∣∣∣ 1
|Zs|

∑
(X,S,Y )∈Zs

1{gα(X,S) ≤ t} − 1
|Zs′ |

∑
(X,S,Y )∈Zs′

1{gα(X,S) ≤ t}

∣∣∣∣∣.
Experiment results. In Table 1, we report the average performance of the proposed CFQP over
200 randomly training-test splits as well as the baseline model CQR by the coverage rate, length of
prediction interval, and the KS distance of the interval endpoint. We split the training data into proper
training and calibration sets of equal sizes. Throughout the experiments, the nominal miscoverage
rate is fixed to α = 0.1. Among pre-existing quantile algorithms, we select three leading variants:
linear model[24], random forests [27] and neural networks [35]. Overall, our CFQP likewise
CQR constructs prediction bands attaining desirable coverage around 90%, as claimed in Theorem 1.
Random forest based approaches tend to be slightly more conservative than the other two w.r.t the
coverage rate among all four datasets.

In the KS column concerning the DP fairness of interval endpoints, our CFQP method greatly reduces
the discriminatory bias (quantified by KS) by 70% up to 90% compared to that of CQR. In addition,
the lengths of the prediction intervals mostly remain the same except for the Crime dataset, probably
due to its inherent high discriminatory bias between sensitive groups. In addition, CFQP is more
robust according to the standard errors over experiment repetitions.

Figure 2 presents the comparison of our post-processing fairness adjustment procedure on quantiles
ĝα using the test set Ztest = {(Xi, Si, Yi)}ntest

i=1 with some state-of-the-art fairness algorithms. Since
most of the algorithms are targeted at mean prediction, there is no direct comparison with our quantile
fairness method; we accordingly modified the existing methods into quantile versions for comparison.
A detailed description can be found in the supplementary material.

The points in Figure 2 represents the mean of 200 repeated experiments with x-axis as KS distance and
y-axis as Mean Absolute Error(MAE), where MAE(gα) = 1/ntest

∑
Ztest

|Y − gα(X,S)| measures
the prediction error of quantiles, the bars are the standard error on both axes. The optimal points
should locate at the bottom left corner of the graph, where smaller KS distance and smaller MAE are
achieved. In each subplot, our method consistently performs better with the smallest KS distance
while keeping the MAE equal or slightly higher than the others or the unfair version. Note that due to
the highly right skewness of real datasets, the MAE of the upper quantile estimation is larger than that
of the lower quantile for all quantile approaches. Additional ablation studies for computational time
analysis and testing the kernel smoothing approach are incorporated in the supplementary material.

7 Conclusion and future work

Conformal fair quantile regression is a novel approach for creating fair prediction intervals that
attain valid coverage and reach independence between sensitive attributes while making minimal
modifications to the quantile endpoints simultaneously. It becomes superior within heteroskedastic
and/or asymmetric datasets and robust to outliers.

Our method is supported by rigorous distribution-free coverage and exact DP-fairness guarantees, as
proved in theoretical parts. We conducted several real data examples demonstrating the effectiveness
of our method in achieving exact coverage while imposing DP-fairness in practice. The method
outperforms several state-of-the-art approaches by comparison.

A limitation in our numerical experiments is that we simply utilize the local linear smoothing method
in defining quantile functions of the subgroups; we believe incorporating flexible kernel smoothing
approaches [40, 45] would improve the experimental performances.

As potential future works, it would be valuable to introduce a DP relaxation framework based on an
unfairness measure in a similar manner as [11, 37], allowing controlling the level of unfairness in
quantile estimates. We also expect to extend the scope to other potential fairness metrics which is
dependent on the underlying response like equalizing quantile loss across groups by incorporating a
fairness penalty term in training, or the fairness metric defined for conditional variance-at-risk. In
addition, it is worthwhile exploring the quantile fairness in other areas of AI, such as NLP[14, 22],
Computer Vision, Recommendation systems, etc.
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