
A Image generation1

A.1 Architecture specification2

The generator architecture is implemented with several MAT Residual Blocks followed by bilinear3

upsampling as shown in Figure 1(b). The architecture of the residual block is largely implemented4

from ? ] where we replace the SPADE module with MAT in SPADE Residual block. We also leverage5

the Spectral Normalization [? ] to all the convolution layers in the generator. The latent mapping6

network g for generating the latent code w is implemented with an 8-layer of MLP with channel-wise7

normalization at the first layer, which is the same as the style mapping function in StyleGAN [?8

]. The first MLP layer of the latent mapping function is different from the physical environment9

as the number of the input state, ns, is different. The dimension of the input state is increased 2L10

times by a high frequency positional encoding function ψ. We set the hyperparameter L as 10 and11

concatenate the input and output of ψ, which leads to 21 times increase in the channel dimension.12

The specification of the entire architecture is shown in Figure 2.13

Environment Cheetah
run

Walker
walk

Cartpole
swingup

Finger
spin

Ball-in-cup
cath

Reacher
easy

ns 17 24 5 9 8 6
Table 1: The number of the state according to the environment of DMControl.
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Figure 1: An architecture of the sub-network in the generator.

A.2 Training details14

We implement our proposed generator architecture with the public deep learning platform PyTorch15

and train it on a single NVIDIA RTX A6000 GPU. We train 30 epochs for each task and the generated16

image size is set to 128× 128. An Adam optimizer [? ] with the learning rate of 0.0002 is utilized17

and the batch size is set to 16.18

A.3 Additional results of image synthesis19

We report additional qualitative results on the multiple environments of DMControl in Figure 3.20

We show that our proposed S2P generates high-quality images regardless of the environment. We21
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Figure 2: Specification of the generator.
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Figure 3: Additional qualitative results on the DMControl environment. The first row of each
environment is ground truth images and the second row is the synthesized images from S2P.
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Environment Method FID (↓) LPIPS (↓) PSNR (↑) SSIM (↑)

Cheetah run Dreamer 63.46 0.042 27.62 0.90
S2P 47.70 0.028 33.40 0.94

Walker walk Dreamer 209.99 0.30 18.38 0.69
S2P 74.08 0.078 25.20 0.84

Cartpole swingup Dreamer 82.02 0.129 28.05 0.94
S2P 112.81 0.117 28.83 0.86

Ball-in-cup catch Dreamer 112.45 0.055 33.25 0.93
S2P 77.11 0.035 33.75 0.97

Reacher easy Dreamer 171.92 0.115 27.64 0.95
S2P 58.34 0.178 26.02 0.86

Finger spin Dreamer 86.63 0.112 21.93 0.90
S2P 18.86 0.025 39.54 0.99

Mean value Dreamer 121.13 0.126 28.19 0.89
S2P 64.82 0.077 31.13 0.91

Table 2: Quantitative results of generated images. S2P outperforms Dreamer in all the metrics for
evaluating image quality.

recurrently generate a single trajectory exploiting the current state and the previous images which are22

also the output of the generator from the previous state. Also, we evaluate the quality of generated23

images quantitatively with metrics (FID score, LPIPS, PSNR, SSIM) which are frequently adopted24

for evaluating image quality in Table 2. Our S2P outperforms Dreamer in all the quantitative results25

which indicates the generated image from S2P has better quality than from Dreamer.26

B Offline RL Experiments Details27

B.1 Algorithm28

Algorithm 1 Offline RL with the S2P
Input: offline dataset D, state rollout distribution η(·|s).
Train the probabilistic dynamics models T̂θ(s′, r|s, a) = N (µθ(s, a),Σθ(s, a)) on D.
Train the image generator G(st, It−1) on D.
for i = 1 to K do

Randomly sample I0, s0 ∼ D.
Get τs ∼ (s0, a0, r0, s1, ..., sM ) by using the η(·|s) and T̂θ(s′, r|s, a).
Generate τI ∼ (I0, a0, r0, I1, ...IM ) from τs by G.
Save τI in Dmodel.

end for
Apply any offline RL algorithm with the dataset sampled from D,Dmodel with the ratio of f ,
1− f .

B.2 Ablation studies29

B.2.1 Uncertainty types30

We conduct experiments on how the choice of the uncertainty affects the performance. We31

denote u(s, a) = maxi=1,...N ||Σiθ(s, a)||F as Max Var, u(s, a) = maxi=1,...N ||µiθ(s, a) −32

1
N

∑N
j=1 µ

j
θ(s, a)||2 as Ens Var, and average value of both uncertainty types as Average Both.33

In practice, we found that Max Var achieves better performance compared to other types of uncer-34

tainty in mixed, expert dataset, while Ens Var achieves better at random dataset. We hypothesize that35

the dynamics model is quite uncertain in the aspect of the Max Var on the random dataset due to the36

excessive randomness of the data. Thus, it could induce excessive penalty on the predicted reward37

when Max Var is used, and the agent could become too conservative.38
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DATASET METHOD MAX VAR AVERAGE BOTH ENS VAR
CHEETAH

RUN
RANDOM

IQL 12.64 16.61 19.27
CQL 11.77 8.59 19.83

SLAC-OFF 18.14 8.67 31.81
CHEETAH

RUN
MIXED

IQL 88.53 83.92 67.74
CQL 93.16 83.93 87.5

SLAC-OFF 26.39 26.39 24.41
CHEETAH

RUN
EXPERT

IQL 87.18 64.43 62.41
CQL 96.28 89.38 90.36

SLAC-OFF 14.41 9.85 11.92
Table 3: Different types of uncertainty quantification on cheetah-run environments.

B.2.2 Rollout horizons39

To validate the effectiveness of different rollout horizons, we conduct experiments with horizon40

length 1 (+S2P (1step)) and 5 (+S2P (5step)), while following the same rollout strategies in ??. For41

the 5 step case, as the proposed S2P generator is conditioned on the previous timestep’s image to42

synthesize the next image, we recurrently generate the image transition data. That is, at the first43

timestep, the ground truth image is conditioned on the image generator, but after then, the generated44

image is conditioned on the image generator for generating the following timestep’s image. The45

results shown in Table 4 represent that the augmentation with a longer horizon also has advantages in46

offline RL, but a short horizon is more effective overall. This is due to the uncertainty accumulation47

effect as shown in Figure 4. The average uncertainty grows as the rollout horizon increases due48

to the model bias, and it leads to more penalties on the predicted rewards, which can induce a too49

conservative agent.50

DATASET METHOD 50K DATASET +S2P (1STEP) +S2P (5STEP)
CHEETAH

RUN
RANDOM

IQL 10.28 12.64 12.08
CQL 4.89 11.77 11.46

SLAC-OFF 16.37 18.14 19.09
CHEETAH

RUN
MIXED

IQL 41.68 88.53 66.38
CQL 92.63 93.16 87.44

SLAC-OFF 16.63 26.39 27.07
CHEETAH

RUN
EXPERT

IQL 79.89 87.18 81.01
CQL 94.20 96.28 87.53

SLAC-OFF 8.92 14.41 17.17
Table 4: Effect of rollout horizons in cheetah-run environment.

Figure 4: Average uncertainty of each different rollout horizon in cheetah-run environment.

B.2.3 Results on policy constraint-based methods51

We additionally test the proposed method on the policy constraint-based methods such as BEAR [? ]52

and behavior cloning (BC) on the cheetah-run environment. As shown in Table 5, the performance53

of these methods with augmented data is worse than the results of non-augmented data. The poor54

performance is reasonable, because BEAR utilizes the action distribution’s support matching by55

MMD, and BC is trained with maximizing the likelihood of the action. As the augmented action56

distributions are totally different from the behavior policy that induces the offline dataset, these two57

methods perform poorly because these methods try to clone or match both types of actions. That is,58
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these methods try to clone or match the support of the given offline dataset and sampled actions that59

could have different distribution or support.60

DATASET METHOD 50K DATASET +S2P (RANDOM η) +S2P (OFFRL η)
CHEETAH
RANDOM

BEAR -1.15 -1.39 1.14
BC -1.41 -1.3 2.54

CHEETAH
MIXED

BEAR 10.64 -0.29 6.57
BC 51.81 0.06 5.17

CHEETAH
EXPERT

BEAR 73.49 11.11 56.86
BC 77.42 30.06 79.40

Table 5: Experiments on policy constraint-based methods.

B.3 Additional experiments on Dreamer and conventional image augmentation technique61

Dreamer with larger dataset. To validate whether the performance degradation by augmentation62

from Dreamer (??) stems from the small dataset as the Dreamer requires more than 100k samples in63

online training, we collect an additional 250k dataset and augment the image transition amount of64

250k by Dreamer (totally 500k datasets), and perform the same experiment. Despite the bigger size65

dataset, the performance does not increase overall (Table 6), and we could say that the inaccurate66

posture and quality of the images generated by the dreamer are attributed to the limited source of67

supervision from the uni-modal inputs rather than the size of the dataset, and it is not that proper for68

data augmentation in the offline setting.69

Comparison with the conventional image-augmentation technique. To validate why S2P is needed70

instead of the conventional image-augmentation method, we additionally experiment with random71

crop and reflection padding, which is frequently used in image representation learning and online72

image RL. We perform the same experiment in ??, but replace the augmented images from S2P with73

randomly cropped images. Slightly better performance than Dreamer could be interpreted as it just74

manipulates the given true images (while maintaining the accurate posture of the agent) rather than75

generating new images like Dreamer (Table 6). But it still has difficulty in surpassing the S2P’s76

results as it cannot deviate from the state-action distribution of the offline dataset.77

DATASET METHOD
50K +S2P +REFLECT +DREAMER +DREAMER

DATASET RANDOMCROP 500K
CHEETAH

RUN
MIXED

IQL 41.68 88.53 70.17 2.09 1.85
CQL 92.63 93.16 79.78 58.93 82.55

SLAC-OFF 16.63 26.39 3.10 4.68 0.14
WALKER

WALK
MIXED

IQL 96.07 95.49 95.39 1.28 7.21
CQL 97.18 97.84 97.61 95.88 97.70

SLAC-OFF 29.02 92.60 17.13 52.65 0.48
CHEETAH

RUN
EXPERT

IQL 79.89 87.18 68.39 73.23 3.50
CQL 94.20 96.28 94.01 53.69 27.58

SLAC-OFF 8.92 14.41 8.15 3.65 3.24
WALKER

WALK
EXPERT

IQL 94.34 94.97 92.46 34.95 37.92
CQL 95.43 97.97 97.11 96.14 82.51

SLAC-OFF 11.71 70.95 6.91 52.03 10.43

Table 6: Quantitative comparison of S2P and other data augmentation methods.

B.4 Visualization of the image distribution78

To validate whether the S2P really affects the distribution of the offline dataset, we visualized the79

cheetah-run-expert dataset and the S2P-based augmented dataset by the random policy by applying80

the t-sne (Figure 5).81

As shown in Figure 5, the augmented dataset not only occupies a similar area to the original dataset82

but also encloses the original dataset, even connecting the clusters of the original dataset. It can be83
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Figure 5: The t-sne visualizations examples of the cheetah-run-expert dataset (red) and the augmented
dataset by the random policy (green).

interpreted that S2P connects different modes of image distribution by deploying virtual exploration84

in the state space.85

B.5 Model learning86

In state space, we represent the dynamics, reward model as a probabilistic neural network that outputs87

a Gaussian distribution over the next state and reward given the current state and action.88

Tθ(st+1, rt|st, at) = N (µθ(st, at),Σθ(st, at)) (1)

We train an ensemble of N dynamics models {T̂θ = N (µθ(s, a),Σθ(s, a))}Ni=1, with each model89

trained independently via maximum likelihood estimation on offline dataset D. We set the number of90

dynamics model N as 7 following ? ]. During model rollouts, we randomly pick one model. Each91

model in the ensemble is represented as 3 layers with 256 hidden units and relu activation function.92

B.6 Representation learning93

For image-based offline RL process, we follow ? ] that uses a variational model with the following94

components:95

Image encoder : ht ∼ Eθ(It)

Posterior : zt ∼ qψ(zt|ht, zt−1, at−1)

Prior : zt ∼ pψ(zt|zt−1, at−1)

Image decoder : It ∼ Dθ(It|zt)
Policy : at ∼ π(at|I1:t, a1:t−1)

Full derivation of those equations are in ? ]. We train the representation model using the evidence96

lower bound :97

Ez1:τ+1∼qψ

[
τ∑
t=0

− log pψ(It+1|zt+1) +DKL(qψ(zt+1|It+1, zt, at)||pψ(zt+1|zt, at))

]
where τ is the number of sequences, and z is the latent representation. We set τ = 8 and the dimension98

of z is 288, same as the original implementation. For image encoder, we use 6 convolutional neural99

network with kernel sizes [5, 3, 3, 3, 3, 4] and strides [2,2,2,2,2,2] respectively with leaky relu100

activation function. The decoder is constructed in a symmetrical manner to the encoder. We pre-train101

the image encoder by 300k steps and use the trained encoder’s weights as initial weights when offline102

RL training proceeds.103
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B.7 Training Detail104

We use the batch size of 128 and the Adam optimizer for training the value function Q and policy105

π with the learning rates 0.0003, 0.0001, respectively. Each Q and π is represented as MLPs with106

hidden layer sizes (1024, 1024), relu activation function. We apply tanh activation on the output of107

the policy with reparameterization trick same as ? ]. Also, we use the uncertainty penalty coefficient108

λ = 2 for all environments except the finger-spin, which use λ = 1. The sampling ratio of the offline109

dataset is f = 0.5. For offline RL implementation, we referred to the original implementations of110

each work and follow default parameters.111

B.8 Zero-shot Task Adaptation Detail112

For the cheetah-jump task, we relabel the reward in the given offline dataset to the sparse reward that113

indicates whether the cheetah is jumping or not. That is, if z-init z ≥ 0.3, the reward is relabeled as 1,114

otherwise 0, where z denotes the z-position of the cheetah and init z denotes the initial z-position.115

For augmentation, we randomly select states whose z-position is greater than 0.2, and generate116

images from these states to encourage the jumping motion. Then, we augment these generated image117

transition data in the same way of ??, and evaluate the offline RL.118

For the walker-run task, we generate the dataset in the same manner as the mixed type in ??. That is,119

we train the state-based SAC until convergence, and we randomly sample trajectories from the replay120

buffer. Then, we generate Î1 from s1 and I0, where I0 is the initial image when the agent is reset, and121

recurrently generate images Ît+1 from st+1, Ît (t = 0, 1, . . . , N ) by the S2P generator trained with122

the walker-walk-mixed dataset. After then, we apply offline RL on these generated image transition123

data.124

B.9 Environment Detail125

The DMControl’s environment details and the random and expert scores obtained by training the126

state-based SAC are shown in Table 7. The normalized score is computed by 100∗(return - random127

score)/(expert score - random score), which is proposed in ? ].128

ENVIRONMENT EXPERT SCORE RANDOM SCORE ACTION REPEAT MAXIMUM STEPS PER EPISODE
CHEETAH-RUN 900 12.6 4 250
WALKER-WALK 970 43.2 2 500

BALL IN CUP-CATCH 976 25.1 4 250
CARTPOLE-SWINGUP 979 61.8 8 125

REACHER-EASY 906 2.1 4 250
FINGER-SPIN 882 125.2 2 500
WALKER-RUN 790 25.2 2 500

Table 7: The environment details including the expert and random scores for computing normalized
scores.

8


	Image generation
	Architecture specification
	Training details
	Additional results of image synthesis

	Offline RL Experiments Details
	Algorithm
	Ablation studies
	Uncertainty types
	Rollout horizons
	Results on policy constraint-based methods

	Additional experiments on Dreamer and conventional image augmentation technique
	Visualization of the image distribution
	Model learning
	Representation learning
	Training Detail
	Zero-shot Task Adaptation Detail
	Environment Detail


