
A Appendix

B Appendix: Proofs

Proof B.1 Proof of Theorem 2.1:

Sufficiency:

When ϵ ≥ ϵ0, the sufficiency is trivial as δ = δ0.

When ϵ < ϵ0, given that A is (ϵ0, δ0)-DP, by the definition, for any pair of datasets S and S′ that
differ in the record of a single individual and any event E,

P [A(S) ∈ E] ≤ eϵ0P [A (S′) ∈ E] + δ0.

When P [A (S′) ∈ E] ≤ 1−δ0
1+eϵ0 := c0,

P [A(S) ∈ E] ≤ eϵ0P [A (S′) ∈ E] + δ0

≤ (eϵ0 + eϵ − eϵ)P [A (S′) ∈ E] + δ0 + δ − δ

≤ eϵ0P [A (S′) ∈ E] + δ + (eϵ0 − eϵ)c0 + δ0 − δ

≤ eϵP [A (S′) ∈ E] + δ + (eϵ0 − eϵ)c0 −
(1− δ0)(e

ϵ0 − eϵ)

1 + eϵ0

≤ eϵP [A (S′) ∈ E] + δ.

When c0 ≤ P [A (S′) ∈ E] ≤ 1,

P [A(S) ∈ E] = 1− P [A(S) ∈ Ec]

≤ 1− e−ϵ0(P [A (S′) ∈ Ec]− δ0)

= 1− e−ϵ0(1− P [A (S′) ∈ E]− δ0)

= 1− e−ϵ0 + e−ϵ0P [A (S′) ∈ E] + e−ϵ0δ0

= 1− e−ϵ0 + e−ϵ0δ0 + δ − δ + (e−ϵ0 + eϵ − eϵ)P [A (S′) ∈ E]

= eϵP [A (S′) ∈ E] + δ + 1− e−ϵ0 + e−ϵ0δ0 − δ + (e−ϵ0 − eϵ)P [A (S′) ∈ E]

≤ eϵP [A (S′) ∈ E] + δ + 1− e−ϵ0 + e−ϵ0δ0 − δ + (e−ϵ0 − eϵ)c0

= eϵP [A (S′) ∈ E] + δ + (1− δ0)(
e−ϵ0 − eϵ

1 + eϵ0
− e−ϵ0) + 1− δ

≤ eϵP [A (S′) ∈ E] + δ + (1− δ0)(
e−ϵ0 − eϵ

1 + eϵ0
− e−ϵ0 + 1 +

eϵ − eϵ0

1 + eϵ0
)

= eϵP [A (S′) ∈ E] + δ.

Necessity:

We prove the necessity by giving a specific (ϵ0, δ0)-DP algorithm A such that δA(ϵ) is exactly
δ0 +

(1−δ0)(e
ϵ0−eϵ)+

1+eϵ0 .

Define Ωe = {1, 2, 3, 4} and ΩS = {0, 1}. Let ϵ ≥ 0, 0 ≤ δ0 ≤ 1 and denote eϵ0

1+eϵ0 as α0. Let A be
a randomized algorithm that take a single point from ΩS and generate output as follows:
P (A(S) = 1 | S = 0) = δ0,

P (A(S) = 2 | S = 0) = 0,

P (A(S) = 3 | S = 0) = (1− δ0)α0,

P (A(S) = 4 | S = 0) = (1− δ0)(1− α0),

P (A(S) = 1 | S = 1) = 0,

P (A(S) = 2 | S = 1) = δ0,

P (A(S) = 3 | S = 1) = (1− δ0)(1− α0),

P (A(S) = 4 | S = 1) = (1− δ0)α0.

By definition, δ(ϵ) is the smallest δ such that P (A(S) ⊂ E | S = s) ≤ eϵP (A(S) ⊂ E | S =
1− s) + δ holds true for all E ⊂ Ωe and s ∈ ΩS . By checking all 64 combinations, we can conclude
that δA(ϵ) = δ0 +

(1−δ0)(e
ϵ0−eϵ)+

1+eϵ0 .

14

Proof B.2 Proof of Lemma 3:

It is well known that [2], for t < 0:

1

−t+
√
t2 + 4

<

√
π

2
exp

(
t2

2

)
Φ(t) <

1

−t+
√

t2 + 8
π

.

Let a =
(
− ε

µ + µ
2

)
and b =

(
− ε

µ −
µ
2

)
,

lim
ϵ→∞

δµ(ϵ) = lim
ϵ→∞

Φ (a)− eϵΦ (b)

≤
√

2

π
lim
ϵ→∞

exp
(

−a2

2

)
−a+

√
a2 + 8

π

−
exp

(
−b2

2 + ϵ
)

−b+
√
b2 + 4

.

=

√
2

π
lim
ϵ→∞

exp

(
−a2

2

) 1

−a+
√
a2 + 8

π

− 1

−b+
√
b2 + 4

 .

≤
√

2

π
lim
ϵ→∞

exp

(
−a2

2

)(
−1
a

)
.

= 0.

lim
ϵ→∞

δµ(ϵ) = lim
ϵ→∞

Φ (a)− eϵΦ (b)

≥
√

2

π
lim
ϵ→∞

exp
(

−a2

2

)
−a+

√
a2 + 4

−
exp

(
−b2

2 + ϵ
)

−b+
√

b2 + 8
π

.

=

√
2

π
lim
ϵ→∞

exp

(
−a2

2

) 1

−a+
√
a2 + 4

− 1

−b+
√
b2 + 8

π

 .

≥
√

2

π
lim
ϵ→∞

exp

(
−a2

2

)(
−1
b

)
.

= 0.

Therefore,
lim
ϵ→∞

δµ(ϵ) = 0. (3)

It is easy to see that,

lim
ϵ→∞

δ̃µ(ϵ) = lim
ϵ→∞

µe−a2/2

√
2πa2

= 0 (4)

By L’Hospital’s rule:

lim
ϵ→∞

δ̃µ(ϵ)

δµ(ϵ)
= lim

ϵ→∞

δ̃′µ(ϵ)

δ′µ(ϵ)

= lim
ϵ→∞

−
e−

a2

2

(
a2 + 2

)
√
2πa3

/
eϵΦ(b)

= lim
ϵ→∞

e−
b2

2 Φ(b)√
2πb

= lim
b→−∞

e−
b2

2 Φ(b)√
2πb

= 1.

15

Proof B.3 Proof of Theorem 3.2:

Sufficiency:

If A is µ-GDP. Then lim
ϵ→+∞

GA(ϵ) ≤ lim
ϵ→+∞

Gδµ(ϵ) = µ.

Necessity:

If lim
ϵ→+∞

GA(ϵ) = µ < +∞, there must be a ϵt > 0 such that A is (ϵt, µ0 + 1)-tail GDP.

Notice that lim
µ→∞

δµ(ϵt) = 1, we can pick µ1 > µ0 large enough such that δµ1(ϵt) > δA(0).

This is possible because by Theorem 2.1, δA(0) < 1. Then for ϵ ∈ [0, ϵt), δA(ϵ) ≤ δA(0) ≤
δµ1

(ϵt) ≤ δµ1
(ϵ). A is both (ϵt, µ)-head and tail GDP for µ = µ0 + µ1 + 1. A is GDP as desired.

Proof B.4 Proof of Theorem 3.3:

Let lim
ϵ→+∞

Gf (ϵ) = µt.

First we show that lim
ϵ→∞

ϵ2

−2 log δA(ϵ) ≤ µ2
t :

By the definition the limit, for any µ0 > µt, for sufficient large ϵ, Gf (ϵ) < µ0 and further δA(ϵ) ≤
δµ0

(ϵ). Hence, lim
ϵ→∞

δA(ϵ)
δµ0

(ϵ) ≤ 1. By Lemma 3, lim
ϵ→∞

δA(ϵ)

δ̃µ0
(ϵ)
≤ 1.

Then lim
ϵ→∞

ϵ2

−2 log δA(ϵ) ≤ lim
ϵ→∞

ϵ2

−2 log δ̃µ0
(ϵ)

= µ2
0.

lim
ϵ→∞

ϵ2

−2 log δA(ϵ) ≤ µt as desired as we take µ0 → µt.

Next we show that lim
ϵ→∞

ϵ2

−2 log δA(ϵ) ≥ µ2
t :

If lim
ϵ→∞

ϵ2

−2 log δA(ϵ) = µ2
0 < µ2

t , then by Lemma 3,

lim
ϵ→∞

ϵ2

−2 log δA(ϵ)
− ϵ2

−2 log δµt(ϵ)
= lim

ϵ→∞

ϵ2

−2 log δA(ϵ)
− lim

ϵ→∞

ϵ2

−2 log δ̃µt
(ϵ)

< µ2
0 − µ2

t

Then for a sufficiently large ϵ0,

ϵ20
−2 log δA(ϵ0)

− ϵ20
−2 log δµ0

(ϵ0)
< 0.

Since log is an increasing function, it follows that δA(ϵ0) < δµ0
(ϵ0). Then lim

ϵ→+∞
Gf (ϵ) ≤ µ0 < µt,

which is a contradiction.

Proof B.5 Proof of Theorem 4.2:

Let Gµ(ϵ) = F (ϵ, δµ(ϵ)) and F (x, y) = µGDP(x, y).

By definition of µGDP , Gµ(ϵ) = µ.

On one hand,

∂Gµ(ϵ)

∂ϵ
=

∂µ

∂ϵ
= 0,

∂Gµ(ϵ)

∂µ
=

∂µ

∂µ
= 1.

On the other hand, by chain rule,

∂Gµ(ϵ)

∂ϵ
=

∂F

∂x
+

∂F

∂y

∂δµ(ϵ)

∂ϵ
,

∂Gµ(ϵ)

∂µ
=

∂F

∂y

∂δµ(ϵ)

∂µ
.

16

Therefore,

∂F

∂y
= (

∂δµ(ϵ)

∂µ
)−1,

∂F

∂x
= −(∂δµ(ϵ)

∂µ
)−1 ∂δµ(ϵ)

∂ϵ
.

Using the close forms, ∂δµ(ϵ)
∂ϵ and ∂δµ(ϵ)

∂µ can be directly computed:
∂δµ(ϵ)

∂ϵ
= −eϵΦ(−µ2 + 2ϵ

2µ
),

∂δµ(ϵ)

∂µ
=

e
− (µ2−2ϵ)

2

8µ2

√
2π

.

Hence,

∂F

∂x
=
√
2πe

(µ2+2ϵ)
2

8µ2 Φ(−µ2 + 2ϵ

2µ
) ≤
√
2πe

µ2

8 Φ(−µ

2
) ≤
√
2π

2
,

∂F

∂y
=
√
2πe

(µ2−2ϵ)
2

8µ2 > 0.

Notice that ∂F
∂x =

√
2πe

(µ2+2ϵ)
2

8µ2 Φ(−µ2+2ϵ
2µ) > 0, combined with the fact that ∂F

∂x ≤
√
2π
2 , we can

conclude that 0 ≤ ∂µGDP (ϵ,δ)

∂ϵ ≤
√
2π
2 . By ∂F

∂y > 0, we can see GDPT is order preserving.

Proof B.6 Proof of Theorem 4.3:

We now consider the gap between maxi∈{0,··· ,n}{G−
A(xi)} and maxi∈{0,··· ,n+1}{G+

A(xi)} bound
the length of [µ−, µ+] in two cases.

Case 1: If maxi∈{0,··· ,n+1}{G+
A(xi)} = G+

A(x0), then maxi∈{0,··· ,n+1}{G+
A(xi)} = G+

A(x0) =

µGDP(D, δA(0)) ≤ µGDP(0, δA(0)) +
√
2πD
2 . Therefore,

max
ϵ∈[0,ϵh]

G(ϵ) ≤ G+
A(x0) ≤ {G−

A(x0)}+
√
2πD

2
.

Case 2: If maxi∈{0,··· ,n+1}{G+
A(xi)} ≠ G+

A(x0), then by the order preserving property,
the optimal µ lies in [µ−, µ+], where µ− = max(µh,maxi∈{0,··· ,n}{G−

A(xi)}) and µ+ =

max(µh,maxi∈{1,··· ,n+1}{G+
A(xi)}). Notice that

max
i∈{0,··· ,n}

{G−
A(xi)} = max

i∈{0,··· ,n}
{µGDP(xi, δA(xi+1))} = max

i∈{1,··· ,n+1}
{µGDP(xi−1, δA(xi))}

≥ max
i∈{1,··· ,n+1}

{µGDP(xi+1, δA(xi))−
√
2πD}

≥ max
i∈{1,··· ,n+1}

{G+
A(xi)} −

√
2πD.

In both cases the gap is no greater than
√
2πD as desired.

Proof B.7 Proof of Theorem 4.4:

By the definition of C, C ◦ A is bounded in [y−, y+]. Therefore the global sensitivity of C ◦ A is no
greater than y+− y−. ThenR◦C ◦A is a special case of the Laplace mechanism. By [3],R◦C ◦A
is ϵh-DP. Then δR◦C◦A(ϵ) = 0 < δµ(ϵ) for any ϵ ≥ ϵh.

In addition, because of the post-processing property, δR◦C◦A(ϵ) ≤ δA(ϵ) < δµ(ϵ) for any ϵ < ϵh.

Therefore,R ◦ C ◦ A is µ-GDP.

C Appendix: Refining the privacy profile

Given a trade-off function σ = f(ϵ, δ) and a fixed parameter σ. From definition of the trade-off
function it is instant that the for any (ϵ, δ)∈ Ω = {(ϵ, δ) | σ = f(ϵ, δ)}, (ϵ, δ)-DP is guaranteed.

17

Then, (ϵ, δ)-DP is also guaranteed if there is a (ϵ0, δ0) ∈ Ω such that (ϵ0, δ0)-DP implies (ϵ, δ)-DP.
Therefore,

δA(ϵ) = min

(
{δ | σ = f(ϵ0, δ0) and δ ≥ δ0 +

(1− δ0)(e
ϵ0 − eϵ)+

1 + eϵ0
}
)
.

Notice that by theorem 2.1, (ϵ0, δ0)-DP implies (ϵ, δ) with δ < δ0 only if ϵ < ϵ0, we rewrite the
δA(ϵ) as:

δA(ϵ) = inf
ϵ0∈[ϵ,∞)

g(ϵ, ϵ0),

where g(ϵ, ϵ0) := (1− δ̂A(ϵ0))
eϵ0−eϵ

eϵ0+1 + δ̂A(ϵ0) and δ̂A is the naive privacy profile defined implicitly
by σ = f(ϵ0, δ0). For continuously differentiable f , the minimum value of the right-hand side can be
found be take the derivative:

∂g(ϵ, ϵ0)

∂ϵ0
=

1 + eϵ

(1 + eϵ0)2

[
δ̂A

′
(ϵ0) + eϵ0(1− δ̂A(ϵ0) + δ̂A

′
(ϵ0))

]
.

We remark that the sign of ∂g(ϵ,ϵ0)
∂ϵ0

does not depend on ϵ when ϵ > ϵ0. For both of our example 2

and 3, we both find a particular value ϵi such that Sign(∂g(ϵ,ϵ0)∂ϵ0
) = −Sign(ϵ− ϵi). This means for

ϵ ≥ ϵi, δA(ϵ) = δ̂A(ϵ) and otherwise δA(ϵ) equals to the δ value derived from (ϵi, δ̂A(ϵ
i)).

There is an interesting byproduct or the privacy profile refinement. Theoretically, the privacy profile
refinement can also be used to improve an algorithm’s utility. For example, the projected noisy SGD
algorithm in [17] is (ϵ, δ)-DP and the trade-off function is σ = −C log(δ0)/ϵ0. To achieve (0.2, e−2)-
DP, it appears that σ needs to be chosen as −C log(e−2)/0.2 = 10C. (ϵ, δ)-DP implies (0.2, e−2)-
DP when δ + (1− δ)(eϵ − e0.2)+/(1 + eϵ) = e−2. Numerical methods suggest that, by choosing
ϵ ≈ 0.334 and δ ≈ 0.067, (ϵ, δ)-DP implies (0.2, e−2)-DP but σ = −C log(δ)/ϵ ≈ 8.086C < 10C.
Therefore, the desired level of DP can be achieved with a lower noise parameter. However, this type
of refinement majorly affects privacy profile around the origin and therefore minor in practice.

D Behind efficient head measurement algorithm

First we formalize the binary search algorithm to find µGDP :

Algorithm 2: Binary search

Input: ϵ, δ, b. (The (ϵ, δ)-pair, searching range, error margin)
µ− ← 0
µ+ ← µmax
repeat

µ = µ++µ−

2
if δµ(ϵ) > δ then

µ+ ← µ
else

µ− ← µ
end if

until µ+ − µ− < b
Output: µ−, µ+ (lower and upper bound of µ).

It is possible to drop the need for the searching range µmax for this algorithm (e.g., exponentially
search for an upper bound first or conduct a binary search on arctanµ instead). We keep this input
for clarity and simplicity. µmax can be set to a large constant for convenience, for example, 10. If the
outputted µ+ equals the preset value (10), the privacy profile fails to imply 10-GDP. In practice, GDP
with µ ≥ 6 already provides almost no privacy protection [13].

With the formal definition of binary search, an exhaustive iteration method to bound the staircase
functions outlined in Theorem 4.3 can be formally written as follows:

18

Algorithm 3: Finding µ with privacy profiles (naive).

Input: δA, ϵh, c. (Privacy profile, searching range ϵh, reciprocal of error margin)
n←

⌈√
8cπϵh

⌉
+ 1

d← ϵh
n−1

µ− ← 0
µ+ ← 0
for i = 0 to n+ 1 do

x− ← id
x+ ← (i+ 1)d
µ+ ← max(µ+, µ

+
GDP

(x−, δA(x
+), 1

2c))

µ− ← max(µ−, µ
−
GDP

(x+, δA(x
−), 1

2c))
i← i+ 1

end for
Output: µ+, µ−.

To transform this naive algorithm into the optimized one. The first key observation is that the
reassignment of µ+ and µ− can be optimized.

We take µ+ ← max(µ+, µ
+
GDP

(x−, δA(x
+), 1

2c)) for example, same optimization can be ap-
plied to µ− ← max(µ−, µ

−
GDP

(x+, δA(x
−, 1

2c))) as well. The naive operation, µ+ ←
max(µ+, µ

+
GDP

(x−, δA(x
+), 1

2c)) can be optimized into “If δµ+(x−) < δA(x
+), then µ+ ←

µ+
GDP

(x−, δA(x
+), 1

2c))” without lost of accuracy. To see this, we list all three possibilities as follows:

• Case 1: µ+ < µGDP(x
−, δA(x

+)) ≤ µ+
GDP

(x−, δA(x
+), 1

2c)).

• Case 2: µGDP(x
−, δA(x

+)) ≤ µ+ ≤ µ+
GDP

(x−, δA(x
+), 1

2c)).

• Case 3: µGDP(x
−, δA(x

+)) ≤ µ+
GDP

(x−, δA(x
+), 1

2c)) < µ+.

In case 1, both of the naive operation and the optimized operation will update µ+ to
µ+

GDP
(x−, δA(x

+), 1
2c)).

In case 2, the optimized operation will do nothing, because the test δµ+(x−) < δA(x
+) will fail. The

naive operation will update µ+ due to the error of binary search, which should be avoided.

In case 3, the optimized operation will do nothing, because the test δµ+(x−) < δA(x
+) will fail. The

naive operation will also do nothing because the max operator will choose µ+.

To sum up, the optimized operation always give a more accurate update.

The second insight is that we want to avoid case 1 because only in case 1 a binary search is
needed. Notice that case 1 happens only if δµ+(x−) < δA(x

+), which is equivalent to µ+ <
µGDP(x

−, δA(x
+)). In the k+1 round of loop, the condition µ+ < µGDP(x

−, δA(x
+)) holds true only

if for all j ∈ {0, · · · , k}, µGDP(x
−
j , δA(x

+
j)) < µGDP(x

−, δA(x
+)), where x−

j and x+
j are the values

of x− and x+ in the round j. This inspire us to shuffle xi before iteration because after shuffling, the
probability of “µGDP(x

−
j , δA(x

+
j)) < µGDP(x

−, δA(x
+)) for all j ∈ {0, · · · , k}” will be 1

k+1 . The
expected occurrence of case 1 will be

∑n+1
k=0

1
k+1 = O(log(n)).

The time complexity of shuffling S is O(n) = O(ϵhc). Each binary search has a time complexity of
O(log(c)) and the expected number of binary searches is O(log(ϵhc)). The overall time complexity
of the optimized algorithm is therefore O(ϵhc+ log(c) log(cϵh))=O(ϵhc).

19

E Appendix: Plots

E.1 The Laplace mechanism under GDP

Figure 4: The plot of GDPT of ϵ-DP privacy profiles and the Laplace mechanisms with the same ϵ-DP
guarantee. From the figure we can see the privacy protection provided by the Laplace mechanisms is
slightly better than ϵ-DP.

20

E.2 The effect of subsampling

Figure 5: (Left) GDPT of the Laplace mechanism for various of γ. (Right) GDPT of the SGD for
various of γ.

Figure 6: (Left) GDPT of the ICEA for various of γ. (Right) GDPT of the δµ for various of γ. The
Poisson subsampling procedure can significantly decrease the value of µ around ϵ = 0 but has little
effect on the GDPT’s tail.

21

	Appendix
	Appendix: Proofs
	Appendix: Refining the privacy profile
	Behind efficient head measurement algorithm
	Appendix: Plots
	The Laplace mechanism under GDP
	The effect of subsampling

