
A Appendix

A.1 Acetylacetone Dataset: Additional Experiments

We ran additional experiments with the acetylacetone dataset introduced in [3] to further investigate
the generalization capabilities of MACE [3]. Figure 4 shows the energy predictions of BOTNet [3],
NequIP [5], MACE, and (linear) ACE [33] for two trajectories on the acetylacetone’s potential energy
surface (PES). The left panel shows the energy profile for a rotation around an O-C-C-C dihedral
angle. Since the training set only contains dihedral angles below 30° (see lower panel), accurate
predictions for angles up to 180° require significant extrapolation capabilities. Also the energy barrier
of the rotation is with 1 eV well outside the energy range of the training set which is sampled at
300 K. It can be seen that all models solve this task surprisingly well.

In the right panel of Figure 4, we show energy predictions along a minimum energy path of an
intramolecular hydrogen transfer reaction. This task probes a model’s ability to describe a bond
breaking reaction, something it has not seen in the training data. It should be noted that this reaction
occurs in a region of the PES that is not too far from the training data as can be seen from the
histogram below. All models accurately reproduce the barrier’s shape with the MPNN models closely
matching the barrier height as well.

0

500

1000

1500

E
[m

e
V
]

DFT
BOTNet
NequIP
linACE
MACE

0.0

2.5

5.0

7.5

10.0

12.5

0 30 60 90 120 150 180

Dihedral Angle [°]

0

200

C
o
u
n
t

Training data

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45

Distance [Å]

0

5

C
o
u
n
t

Figure 4: Left: energy predictions for a dihedral slice of the DFT potential energy surface of
acetylacetone. Right: energy predictions for the proton transfer in acetylacetone. Error bars indicate
one standard deviation computed over three runs. The histograms show the distribution of the training
data along the relevant coordinate.

A.2 Description of the Datasets

A.2.1 rMD17 Dataset

The revised MD17 (rMD17) dataset contains five train test splits of 10 different small organic
molecules [11]. Each of the splits contains 1000 configurations for each molecule sampled randomly
from a long Ab initio molecular dynamics simulation carried out at 500 K computed with DFT. We
note that the older version of the dataset, called MD17, has been shown to contain noisy labels [11].

A.2.2 3BPA Dataset

The 3BPA dataset contains DFT train test splits of a flexible drug-like organic molecule sampled
from different temperature molecular dynamics trajectories [33]. The models is trained on 500
snapshots sampled at 300K and tested on three independent test sets for each temperature (300K,
600K, 1200K). The models can also be tested on the challenging task of computing the energy along
dihedral rotations of the molecule. This test directly probes the smoothness and accuracy of the part
of PES that determines which conformers are present in a simulation, and hence has a direct influence
on properties of interest such as binding free energies to protein targets.

15

A.2.3 Acetylacetone Dataset

The acetylacetone dataset contains trajectories of a small reactive molecule sampled at different
temperature. The task is to train on snapshot sampled at 300K and test on independent test sets
sampled at 300K and 600K. Moreover the extrapolation is measured both in temperature and along
two internal coordinates of the molecule, the hydrogen transfer path and a partially conjugated double
bond rotation, which has a very high barrier for rotation.

A.3 Implementation Details

A.3.1 Symmetrised One-particle Basis

For the implementation of the one-particle basis, we use e3nn [21] for the spherical harmonics and
for symmetrising the tensor product of (8). Consequently, we also use their internal normalization.

A.3.2 Generalized Clebsch-Gordan Coefficients

The generalised Clebsch-Gordan coefficients are defined as product of Clebsch-Gordan coefficients:

CLM
l1m1,..,lnmn

= CL2M2

l1m1,l2m2
CL3M3

L2M2,l3m3
...CLNMN

LN−1MN−1,lNmN
, (14)

where L ≡ (L2, .., LN), |l1 − l2| ≤ L2 ≤ l1 + l2 ∀ i ≥ 3|Li−1 − li| ≤ Li ≤ Li−1 + li, and
Mi ∈ {mi| − li ≤ mi ≤ li}.

A.3.3 Higher Order Features Via Loop Tensor Contractions

We implement the construction of the higher order features of Equation (10) and the message of
Equation (11) in a single efficient loop tensor contraction algorithm. Below, we drop the t superscript
for clarity. The input variables are defined in Section 4. We give here a brief reminder, along with
shape of the tensors to contract.

Algorithm 1 Efficient implementation of (10) and (11) through tensor contractions of A-features
Ai,klm of size [Natoms, Nchannels, (lmax+1)2], generalized Clebsch-Gordan coefficients CLM

η,l1m1,...,lν̃mν̃

of size [Ncoupling,ν̃]× [(lmax + 1)2]ν̃ , and weights WzikL,ην̃
of size [Nelements, Nchannels, Ncoupling,ν̃] for

a given correlation order ν̃. lmax is the highest symmetry order of the spherical expansion of the
A-features and L is the targeted symmetry order. Ncoupling is the number of couplings of l1 . . . lν̃ that
yield L. In practice, we vectorize over M ∈ {−L,−L+ 1, ..., L− 1, L}.

1: function LOOPEDTENSORCONTRACTION(Ai,klm, {WzikL,ην̃}ν̃≤ν , {CLM
η,l1m1,...,lν̃mν̃

}ν̃≤ν , ν)
2: c̃zikLM

l1m1,...,lνmν
←
∑
η
CLM
η,l1m1,...,lνmν

WzikL,ην
▷ Contract coupling coefficients and weights

3: azikLM
i,l1m1,...,lν−1mν−1

←
∑

lνmν

c̃zikLM
l1m1,...,lνmν

Ai,klνmν

4: for ν̃ ← ν − 1 to 1 do ▷ Iterate over correlation orders
5: c̃zikLM

l1m1,...,lν̃mν̃
←
∑
η
CLM
η,l1m1,...,lν̃mν̃

WzikL,ην̃

6: ãzikLM
i,l1m1,...,lν̃mν̃

← azikLM
i,l1m1,...,lν̃mν̃

+ c̃zikLM
l1m1,...,lν̃mν̃

7: azikLM
i,l1m1,...,lν̃−1mν̃−1

←
∑

lν̃mν̃

ãzikLM
i,l1m1,...,lν̃mν̃

Ai,klν̃mν̃

8: end for
9: return azikLM

i ▷ Return message mi,kLM

10: end function

The algorithm starts at correlation ν. The first step of the algorithm is to contract the generalized
Clebsch-Gordan coefficients with the weights of the product basis. This contractions trades the
computational cost of several products for that of a sum which is computationally very advantageous.
Then, the last dimension of c̃ν is contracted with the Ai-features’ last dimension resulting in the
a-tensor with correlation order ν − 1. The algorithm then loops over the correlation order ν̃ in
descending order until ν̃ = 1. In each step, we first create the tensor c̃ by contracting the Clebsch-
Gordan coefficients of correlation order ν̃ with the weights. Then, the previous a-tensor is added to

16

the c̃-tensor. This operation ensures that at the end of the loop, the product basis of every correlation
order are created. In fact, the a contains the products for ν to ν̃. The updated tensor is then contracted
again with the atomic basis increasing the correlation order by 1 for all the products presented in a.
The last a tensor is exactly the message of (11).

A.4 Tensor shapes

A glossary of the shapes of the various tensors in the MACE architecture.

Tensor Shapes Equation

h
(t)
i,kl2m2

[N_atoms,N_channels, (lmax
2 + 1)2] (8)

R
(t)
kl1l2l3

(rji) [N_edges,N_channels,N_basis] (8)

Cl3m3

l1m1,l2m2
[2× l3 + 1, 2× l1 + 1, 2× l2 + 1] (8)

A
(t)
i,kl3m3

[N_atoms,N_channels, (lmax
3 + 1)2] (8)

CLM
ην ,lm [(2× L+ 1), [(lmax + 1)2]ν ,N_path] (10)

B
(t)
i,ηνkLM [N_atoms,N_channels,N_path, (2× L+ 1)] (10)

WzikL,ην
[N_channels,N_elements,N_path] (10)

m
(t)
i,kLM [N_atoms,N_channels, (L+ 1)2] (11)

A.5 Training Details

We used three codes for the paper. All MACE experiments were run with the mace code. All BOTNet
experiments were run within the mace code. For NequIP experiments, we detail hereafter what code
was used for what experiment. We train with float64 precision for 3BPA and AcAc and float32
precision for rMD17.

A.5.1 MACE

Models were trained on an NVIDIA A100 GPU in single GPU training. Typical training time for
MACE models is between 2 to 6 hours depending on the dataset. The revised MD17 models were
trained with a total budget of 1,000 configurations, split into 950 for training and 50 for validation.
The 3BPA models were trained on 500 structures, split into 450 for training and 50 for validation.
The AcAc models were trained on 500 structures, split into 450 for training and 50 for validation.
The data set was reshuffled after each epoch. We use two layers and 256 uncoupled feature channels
and lmax = 3. For all models, radial features are generated using 8 Bessel basis functions and a
polynomial envelope for the cutoff with p = 5 [29]. The radial features are fed to an MLP of size [64,
64, 64, 1024], using SiLU nonlinearities on the outputs of the hidden layers. The readout function of
the first layer is implemented as a simple linear transformation. The readout function of the second
layer is a single-layer MLP with 16 hidden dimensions. We used a 5 Å cutoff for all molecules. We
use the following loss function:

L =
λE

B

B∑
b

(
Êb − Eb

)2
+

λF

3BN

B·N∑
i=1

3∑
α=1

(
− ∂Ê

∂ri,α
− Fi,α

)2

, (15)

where B denotes the number of batches, N the number of atoms in the batch, Eb the ground-truth
energy, Êb the predicted energy, Fi,α the force component of atom i in the direction α ∈ {x̂, ŷ, ẑ}.
λE and λF are weights set to 1 and 1, 000, respectively.

Models were trained with AMSGrad variant of Adam, with default parameters of β1 = 0.9, β2 =
0.999, and ϵ = 10−8. We used a learning rate of 0.01 and a batch size of 5. The learning rate was
reduced using an on-plateau scheduler based on the validation loss with a patience of 50 and a decay
factor of 0.8. We use an exponential moving average with weight 0.99 to evaluate on the validation
set as well as for the final model, an exponential weight decay of 5e−7 on the weights of equation 10
and 11, and a per-atom shift via the average per-atom energy over all the training set and a per-atom
scale as the root mean-square of the components of the forces over the training set.

17

A.5.2 NequIP

We use two implementations of NequIP for the results in the paper. We trained models on NVIDIA
A100 GPU in single GPU training. Typical training time for NequIP models is between 6 hours
to 2 days depending on the dataset. The results for 50 configurations rMD17 molecule were done
using nequip code. The models with increasing number of layers was trained in the mace code. The
timings for NequIP were also done in the mace code.

Original nequip code base [5] The NequIP model was trained on 50 configurations of rMD17
used the same model specifications as for rMD17 in [5] with the same training procedure. λE and
λF were set to 1 and 1, 000, respectively.

Reimplementation of NequIP in the mace code base For the increasing layer experiment, the
NequIP model was trained on 450 configurations and 50 configs were used for validation. We use
5 layers with 64 channels for even and odd parity, and L = 3 messages. We use a cutoff radius of
4Å. Radial features are generated using 8 Bessel basis functions and a polynomial envelope for the
cutoff with p = 6. We use λE and λF weights set to 1 and 1, 000, respectively. Models were trained
with AMSGrad variant of Adam, with default parameters of β1 = 0.9, β2 = 0.999, and ϵ = 10−8. We
used a learning rate of 0.01 and a batch size of 5. The learning rate was reduced using an on-plateau
scheduler based on the validation loss with a patience of 50 and a decay factor of 0.8. We use an
exponential moving average with weight 0.99 to evaluate on the validation set as well as for the final
model.

For the 3BPA timings model, we use the same model specification as in [36] with the important
difference of using a polynomial envelope for the cutoff with p = 6 instead of p = 2. .

18

	Appendix
	Acetylacetone Dataset: Additional Experiments
	Description of the Datasets
	rMD17 Dataset
	3BPA Dataset
	Acetylacetone Dataset

	Implementation Details
	Symmetrised One-particle Basis
	Generalized Clebsch-Gordan Coefficients
	Higher Order Features Via Loop Tensor Contractions

	Tensor shapes
	Training Details
	MACE
	NequIP

