
Appendix

Table of Contents
A Preliminaries 20

A.1 Notation . 20
A.2 Assumptions . 21
A.3 Definitions . 22

B Proofs and additional theoretical results 25
B.1 Useful known lemmas . 25
B.2 Linear optimal (Sec. 3.1) . 25
B.3 Augmentations (Sec. 3.2) . 33
B.4 ISSL Log Loss (Sec. 4) . 33
B.5 Non-linear optimality (Sec. 5) . 34

C Practical ISSL objectives 37
C.1 Deriving contrastive ISSL (Sec. 4.1) . 37
C.2 Deriving distillation ISSL (Sec. 4.2) . 38
C.3 Minimal PyTorch implementation . 39

D Relation to previous work 42
D.1 Related work . 42
D.2 Taxonomy . 44
D.3 Additional insights in relations of previous work 45

E Limitations 46

F Reproducibility 47
F.1 TinyImageNet experiments . 47
F.2 ImageNet experiments . 48

G Additional experimental results 50
G.1 Validating our theory in the idealized setting 50
G.2 Validating our theory in a more practical setting 51
G.3 Monitoring and understanding DISSL’s training dynamics 52
G.4 Realistic . 54

19

A Preliminaries

A.1 Notation
Probability. Random variables (r.v.s) are denoted with an upper-case letter X , their realizations
by the associated lower case x, and their sample space by calligraphic letters X . We will say that
X takes value in (t.v.i) X . We denote the probability density or mass function (which exists by
Assmp. 1) of X as pX , its evaluation at x as pX(x) or simply p(x) if unambiguous, and the set of
all such densities as P(X) . When it is necessary to be explicit, we will denote “X is distributed as
pX” by X d⇠ pX . Expectations are written as EpX [X], independence of two random variables by
X??Y and conditional independence as X??Y |Z or by the Markov Chain X � Z � Y . We will
use Z

a.s.
= X to denote almost sure equality of two r.v.s Z,X .

Equivalence. x ⇠ x0 denotes that x and x0 are equivalent with respect to (w.r.t.) an equivalence
relation X (the exact relation being implicit). The equivalence class of x under ⇠ consists of
all elements that are equivalent to x and is denoted [x]⇠ (or [x] if clear from the context), i.e.
[x]⇠ :={x0 2 X |x0 ⇠ x}. The set of all equivalence classes, i.e., the quotient set, will be denoted
as X/⇠ := {[x] |x 2 X}. We will use ⇠A✓⇠ to denote that ⇠A is a refinement of (or finer than)
⇠, i.e., x ⇠A x+

=) x ⇠ x+. If additionally x ⇠A x+ 6(= x ⇠ x+ we say that ⇠A is a strict
refinement of ⇠. If ⇠A is finer than ⇠ we also say that ⇠ is coarser than ⇠A. Equivalence relations
are natural way of defining invariance, specifically, we say that a function f is (X ,⇠)-invariant (or
⇠-invariant for conciseness) iff it is constant in an equivalence class x ⇠ x+

=) f(x) = f(x+
).

If a function f : X ! S is (X ,⇠)-invariant we overload notation and use f : X/⇠ ! S to also
denote the function whose domain is now the quotient set and such that for any x 2 X we have
f([x]) = f(x).

Predictive tasks. Letters X , Z, and Y refer to the input, representation and target of a predictive
task, respectively. Representations are given by an encoder � : X ! Z . For binary classification, we
predict the target using predictors f : Z ! R in a specified family of probes f 2 F2 ✓ {f : Z ! R},
that map representations to a scalar logit. For k-class classification we instead predict the target
using predictors f : Z ! R

k in a specified family of probes f 2 Fk ✓ {f : Z ! R
k}, that map

representations to a vector logit. The predicted labels are then extracted by a function pred : R
� ! Y ,

which unifies binary and multi-class classification settings. Specifically, for multi-class we have
� > 2 and the predicted class is pred(logit) = argmaxi logit[i]. For binary tasks we have � = 1

and the predicted class is given by the sign of the logit pred(logit) = 1[logit � 0]. Throughout
the paper we work with tasks with a different number of labels |Y|, and predictors with different
codomain F =

S
k Fk. For conciseness we then use inff2F to mean the infimum over predictors

with the right codomain inff2Fk✓F . We will be considering the 0-1 loss 1[y 6= pred(logit)], which
we simply denote as `(y, logit) for conciseness. We use “probes”, “predictors”, and “classifiers” as
synonyms. Similarly we call F a “probing” or “predictive” family, or simply refer to it as “probes”
or “predictors”.

Population risk minimization. For any task pt(X,Y), we would like a predictor that achieves a risk
(expected 0-1 loss) Rt(�, f) := Ept(X,Y)[`(Y, f(�(X)))] close to the Bayes risk (label noise) R⇤

t :=

Ept(X)[1�maxy2Y pt(y|X)]. In particular, we evaluate the encoder on each task using the minimum
risk over predictors in F (with the right codomain) denoted as Rt(�,F) := inff2F Rt(�, f). Risk
minimizers are denoted as F(t,�) := argminf2F Rt(�, f) (they exist due to the boundedness of
0-1 loss and Assmp. 1). For conciseness and to emphasize that the most likely label is assumed
unique (Def. 1), we denote the most likely label by ct(x) = argmaxy2Yt

pt(y|x).
Datasets, empirical distributions, and empirical risk minimization. In practice we train the
predictors by optimizing the empirical risk on a given dataset. Let Dt := {(xi, yi)}i be a dataset
of n examples from supp(pt(X,Y)). Then we denote the empirical distribution induced by the
dataset as p̂Dt

(Y,X) :=
1

|Dt|
P

(xi,yi)2Dt
1[X = xi] ⇤ 1[Y = yi]. The empirical risk minimizers on

that dataset is denoted as bF(Dt,�) := argminf2F
1

|Dt|
P

(yi,xi)2D `(yi, f(�(xi)), and the risk they

achieve is denoted as bRDt(�,F). We will also denote the set of unlabeled examples seen during
training as XDt

:= {x | (x, y) 2 Dt} and the set of equivalence classes seen during training as
XDt

/⇠ := {[x] |x 2 XDt
}.

20

Augmentations. We refer to augmentations as a conditional distribution A(X̃|X) from inputs X
to augmented inputs or view X̃ that t.v.i. X̃ . The sample space of augmented inputs X̃ is typically
the same as the input space X , e.g., in standard image augmentations. But they can be different, for
example in CLIP [15] we view the text sentences as being augmented views of the images that t.v.i.
in a different sample space.

Information theory. We denote the Kullback–Leibler (KL) divergence between two distributions
pX and qX as DKL[pXkqX] = EpX [log

p(X)
q(X)], the cross entropy as H[pX , qX] := EpX [� log q(X)],

the entropy of X as H[X] := H[pX , pX], the mutual information of two r.v.s X and Y as I[Y ;X] :=

DKL[pY,XkpY pX], and the conditional entropy as H[Y |X] := EpY,X [� log p(Y |X)].

Other. We will use �!(X) := {�(x)|x 2 X} to denote the image of a set X by a function �
(here the set of all representations). We use dimR(V) to denote the dimensionality of a vector
space V over the reals. We use dim(v) to denote the dimensionality of a vector v. We denote by
YX := {f |f : X ! Y} the set of all functions from X ! Y . We denote one hot encodings as
e|Y|(i) which is a vector in {0, 1}|Y| filled with 0 at all but the ith position which is a 1. We use 1 to
denote the indicator function. For vector/tensor manipulation we use PyTorch’s notation (similar to
NumPy and Matlab). For example, if W 2 R

r⇥c then W [:, j] is the jth column of W which is in R
r.

Similarly, W [:2, :] denotes the R
2⇥c matrix from the first two rows of W , which can also be denoted

as cat(W [0, :],W [1, :]).

Finally, for any functions f and g we use g(f) to denote the composed function g � f . For example,
when X is a r.v. we use the standard f(X) := f � X . We do the same beyond r.v.s., e.g., let
f1 : Z ! R and fk : Z ! R

k then 2f1 denotes the function z 7! 2f(z) and cat(fk, f1) denotes
a function Z ! R

k+1 which concatenates outputs z 7! cat(fk(z), f1(z)). To make the function
explicit we will sometimes use (·), e.g., fk(·)[i] denotes the function z 7! fk(z)[i].

A.2 Assumptions
We make the following assumptions throughout the paper.

Assumption 1 (Convenience assumption: finite input space). The input space is finite |X | 1.

Assmp. 1 is a convenience assumption to improve clarity by avoiding unnecessary measure theory,
almost sure statements, and ensuring the existence of pmf and regular conditional probabilities. It
always holds in practice due to floating point precision on computers. Importantly Assmp. 1 implies
that the number of equivalence classes |X/⇠| is also finite.

Assmp. 1 can be weakened by only assuming finite |X/⇠|. In particular, generalization to countable X
is trivial, while generalizations to continuous X are also possible under minor technical assumptions
such as the measurability of the canonical projection for ⇠ and the existence of regular conditional
probabilities. For an example of general proofs (under unconstrained F) see Dubois et al. [12]. A
generalization to infinite |X/⇠| would be much more challenging and might require more nuanced
definitions of optimality.

Assumption 2 (Non degenerate ⇠). The number of equivalence classes is at least two |X/⇠| � 2.

Assmp. 2 is a trivial assumption that removes uninteresting counterexamples to our theory.

Assumption 3 (Representation space). We assume that the representation space is a subset of real
vectors of different dimensions Z ✓

S
i R

i that contains at least all binary vectors of dimensions up
to the number of equivalence classes, i.e.,

S|X/⇠|
d=1 {0, 1}d ✓ Z .

Assmp. 3 is a simplifying assumption that ensures that one-hot encodings exist, which is used to
give a simple and understandable existence proof of population optimal representation. There is
nothing special about 0 and 1 and those can be easily modified. Note that for non-linear predictors the
maximal dimensionality of vectors in Z can be much smaller as proved in Appx. B.5 Note that we do
not fix the dimensionality of Z , which allows us to hold non-trivial statements about the required
dimensionality of the domain of encoders.

21

For clarity, the main paper and most of the appendices are given for linear predictors. In Appx. B.5
we extend our theory to more general F , which allows for finite precision linear predictors and for
non-linear predictors. The following two assumptions are thus assumed throughout the paper and are
trivially satisfied for linear predictors.

Assumption 4 (At least linear predictors). All predictive families F have at least all linear functions
as defined in Def. 12, i.e., Flin ✓ F .

Assmp. 4 is a simplifying assumption, which allows us to directly reuse standard results from
shatterability and VC dimensions. One could weaken the assumption to contain linear functions
with finite weights (e.g. floating-point precision). Note that the upper bound on k is because we only
consider ⇠- invariant tasks.

As hinted in Appx. A.1, we must deal with predictors that have different codomains R
j to deal

with any k-ary classification task. Let us denote Fk ⇢ F the subset of k-ary predictors. Those
k-ary predictors will be related in practice, for example, we do not expect all k-ary predictors to be
highly expressive for some k� but only linear for some larger k+ > k�. To capture this relation
we will assume that F is closed under indexing and concatenations. In particular: (i) indexing
k+-ary predictors cannot outperform k�-ary predictors; (ii) concatenating k�-ary predictors cannot
outperform k+-ary predictors. In particular, this means that one-vs-all binary classifiers cannot
outperform k-ary classifiers in F .

Assumption 5 (F closed under vector manipulation). The predictive family F is closed under
concatenation, indexing, and summation, i.e.,

• for any fk, fk0 2 F we have cat(fk, fk0) 2 F ;
• for any k > 1, any i 2 0, . . . , k � 1, and any fk 2 Fk we have fk(·)[i] 2 F ;
• for any f2, f 0

2 2 F2 we have (f2 + f 0
2) 2 F .

Assmp. 5 is only used in Eq. (54) to ensure that binary shatterability implies k-ary shatterability.
Although not necessary, this has the advantage of working with a shatterability definition that is
similar to the one in statistical learning theory, as a result, we can rely on well-known results such as
VC dimensions for different predictive families. Assmp. 5 holds when F is the set of linear predictors,
as is standard in ISSL. For non-linear predictive families, Assmp. 5 might not always hold, in which
case the VC dimension and capacity would have to be replaced by their to k-ary extensions, which
have not been as extensively studied.

A.3 Definitions
In the main paper, we were relatively informal in our definitions, here we restate our main definitions
more formally.

A key notion is a maximal invariant introduced by Dubois et al. [12]. It is a simple extension of
maximal invariants from standard statistics and group theory [64, 65].

Definition 4 (Maximal invariant [12]). A measurable function M : X ! M is a maximal invariant
w.r.t. (X ,⇠) iff

8x, x0 2 X : x ⇠ x0 () M(x) = M(x0
). (10)

Note that M is not unique. For clarity, for the rest of the paper, we will refer to the maximal
invariants M as specific indexing of the equivalence class. In particular its codomain will be
M = {0, . . . , |X/ ⇠ |� 1}. For the rest of the paper, we will also call the random variable induced
by pushing the inputs through M , i.e., M(X), as the maximal invariant r.v..

The invariance structure that we want our tasks to have is based on the most likely label
argmaxy2Y pt(y|X).

Definition 5 (Invariant k-ary tasks). The (X ,⇠)-invariant k-ary tasks, denoted Tk, is the set of all
input-label distributions pt(X,Y) that satisfies the following

• it is a k-ary task: |Y| = {0, . . . , k � 1};

22

• its most likely label is unique and we denote it by ct(x), i.e.,
8pt 2 Tk, x 2 X : |ct(x)| := | argmax

y2Y
pt(y |x)| = 1; (11)

• its most likely label is invariant, i.e.,
8pt 2 Tk, x, x+ 2 X : x ⇠ x+

=) argmax
y2Y

pt(y|x) = argmax
y2Y

pt(y|x+
). (12)

Eq. (11) is not necessary but it makes the proofs slightly more succinct. Similarly to ct(x) we denote
the most likely label of a dataset as ĉDt

(x) := argmaxy2Yt
p̂Dt

(y|x).
In practice the downstream tasks of interest typically have various numbers of labels k, so we want to
consider any possible k. We consider tasks that have at most |X/⇠| labels. More classes would be
trivial and uninteresting due to the ⇠-invariance of the most likely label.

Definition 6 (Invariant tasks). The (X ,⇠)-invariant tasks, denoted T , is the set of all (X ,⇠)-
invariant k-ary tasks for k 2 {2, . . . , |X/⇠|}, i.e.,

T :=

|X/⇠|[

k=2

Tk. (13)

We will say that an encoder is population optimal if the Bayes risk can be realized by probes F .

Definition 7 (Population optimal encoder). We say that an encoder � is population optimal for T ,F ,
denoted as � 2 �pop , iff for all task the probes F realize the Bayes error, i.e.,

for all k 2 {2, . . . , |X/⇠|}, pt 2 Tk : Rt(�,Fk) = R
⇤
t . (14)

The “for all k and task pt 2 Tk ” statement in Eq. (14) can be succinctly written as “for all pt 2 T ”,
by taking the best risk over F instead of Fk. For conciseness, we do so for the main paper and for the
rest of the appendices.

Population optimal only ensures that there exists a good predictor, which will be essentially learned
if we had infinite downstream labeled data. In practice, we only have access to finite datasets Dt of
possibly small size n (e.g. few-shot learning). We would thus like encoders that also ensure that all
ERMs perform as well as possible for any task and any dataset size n. We measure this using the
following worst-case expected excess risk of ERMs.

Definition 8 (Excess risk of ERMs). The excess risk of ERMs for �,F , pt,Dt is the maximal
difference between the population risk of ERMs in F and the Bayes error, i.e.,

W(�,F , t,Dt) := sup

f̂2bF(Dt,�)

Rt(�, f̂)� R
⇤
t . (15)

For simplicity and conciseness, we will work with datasets of examples with their associated most
likely labels. This is always the case for i.i.d. datasets with deterministic labels as in the main
paper. We will denote by Dt

i.i.d.⇠ pnt (X, ct(X)) as n input-label r.v. that are given by first sampling
n i.i.d. unlabeled inputs Dx

t
i.i.d.⇠ pnt (X) and then labeling with the most likely label ct, i.e., Dt :=

{(Xi, ct(Xi))|Xi 2 Dx
t }.

Definition 9 (Worst-case expected excess risk of ERMs). The worst-case expected excess risk of
ERMs for n,�,F , T is the worst-case (over tasks) expected (over datasets of size n) excess risk of
ERMs, i.e.,

Wn(�,F , T) := sup

k2{2,...,|X/⇠|}
sup

pt2T k

EDt
i.i.d.⇠ pn

t (X,ct(X))[W(�,Fk, t,Dt)] . (16)

Note that the first two supremums in Eq. (16) can be succinctly written as supt2T as we do in the
main paper (Eq. (3) of main paper), in which case the ERMs bF(Dt,�) are implicitly taken from
predictors with the correct codomain.

We will say that an encoder is sample optimal if it is population optimal and minimizes the worst-case
excess risk of ERMs for any dataset size n. We will call the representations induced by sample
optimal encoders as idealized representations.

23

Definition 10 (Sample optimal encoders). An encoder �⇤ is sample optimal for T ,F , denoted
�⇤ 2 �⇤, iff it is population optimal2 and minimizes the worst-case expected excess risk of ERMs
for any n, i.e.,

8n � 1 : �⇤ 2 argmin
�2�pop

Wn(�,F , T). (17)

Under Assmp. 5 (which holds for linear F) we will show that encoders are population optimal if and
only if the equivalence classes can be shattered from their representations.

Definition 11 (Invariant shattering). Let Ck denote the set of (X ,⇠)-invariant functions in
{0, . . . , k � 1}X , dubbed invariant labelings. An encoder � is k-ary (X ,⇠)-shattered by F iff
any k-ary invariant labeling can be predicted by an f 2 F , i.e.,

8c 2 Ck, 9f 2 F s.t. 8x 2 X : pred(f(�(x))) = c(x). (18)

When k = 2 we drop “2-ary” and say that � is (X ,⇠)-shattered by F .

Note that, even in the binary case, Def. 11 differs from the classical notion of shattering in that
only invariant labelings need to be predictable. Generally, (classical) shatterabity by F thus implies
(X ,⇠)-shatterability by F but the converse is not true.

For the next few sections, we will only focus on linear predictors F .

Definition 12 (Linear predictors). The set of linear predictors F for T is the set of all linear functions
with the correct domain and codomain for predicting any T , i.e.,

Flin :=

[

d2{dim(z)|z2Z}

|X/⇠|[

k=1

�
f : z 7! WT z |W 2 R

d⇥k

. (19)

It is easy to show that Def. 12 satisfies (but is stronger than) Assumps. 4 and 5. In Appx. B.5 we
extend our proofs to any family of predictors F that only satisfies Assumps. 4 and 5. Note that we
will never use predictors with two-dimensional output (as binary tasks use a single logit), the union
over k could then drop the case k = 2.

Finally, the main loss that we will aim to approximate is what we call the ISSL log loss.

Definition 13 (ISSL log loss). Let S := {z 2 R
d| kzk = 1} denote the (d�1)-sphere. Let

W1 := {w : {0, . . . , |X/⇠|� 1} ! S} denote all weight functions mapping a label to a normalized
weight. Let M denote a maximal invariant for ⇠ with codomain M = {0, . . . , |X/⇠| � 1}. The
⇠-ISSL log loss for of an encoder � and unlabeled distribution pX is

LI(�; pX) := inf
w2W1

EpX

"
� log

exp
�
w(M(X))

>�(X)
�

P|X/⇠|�1
m0=0 exp(w(m0)>�(X))

#
, (20)

2Under reasonable assumptions, population optimality is actually implied by minimizing the worst-case
excess risk for any n (seen as n ! 1). The current definition helps clarity and conciseness of proofs.

24

B Proofs and additional theoretical results

B.1 Useful known lemmas
To begin, we collect some known results about invariances and predictions that we will use for our
theory.

Lemma 4 (Maximal invariants exist, [12], Lemma 7). There exists at least one maximal invariant
M .

Lemma 5 (Invariant functions and M , [12], Lemma 5). Let M be any maximal invariant w.r.t.
(X ,⇠). Then a measurable function f : X ! S is invariant with respect to (X ,⇠) if and only if
there exists a measurable function h : M ! S such that f(x) = (h �M)(x) for all x 2 X , in which
case f is measurable with respect to the �-algebra generated by M .

Lemma 6 (Maximal invariant, [12], Lemma 2). Let M : X ! M be a maximal invariant w.r.t.
(X ,⇠). Then M 0

: X ! M0 is also a maximal invariants w.r.t. (X ,⇠) if and only if there exists a
bijective function f : M ! M0 such that M 0

= f �M .

Note that Dubois et al. [12] only talks about the existence of a bijection between maximal invariants,
but their proof shows that it is an if and only if statement.

Lemma 7 (Hyperplane separation theorem, [14], Lemma 1). Two sets of points in R
d may be

separated by a hyperplane if and only if the intersection of their convex hulls is empty.

Note that although we cite Burges [14], the hyperplane separation theorem is much older and
appeared under many forms and generalizations (eg see [66–68]). It is typically attributed to
Hermann Minkowski at the end of the 19th century.

B.2 Linear optimal (Sec. 3.1)
In this section, we characterize optimal representations for linear predictors. Table 6 shows a
summary of our claims in this section. In particular, we see that only the last statement requires the
assumption of linear Flin (in addition to those from Appx. A.2). The other statements will be reused
to characterize representations for general F in Appx. B.5.

Table 6: Summary of main results from Appx. B.2

Ref. Summary Add. Assmp. Lemmas
Lemma 11 existence of pop. optimal � 2 �pop 1,3,4 4,5,6,10
Lemma 12 optimal excess risk 8pt, n,Dt 5,8,9,11
Corollary 13 exist. sample optimal �⇤ 2 �⇤ 12
Lemma 15 sample opt. () pop. opt. + inv. 2 7, 12, P. 2, C. 14
Lemma 16 pop. optimal () ⇠-shat. 5
Lemma 17 sample opt. () inv. + shat. + |X/⇠| 6,15,16
Theorem 1 sample opt. () M(X) + dim. + inv. Flin 17

First, let us show three trivial lemmas that come straight from definitions but will be useful for our
main results. A rewriting of the excess risk, a characterization of ERMs for population optimal
encoders, and proof of the existence of invariance Bayes pred.

Lemma 8 (Nicer excess risk). For any �,F , pt,Dt we have that the excess risk is

W(�,F , t,Dt) = sup

f̂2bF(Dt,�)

Ept(X)

max
y2Yt

pt(y|X)� pt(Y = pred(f̂(�(X)))|X)

�
(21)

Proof. This trivially comes from the definition of excess risk, population risk, Bayes error, 0-1 loss,
and the fact that Ept(Y)[1[Y 6= y]] = pt(Y = y).

25

Lemma 9 (Characterizing ERM). Let pt 2 T and � 2 �pop be population optimal for T ,F . Let
Dt 2 supp(pnt (X, ct(X))) be any dataset of size n � 1, which contains pairs of inputs and their most
likely label. Then a predictor is an ERM if and only if it predicts the most likely label for all examples
in the dataset. I.e., f̂ 2 bF(Dt,�) () 8x 2 XDt

we have argmaxy2Yt
pt(y|x) = pred(f̂(�(x)))

Proof. This trivially comes from the definition of 0-1 loss, the definition of ERMs, the definition
of population optimality, the finiteness of sample space (Assmp. 1), and the fact that the most label
empirical label is the most likely population label by definition.

Lemma 10 (Existence of invariant Bayes predictor). For any invariant task pt 2 T there exists
a Bayes predictor denoted as b⇤t that is invariant w.r.t. (X ,⇠) and whose predictions are one hot
encodings.

Proof. b⇤t (x) := e|Yt|(ct(x)), which exists by Assmp. 3, is a Bayes predictor by construction as
pred(b⇤t (x)) = ct(x) = argmaxy2Yt

pt(y|x). Furthermore, by Lemma 5, b⇤t is invariant as it is a
function of argmaxy2Yt

pt(y|X) which is invariant by definition , see Eq. (12).

Now let us show that population-optimal encoders exist.

Lemma 11 (Existence of pop. optimal �). There exists a population-optimal encoder for T ,F .

Proof. This can easily be seen by taking � to be a one-hot representation of the equivalence class and
f 2 F be the necessary aggregation function represented as a linear equation with binary weights.

Specifically, let �e(x) = ed(M(x)) be an encoder that maps any inputs x 2 X to a one hot encoding
of an index of the equivalence classes M : X ! {0, . . . , |X/⇠| � 1}. Such an encoder exists by
Assmp. 3 and Lemma 4. By Lemma 6 we know that �e is a maximal invariant w.r.t. (X ,⇠) as it is
a composition between a bijection (the one hot encoding) and a maximal invariant. By Lemma 10,
we have that for any pt 2 T there exists an invariant Bayes predictor. By Lemma 6 there must thus
exist a function ft : Z ! Y s.t. 8x 2 X we have ft(�e(x)) = b⇤t . As predictions by the Bayes
predictor b⇤t (by construction see Lemma 10) is also a one hot encoding, we have that ft is a function
between one hot encodings and can thus be represented by a linear function with binary weights, i.e.,
ft(�e(x)) = W>�e(x) where W 2{0, 1}|X/⇠|⇥|Yt|. As ft is linear it is by Assmp. 4 in F .

Putting all together we have that for any pt 2 T there exists an ft 2 F so that 8x 2 X we have
ft(�(x)) = b⇤t . In particular we have Rt(�e,F) = R

⇤
t , so �e is population-optimal as desired.

Now let us show that there exists an encoder that is essentially optimal for any task and dataset.

Lemma 12 (Optimal excess risk). Let �⇠
pop ⇢ �pop denote the set of population-optimal encoders

that are (X ,⇠)-invariant. Then for any invariant task and dataset, the excess risk of ERMs for any
�⇤ 2 �

⇠
pop is as small as possible, i.e.,

8�⇤ 2 �
⇠
pop, pt 2 T , n � 1, Dt 2 supp(pnt (X, ct(X))) : �⇤ 2 argmin

�2�pop

W(�,F , t,Dt). (22)

Furthermore, 8�⇤ 2 �
⇠
pop, pt 2 T , n � 1, Dt 2 supp(pnt (X, ct(X))) the excess risk of ERMs is

W(�⇤,F , t,Dt) =

X

[x] 62XDt/⇠

pt([x])
�
max

y
pt(y|[x])�min

y
pt(y|[x])

�
. (23)

Proof. We will first compute a lower bound on the worst-case expected excess risk and then show
that this lower bound can be achieved by the one-hot encoding of the maximal invariant �e (see proof
of Lemma 11). As a reminder we denote by XDt

/⇠ the equivalence classes seen during training and
by pt(Y |[x]) the distribution of labels for an equivalence class.

The key is to realize and show that for any invariant task, sample size, dataset, and population-optimal
encoder there always exists an ERM that predicts correctly an example if and only if an equivalent

26

example is in the training set. Specifically, 8pt 2 T , n � 1, Dt 2 supp(pnt (X, ct(X))), � 2 �pop

there exists f̂Dt,�
2 F such that 8x 2 X we have

pred(f̂Dt,�
(�(x))) = lDt,t(x) :=

⇢
argmaxy2Yt

pt(y|[x]) if [x] 2 XDt
/⇠

argminy2Yt
pt(y|[x]) otherwise.

(24)

To see that such f̂Dt,�
always exists, notice that lDt,t(x) is a deterministic labeling that by Lemma 5

is invariant to ⇠ because it is a function of the maximal invariant (Eq. (24) only depends on the input
x through [x] which is a maximal invariant). As a result we can construct an invariant task pt0 2 T for
which lDt,t(x) is the only Bayes predictor. For example, let the input distribution of that new task be
pt0(X) = Unif(X) and the label be deterministic and given by lDt,t, i.e., 8x, y 2 supp(pt0(X,Y))

we have y = lDt,t(x). As � is population-optimal by assumption, there must exist a predictor
f̂Dt,�

2 F such that 8x 2 X we have pred � f̂Dt,�
� �(x) = lDt,t(x). Where we also used the

finiteness of sample spaces, the fact that by construction we have supp(pt0(X)) = X , and the
definition of 0-1 loss.

By construction and Lemma 9, 8pt 2 T , n � 1Dt 2 supp(pnt (X, ct(X))), � 2 �pop we have
that f̂Dt,�

2 bF(Dt,�) is an ERM as it predicts the most likely label ct(x) for all examples that are
equivalent to those seen during training (first case in Eq. (24)) including those seen during training.

In particular this means that the excess risk of population-optimal encoders can be lower bounded by
the risk of this predictor for all pt 2 T , n � 1, Dt 2 supp(pnt (X, ct(X))),� 2 �pop we have

W(�,F , t,Dt) (25)

= sup

f̂2bF(Dt,�)

Ept(X)

max
y2Yt

pt(y|X)� pt(Y = pred(f̂(�(X)))|X)

�
Lemma 8 (26)

� Ept(X)

max

y
pt(y|X)� pt(Y = pred(f̂Dt,�

(�(X)))|X)

�
� 2 �pop (27)

=

X

[x]2XDt/⇠

pt([x])
�
max

y
p(y|[x])�max

y
pt(y|[x])) (28)

+

X

[x] 62XDt/⇠

pt([x])
�
max

y
pt(y|[x])�min

y
pt(y|[x])

�
Eq. (24) (29)

=

X

[x] 62XDt/⇠

pt([x])
�
max

y
pt(y|[x])�min

y
pt(y|[x])

�
, (30)

where Eq. (27) uses the fact that � 2 �pop and so f̂Dt,�
2 bF(Dt,�) as we have just proven. Eq. (29)

partitions the equivalence class X/⇠ into examples those that were in the dataset Dt and those that
are not, which correspond to both cases in the definition of f̂Dt,�

.

We will now show that any population-optimal and invariant encoder �⇤ 2 �
⇠
pop achieves this lower

bound. Note that such encoder exists, for example, the one-hot encodings of the maximal invariant
�e from the proof of Lemma 11. Specifically, for all pt 2 T , n � 1, Dt 2 supp(pnt (X, ct(X))) we
have:

W(�⇤,F , t,Dt) (31)

= sup

f̂2bF(Dt,�)

Ept(X)

max

y
pt(y|X)� pt(Y = pred(f̂(�⇤

(X)))|X)

�
Lemma 8

(32)

= sup

f̂2bF(Dt,�)

X

[x]2X/⇠

pt([x])
�
max

y
pt(y|[x])� pt(Y = pred(f̂(�⇤

([x])))|[x])
�

Inv.

(33)

= sup

f̂2bF(Dt,�)

⇣ X

[x]2XDt/⇠

pt([x])
�
max

y
pt(y|[x])� pt(Y = pred(f̂(�⇤

([x])))|[x])
�

(34)

27

+

X

[x] 62XDt/⇠

pt([x])
�
max

y
pt(y|[x])� pt(Y = pred(f̂(�⇤

([x])))|[x])
�⌘

(35)

= sup

f̂2bF(Dt,�)

X

[x] 62XDt/⇠

pt([x])
�
max

y
pt(y|[x])� pt(Y = pred(f̂(�⇤

([x])))|[x])
�

Lemma 9

(36)

X

[x] 62XDt/⇠

pt([x])
�
max

y
pt(y|[x])�min

y
pt(y|[x])

�
, (37)

where Eq. (33) uses the fact that both the most likely label and �⇤ are invariant. Eq. (36) uses the
fact that f̂ is an ERM and so it must predict the most likely label for example in the training set
(Lemma 9). Eq. (37) shows that the lower bound computed in Eq. (30) is also an upper bound and
so W(�⇤,F , t,Dt) =

P
[x] 62XDt/⇠

pt([x])
�
maxy pt(y|[x])�miny pt(y|[x])

�
which concludes the

proof.

As a direct consequence of Lemma 12 we have that sample-optimal encoders exist.

Corollary 13 (Existence of sample-optimal �). Let �⇤ 2 �
⇠
pop be any population-optimal encoder

for T ,F that is also (X ,⇠)-invariant. Then �⇤ is a sample-optimal encoder for T ,F . Furthermore,
such an encoder exists.

Proof. By Lemma 12 we know that any invariant and a population-optimal encoder minimizes the
excess risk for pt 2 T , n � 1,Dt 2 supp(pnt (X, ct(X))). Such an encoder is sample optimal as
it is population-optimal and trivially minimizes the worst-case expected excess risk for all n � 1

(minimal for all terms implies minimal in expectation and supremum).

Now let us compute the worst-case expected excess risk of sample-optimal encoders.

Proposition 2 (Optimal worst-case expected excess risk). Let �⇤ be any sample-optimal encoder for
the (X ,⇠)-invariant tasks and predictors F . For any n � 1, the worst-case expected excess risk is

Wn(�
⇤,F , T) =

✓
1� 1

|X/⇠|

◆n

. (38)

Proof. From the proof of Corollary 13 we know that the encoder �⇤ from Lemma 12 is optimal.
We can thus compute the optimal worst-case expected excess risk by computing �⇤’s worst-case
expected excess risk. For conciseness we will use EDt instead of EDt

i.i.d.⇠ pn
t (X,ct(X)) and �t([x]) :=

maxy pt(y|[x])�miny pt(y|[x]). Then for any n � 1 we have:

Wn(�
⇤,F , T) (39)

:= sup
pt2T

EDt [W(�,F , t,Dt)] (40)

= sup
pt2T

EDt

2

4
X

[x] 62XDt/⇠

pt([x]) ·�t([x])

3

5 Lemma 12 (41)

= sup
pt2T

X

[x]2X/⇠

EDt [1[[x] 62 XDt
/⇠]] · pt([x]) ·�t([x]) (42)

= sup
pt2T

X

[x]2X/⇠

(1� pt([x]))
n · pt([x]) ·�t([x]) (43)

= sup

pt([x])

X

[x]2X/⇠

(1� pt([x]))
n · pt([x]) · sup

pt(Y |[x])
�t([x]) (44)

= sup

pt([x])

X

[x]2X/⇠

(1� pt([x]))
n · pt([x]) · 1 (45)

28

= sup

pt([x])
Ept([X])[(1� pt([x]))

n
] (46)

= sup

pt([x])
Ept([X])

(1� 1

1/pt([x])
)
n

�
(47)

 sup

pt([x])
(1� 1

Ept([X])[
1/pt([x])]

)
n Jensen’s Inequality (48)

= (1� 1

|X/⇠|)
n (49)

where Eq. (44) uses the fact that equation in the supremum only depends on the probability of the
equivalence class pt([x]) and the label of the equivalence class pt(Y |[x]). The latter is only used
in �t which is clearly maximized for deterministic tasks. Eq. (48) uses Jensen’s inequality for the
function (1 � 1

x)
n, which is concave on the domain x 2 (0, 1] (note that x = 0 corresponds to a

deterministic equivalence class which is clearly not a maximum as the worst-case expected excess
risk would be 0). 3 The upper bound is achieved for the uniform distribution over equivalence classes,
i.e., pt([x]) =

1
|X/⇠| as seen from Eq. (46). We thus conclude that for all n � 1 the worst-case

expected excess risk of sample-optimal encoders is Wn(�⇤,F , T) =

⇣
1� 1

|X/⇠|

⌘n
as desired.

As a direct corollary of the proof of Proposition 2 we can also characterize sample-optimal encoders
in terms of their excess risk of specific tasks.

Corollary 14 (Sample-optimal () given excess risk). Let Tsup ⇢ T denote the set of (X ,⇠)-
invariant tasks that are deterministic, i.e., maxy pt(y|X) = 1, and such that the equivalence classes
are equiprobable, i.e., 8x 2 X we have pt([x]) =

1
|X/⇠| . An encoder �⇤ is sample-optimal for

(X ,⇠)-invariant tasks T and predictors F if and only if it is population optimal for T ,F and for any
pt 2 Tsup, n � 1, Dt 2 supp(pnt (X, ct(X))) we have:

W(�⇤,F , t,Dt) =

X

[x] 62XDt/⇠

pt([x]). (50)

Proof. In the proof of Proposition 2 we have seen that for sample-optimal encoders, the worst-
case invariant tasks are those that are deterministic and have equiprobable equivalence classes are
equiprobable, i.e., pt 2 Tsup. As the input space is finite (Assmp. 1), n is finite, and the labeling of
the dataset is deterministic we have that the expectation is minimized if and only if the excess risk
is minimized for every dataset (which is possible by Lemma 12). By Lemma 12 we know that the
minimum is W(�⇤,F , t,Dt) =

P
[x] 62XDt/⇠

pt([x])
�
maxy pt(y|[x])�miny pt(y|[x])

�
. Using the

determinism of labeling (max is 1 and min is 0) concludes the proof.

Proposition 2 and Corollary 14 characterizes sample-optimal encoders in terms of the (worst-case
expected) excess risk that they achieve. Such characterization does not give much insight into the
form of those encoders or the resulting representations. We can nevertheless use it to show that
sample-optimal encoders must be invariant.

Lemma 15 (Sample opt. () pop. opt + inv.). An encoder �⇤ is sample-optimal for and (X ,⇠)-
invariant tasks T and predictors F if and only if it is population optimal for T ,F and invariant w.r.t.
(X ,⇠), i.e., �⇤ = �

⇠
pop.

Proof. In the following, we use conv(Z) to denote the convex hull of a set Z and ext(S) to denote
the extreme points of a convex polytope S . See [69–71] for formal definitions of those concepts and
background for the following proof.

We already know from Corollary 13 that population optimality and invariance is sufficient for sample
optimality. We thus only need to show that invariance is necessary for sample optimality. We prove

3Instead of using Jensen’s inequality we can also use the fact that the functional we are maximizing over
pmfs is permutation invariant and has a unique solution, it must thus be maximized by the pmf of uniform
distributions.

29

(a) Non-invariant pop. opt. (b) Convex-hull (c) Bad ERM

Figure 8: Illustration of the proof that non-invariant encoders cannot be sample optimal. (a) example
of the representations induced by a non-invariant population-optimal encoder where colors indicate
the labels of the invariant task that consist in classifying whether an example is in [x0

]; (b) the convex
hull of all representations induced by a population-optimal encoder must contain at least one extreme
point from every equivalence class, here �0

(x0
); (c) there will always be a bad ERM for the dataset

containing �0
(x0

) and all of �0
!(X \ [x0

]), which contradicts Corollary 14.

that by contrapositive. We use throughout the rest of the proof the fact that F is at least linear by
Assmp. 4.

Assume that there exists a sample-optimal encoder �0 that is not ⇠-invariant. This means that there
exists an equivalence class [x0

] 2 X/⇠ from which there are two points x1 ⇠ x2 2 [x0
] that will

be mapped differently by the encoder �0
(x1) 6= �0

(x2). Now consider the binary task p0t 2 Tsup
of classifying whether examples come from [x0

]. I.e. 8x 2 X we have p0t(Y = 1|x) = 1 iff
x 2 [x0

], p0t(Y = 0|x) = 1 iff x 62 [x0
], and equiprobable equivalence classes p0t([x]) =

1
|X/⇠| . By

construction p0t 2 Tsup and so by Corollary 14 we have that for any n � 1 and Dt 2 supp(p0nt (X,Y))

the excess risk is W(�0,F , t,Dt) =
P

[x] 62XDt/⇠
pt([x]). In particular, if XDt

contains an example
from each equivalence class, i.e., XDt

/⇠ = X/⇠, then the excess risk of sample-optimal encoders
must be 0. We will now construct a dataset D0

t containing at least one example per equivalence class
for which W(�0,F , t,D0

t) > 0. For an illustration of the construction see Fig. 8.

As pt 2 T and �0 is population-optimal (by Def. 10 and the sample optimality assumption), we
have by Lemma 7 that the convex hull of the representations of [x0

] and all other points must
be disjoint to ensure that there is a hyperplane (linear probe) that can classify those sets, i.e.,
conv(�0

!([x0
])) \ conv(�0

!(X \ [x0
])) = ;. As a result, it is easy to show that the extreme points

of the convex hull of all the representations must contain at least one example in each partition,
i.e., there exists x0 2 [x0

], x 2 X \ [x0
] such that {x0, x} ✓ ext(conv(�0

!(X))). Now construct a
dataset D0

t that contains only x0 2 ext(conv(�0
!(X))) from [x0

] and all other examples from other
equivalence classes, i.e., D0

t := {(x, ct0(x))|x 2 X \[x0
]}[{(x0, ct0(x0

))}}. By construction we have
D0

t 2 supp(p0nt (X,Y)) for n = |X \ [x0
]|+ 1 (where n � 1 due to Assmp. 2) and XDt

/⇠ = X/⇠,
so we must have W(�0,F , t,D0

t) = 0. By Assmp. 1 the population risk takes an expectation over a
finite number of examples X and so W(�0,F , t,D0

t) = 0 if and only if for all x 2 X we have that
any ERM f̂ 2 bF(D0

t,�
0
) satisfies ct0(x) = pred � f̂ � �0

(x). Let us show that this is not the case.

As �0
!(X) is finite (Assmp. 1) the number of extreme points ext(conv(�0

!(X))) must also be finite.
As a result, by Strasziewicz’s Theorem [72] (e.g. see Theorem 18.6 from [73]) we have that all
extreme points are also exposed points. In particular, we have that there exists a hyperplane that
separates any extreme point, including x0 2 ext(conv(�0

!(X))), from the rest of the points in the
convex set, including all other representations �0

!(X \ {x0}). (This can be seen by the definition of
exposed points, or by Lemma 7 as conv(�0

(x0
)) = {�0

(x0
)} is disjoint from conv(�0

!(X \ {x0})).)
By construction, such hyperplane defines an ERM f̂ 0 2 bF(D0

t,�
0
) as it separates correctly �0

(x0
)

from �0
!(X \ [x0

]). Yet, by construction, it also separates �0
(x0

) from all other equivalent examples
that do not have the same representation �0

!([x0
] \ {x0}), which we know exist as we previously

saw that x1 ⇠ x2 2 [x0
] but �(x1) 6= �(x2). In summary, f̂ 0 2 bF(D0

t,�
0
) but does not satisfy

ct0(x) = pred � f̂ 0 ��0
(x) for x 2 [x0

] \ {x0} ⇢ X . We thus found a bad ERM which contradicts the
statement that �0 is sample optimal but not invariant. We conclude that any sample-optimal encoder
is ⇠-invaraint as desired.

30

Lemma 15 is a nice characterization of optimal encoders in that invariance of encoders is a simple
property to think about and, at least in theory, it is easy to see how to optimize for invariant encoders
using augmentations. The population-optimality requirement is nevertheless still not very useful
as it suggests having to perform all invariant tasks to get sample-optimal encoders. We now show
that under Assmp. 5 (which holds for linear probing families) we can instead only consider binary
invariant tasks. The main idea intuition is that we can always achieve predict a desired k-ary labeling
by combining (due to Assmp. 5) a (k � 1)-ary predictor with the binary predictor that distinguishes
the wrong predictions from the rest.

Lemma 16 (⇠-shatter. () pop. opt.). An encoder � 2 �pop is population optimal for T ,F if
and only if it is (X ,⇠)-shattered by F .

Proof. First, notice that trivially an encoder � is population optimal for Tk,F if and only if it is
k-ary (X ,⇠)-shattered by F . Indeed, for any task pt 2 T the most likely label ct is by Def. 5 a
k-ary invariant labeling. By Def. 11 we must thus have that 9f 2 F such that 8x 2 X we have
pred(f(�(x))) = ct(x) which is equivalent to the definition of population-optimal for T due to the
definition of 0-1 loss and the finite sample space Assmp. 1. We thus have that an encoder is population
optimal for Tk,F if and only if it is k-ary (X ,⇠)-shattered by F for any k 2 {2, . . . , |X/⇠|}.

Now let us prove that binary ⇠-shatterability is equivalent to k-ary ⇠-shatterability for any k 2
{2, . . . , |X/⇠|}. We will prove the statement by induction, i.e., we suppose that for any 1 < i < k
we have that i-ary ⇠-shatterability holds and want to prove that it implies k-ary ⇠-shatterability. We
will prove the induction by contradiction. Suppose that k-ary shatterability does not hold. Then by
definition there exists a k-ary invariant labeling ck 2 Ck s.t. for all fk 2 F there exists a x 2 X s.t.
pred(fk(�(x))) 6= ck(x). Construct ck�1 2 Ck�1 by merging the two last classes, i.e.,

ck�1(x) :=

⇢
ck(x) if i 2 {0, . . . , k � 2}
k � 1 if i 2 {k � 1, k} (51)

By construction ck�1 2 Ck�1 is a (k � 1)-ary invariant labeling so by the induction assumption there
exists an fk�1 2 F s.t. pred(fk�1(�(x))) = ck�1(x) for all x 2 X . Now let c2, c02 be functions that
indicates whether the unpredictable labeling is equal to the last class c2 : x 7! 1[ck(x) = k � 1] and
similarly c02 : x 7! 1[ck(x) 6= k � 1]. By construction c2, c02 are binary invariant labeling, so again
by the induction assumption there exists an f2, f 0

2 2 F s.t. 8x 2 X we have pred(f2(�(x))) = c2(x)
and pred(f 0

2(�(x))) = c02(x).

By Assmp. 5 we can then use fk�1, f2, f 0
2 to construct the desired an fk 2 Q satisfying

pred(fk(�(x))) = ck(x). Specifically, we can construct the function mapping to the logits
of class k � 1 by fk�1 := fk�1(·)[k � 1] + f 0

2, the function mapping to the logits of class
k by fk := fk�1(·)[k � 1] + f2 and then concatenate all the logits to get the desired f⇤

k
:=

cat(fk�1(·)[:k� 2], fk�1
k , fk

k). Indeed, by construction the first k� 2 classes were already dealt with
correctly, and we simply used f2 and f 0

2 to add a positive component to the right class (we used two
functions f2, f 0

2 to deal with zero values logits) and distinguish examples from class k and k� 1. The
resulting function thus satisfies pred(fk(�(x))) = ck(x) for all x 2 X . This leads to a contradiction.
We thus have that k-ary shatterability, which concludes the proof due to induction (the base case
being binary).

Lemma 16 shows that population optimality is equivalent to (some invariant notion of) shatterability.
Now let us show that for invariant encoders this is equivalent to the classical notion of shatterability
from statistical learning theory [e.g. 74].

Lemma 17 (Sample opt. () max inv + classical shatt.). An encoder �⇤ is sample-optimal for
(X ,⇠)-invariant tasks T and predictors F if and only if

• �⇤ is invariant w.r.t. (X ,⇠);
• all the representations �⇤

!(X) are classically shattered by F ;
• non-equivalent examples are not encoded to the same representation, i.e., |�⇤

!(X) | = |X/⇠|.

Proof. From Lemmas 15 and 16 we know that an encoder �⇤ is sample optimal for T ,F if and only
if it is invariant w.r.t. (X ,⇠) and ⇠-shattered by F . We will now show that, for an invariant encoder,

31

⇠-shatterability by F is equivalent to classical shatterability of the representations and having |X/⇠|
different representations.

Let us denote by X⇠ ⇢ X some arbitrary set of example that contains a single example per
equivalence class, i.e., 8[x] 2 X/⇠, |X⇠ \ [x]| = 1. Let us also denote the by Z⇠ := �⇤

!(X⇠) the
representations of those examples, and by Z�⇤ := �⇤

!(X) all the representations induced by the
encoder. Starting from the ⇠-shatterability definition we have:

8c 2 C2, 9f 2 Flin s.t. 8x 2 X : pred(f(�⇤
(x))) = c(x) (52)

() 8c 2 {0, 1}X⇠ , 9f 2 Flin s.t. 8x 2 X⇠ : pred(f(�⇤
(x))) = c(x) Inv. (53)

=) 8cZ 2 {0, 1}Z⇠ , 9f 2 Flin s.t. 8z 2 Z⇠ : pred(f(z)) = cZ(z) ⇠-shat. (54)

() 8cZ 2 {0, 1}Z�⇤ , 9f 2 Flin s.t. 8z 2 Z�⇤ : pred(f(z)) = cZ(z) Inv. (55)

where Eq. (53) uses the fact that both the encoder and the labeling are invariant; Eq. (54) uses the
population optimality of �⇤ (equivalent ⇠ shatterabilty by Eq. (54)) which implies that any invariant
function can be written as a function of its induced representation; and Eq. (55) uses Z⇠ = Z�⇤ due
to invariance of the encoder. Eq. (54) thus shows that the restriction of Flin to Z�⇤ is the set of all
binary functions {0, 1}Z�⇤ which is the definition of classical shattering of Z�⇤ by F (e.g. see [74]).

We thus have that sample-optimality implies invariance and classical shattering. To get an if and only
if we need to ensure that �⇤ is a maximal invariant, such that by Lemma 6 any invariant labelings
{0, 1}Z�⇤ from Eq. (53) can be written as a function cZ 2 {0, 1}Z⇠ of �⇤

(x) as in Eq. (54). By
Def. 4 �⇤ is a maximal invariant for ⇠ if and only if x ⇠ x+ () �⇤

(x) = �⇤
(x+

) which is
equivalent to ⇠-invariance of �⇤ and |�⇤

!(X) | = |X/⇠| as desired.

As shatterability is well studied in standard statistical learning results, we can use many classical
results to get our desired characterization. In particular, shatterability is related to the VC dimen-
sion [13] of the predictors F . Here we give the desired characterization for linear F . A similar
characterization for more general F can be found in Appx. B.5.

Theorem 1 (Sample-optimal encoders for linear probes). Let T be all invariant tasks w.r.t. (X ,⇠),
and Flin be the set of linear predictors for T . An encoder �⇤ is sample optimal for T ,Flin if and
only if it satisfies the following properties:

• Dimensionality: the dimensionality of the span of all possible representations is at least one less
than the number of equivalence classes, i.e.,

dimR(span(�
⇤
!(X))) � |X/⇠|� 1. (56)

• F-predictability of M : there exists a maximal invariant M : X ! {0, . . . , |X/⇠| � 1} w.r.t.
(X ,⇠) that is predictable by Flin from �⇤, i.e.,

9M, f 2 Flin : 8x 2 X : M(x) = pred(f(�⇤
(x))). (57)

• Invariance: the encoder �⇤ is invariant w.r.t. (X ,⇠), i.e.,

8x, x+ 2 X : x ⇠ x+
=) �⇤

(x) = �⇤
(x+

) (58)

Proof. From Lemma 17 we know that an encoder �⇤ is sample optimal for T ,F if and only if it is
invariant w.r.t. (X ,⇠), �⇤

!(X) is classically shattered by F , and |�⇤
!(X) | = |X/⇠|. We will now

show that for linear Flin this is equivalent to the effective dimensionality requirement from Eq. (56).
Indeed, by standard statistical learning theory results (e.g. Theorem 1 from [14] which can be shown
using Lemma 7) we know that any set of |X/⇠| points Z�⇤ in R

n can be classically shattered by
Flin if and only if when choosing any point any point z 2 Z�⇤ as the origin we have that all other
Z�⇤ \ z are linearly independent. Equivalently, any set of |X/⇠| points Z�⇤ in R

n can be classically
shattered by Flin if and only if dimR(span(Z�⇤)) � |X/⇠|� 1.4

Now let us show that Flin-predictability of M is necessary. Indeed, any maximal invariant M : X !
{0, . . . , |X/⇠|�1} is a |X/⇠| invariant labeling M 2 C|X/⇠| and is thus implied by ⇠-shatterability

4The � could be replaced by a = as the effective dimensionality of |X/⇠| can never be larger than |X/⇠|�1.
We use � to make the transition to Prop. 3 more natural.

32

by Flin (due to Lemma 16). In other words, M induces a possible invariant task and thus has to be
predictable. 5

B.3 Augmentations (Sec. 3.2)
We proved the main result from Sec. 3.2 in Proposition 2 of the previous section. The statement is
more general than in the main paper as we deal with possibly stochastic labeling (but deterministic
datasets).

Lemma 12 gives an even more general statement, in that it show that the excess-risk for any dataset
and sample-optimal encoders (which are invariant by Lemma 5) is

W(�⇤,F , t,Dt) =

X

[x] 62XDt/⇠

pt([x])
�
max

y
pt(y|[x])�min

y
pt(y|[x])

�
. (59)

Eq. (59) shows that for general tasks, the incurred risk does not only depend on the number of
equivalence classes induced by the augmentation but also on the distribution of the equivalence
classes. In particular, to decrease the risk it is better to augment more common examples. Indeed,
this would make the distribution of equivalence classes less uniform which decreases the final risk
(see proof of Lemma 12).

Note that the optimal excess risk in Eq. (59) only depends on the difference between the max and
minimum labeling probability. If we used truly i.i.d. data (i.e. without most likely label) then
there would also be a dependence between the probability of the first and second most likely label:
maxy p(y|x)�maxy 6=y0 p(y|x). Indeed, with true i.i.d. data we would have to model the probability
that the most likely label on the training set is equal to the most likely label of the population. This
is equivalent to the probability that the empirical mode is equal to the population mode in discrete
data. The previous dependence on maxy p(y|x)�maxy 6=y0 p(y|x) can then for example be seen in
Theorem 4 of Dutta and Goswami [75].

Another interesting point to note is that the excess risk does not (explicitly) depend on the number of
labels k. Note that even if the considered ERMs predicted according to the marginal pt(Y) instead of
the worst-case miny pt(y|[X]), the excess risk would not explicitly depend on k. The only difference
is that maxy pt(y|[x]) � miny pt(y|[x]) would be replaced by maxy pt(y|[x]) � pt(Y = ct([x])).
This would make very little difference, for example in the case of deterministic ImageNet the excess
risk would only be reduced by 1000

999 ⇥, which is neglectable.

The proof of Proposition 2 and Lemma 12 shows that, due to the invariance of ⇠-invariant encoder,
computing the risk of ERMs and related quantities amount to essentially counting the number
of equivalence classes that were seen during training, and so we can use standard results from
combinatorics and probabilistic problems. For example, using standard coupon collector results [76]
we can show that the expected dataset size to ensure that all ERMs are Bayes predictors grows as
⇥(|X/⇠| log |X/⇠|) when labelings are deterministic and equivalence classes are equiprobable (for
weighted cases see [77]). As another example, we could compute variance or higher-order moments
of the excess risk Eq. (59) for any n and sample optimal �⇤ using standard occupancy results [78, 79].

B.4 ISSL Log Loss (Sec. 4)
The main result that we will use is that the encoder will learn to be invariant due to the strict convexity
of the log loss. As this is a general result that might be of interest beyond our work, we prove it
without assuming finite sample spaces and for any strictly convex loss function.

Lemma 18. Let pt(X,Y) be any joint distribution over input and targets. Let F ✓ {f : R
d ! A}

be any set of predictors that is Let Rt[�,F , `] := Ept(X,Y)[`(Y, f(X))] denote the best risk of
probes F on task pt and general (not necessarily 0-1) loss.

In this section, we prove that sample-optimal encoders can be recovered by optimizing the ISSL log
loss. For conciseness, we use results from the neural collapse literature, which shows that minimizing
cross-entropy gives an ETF representation.

5For the linear Flin, we could drop the F-predictability requirement as it is necessary but is implied by the
other requirements. We keep it to give the right intuition for the more general F and to help the transition to
Prop. 3.

33

Proposition 3 (ISSL Log Loss is sufficient). Let �1 := {� : X ! S} be the set of encoders mapping
inputs to unit-normalized representations in R

d. Let pX be a distribution whose support is X and
such that equivalence classes are equiprobable, i.e., for all x 2 X we have pX([x]) = 1/|X/⇠|. If
d � |X/⇠|� 1 then any unit-normalized encoder that minimizes the ⇠-ISSL log loss (Def. 13) is
optimal for ⇠-invariant tasks and linear probes Flin, i.e.,

argmin
�2�1

LI(�; pX) ✓ �⇤ (60)

Proof. From Lu and Steinerberger’s [18] Theorem 1 (see also [80, Theorem 1] and [21, Section 3])
we know that if d � |X/⇠|� 1 and equivalence classes are equiprobable then the global minimizer
of the ISSL log loss over unit-normalized encoders and weights, will give weights and encoders such
that for all x 2 [x] we have �(x) = w(M(x)), �!(X) forms a simplex equiangular tight frame, and
|�!(X) | � |X/⇠|.
Clearly such representation is invariant as 8x 2 [x] we have �(x) = w(M(x)). Furthermore, as the
representations form an ETF in at least |X/⇠|� 1 dimension they must span the entire R

|X/⇠|�1.
From Theorem 1 we thus have that the global minimizers are sample-optimal for Flin, T .

For conciseness, we proved Prop. 3 by invoking previous results from the neural collapse literature.
This is the reason we assumed equiprobable equivalence classes. Such assumption is nevertheless not
necessary for learning sample-optimal encoders (rather than ETFs). A full proof can easily be shown
by using Jensen’s inequality similarly to our derivation of CISSL at Eq. (74).

Note that some norm regularization, constraint, or inductive bias is necessary for Prop. 3. Indeed,
if this is not the case, then the ISSL log loss is minimized only if the representation’s norm and/or
the weight’s norm tends to infinity. For simplicity, we use the stringiest constraint of having a fixed
norm (unit-norm here). This can be extended to more realistic settings. For example: Fang et al. [80]
assumes a bounded norm; Zhu et al. [22] uses a norm regularizer, akin to weight-decay, instead of a
constraint; Ji et al. [23] removes the need for normalization by instead relying on the implicit bias of
SGD / gradient flow.

B.5 Non-linear optimality (Sec. 5)
In this section, we generalize Theorem 1 to non-linear F that satisfy Assmp. 5. Just as in the
linear case, we start from Lemma 17 and then use classical results from statistical learning to
rewrite the classical shatterability requirement into the predictability of M(X) and a statement about
dimensionality requirement. In the linear case, we relied on the fact that any d� 1 points in R

d can
be linearly shattered if they span the entire space. Such a necessary and sufficient dimensionality does
not always exist. In general, the necessary dimensionality is by definition given by the VC dimension
[13] of F , while the sufficient dimension is also (essentially) by definition given by generalizations
of Cover’s [39] capacity of F . Where Cover’s capacity is defined as the number of general position
points that can be shattered by F . We will thus have to give two statements one for necessity and one
for sufficiency.

First, let us provide the necessary requirements for sample optimality, including a tight requirement
on dimensionality.

Proposition 19 (Necessity of sample-optimal �⇤ for general probes). Let T be all invariant tasks
w.r.t. (X ,⇠), and F be any set of predictors for T that satisfies Assmp. 5. Any sample optimal
encoder �⇤

: X ! R
d for T ,F satisfy the following requirement:

• Dimensionality: the dimensionality of representation space is such that the VC dimension of F
is at least the number of equivalence classes, i.e.,

d s.t. VC[F] � |X/⇠| (61)

• F-predictability of M : there exists a maximal invariant M : X ! {0, . . . , |X/⇠| � 1} w.r.t.
(X ,⇠) that is predictable by Flin from �⇤, i.e.,

9M, f 2 F : 8x 2 X : M(x) = pred(f(�⇤
(x))). (62)

34

• Invariance: the encoder �⇤ is invariant w.r.t. (X ,⇠), i.e.,

8x, x+ 2 X : x ⇠ x+
=) �⇤

(x) = �⇤
(x+

) (63)

Furthermore, the dimensionality requirement is tight in that there exists a sample-optimal encoder for
T ,F whose dimensionality is such that VC[F] = |X/⇠|

Proof. From Lemma 17 we know that an encoder �⇤ is sample optimal for T ,F if and only if it is
invariant w.r.t. (X ,⇠), �⇤

!(X) is classically shattered by F , and |�⇤
!(X) | = |X/⇠|. By definition

the maximal number of points that can be classically shattered by F is the VC dimension of F [13].
We thus have that an encoder �⇤ is sample optimal for T ,F implies that VC[F] � |X/⇠|. As the
VC dimension is generally a function of the ambient dimension d we have that the dimensionality
needs to be such that VC[F] � |X/⇠| as stated in Eq. (61).

Necessity of invariance comes directly from Lemma 17. The necessity of F-predictability of M
comes from the fact that any maximal invariant M : X ! {0, . . . , |X/⇠|� 1} induces a possible
invariant task and thus has to be predictable.

Prop. 19 provides a tight requirement for dimensionality, but in general, not all encoders that
satisfy those requirements will be sample optimal. Let us now give sufficiency requirements on the
dimensionality. To give non-trivial sufficiency statements we will restrict ourselves to encoders that
induce representations that are in a general linear position, i.e., non-degenerate. Such general position
encoders will essentially be learned almost surely,6 and avoid non-interesting counterexamples [39].
Using the example and definition 40.1 from MacKay [81] we have that a set of points {xi} is in
general position in d-dimensional space iff any subset of size d is linearly independent, and no
d+ 1 of them lie in a (K-1)-dimensional plane. This formalizes the intuition of “random” points in
the space in terms of linear dependence. For example, you do not expect points in three dimensions to
lie on a straight line. Note that the general position of representations is only used for the sufficiency
of the following proposition rather than necessity.

In the case of necessity, we measured the complexity of F using the VC dimension, which by
definition is the maximum number of points that F can shatter. For sufficiency we will use another
complexity measure that appeared under many names, e.g., dense ±-shattering dimension [82] or
µ-dimension [83] and more generally is studied without specific name [84–87]. This complexity
measure is defined as the maximum number N such that any set of N points in general position
can be shattered by F . The most related well-known complexity measure is Cover’s [88] capacity,
which is the maximum number such that N such that half of the dichotomies on any set of N points
in general position can be predicted by F . In the following, we thus call the desired complexity
measure: Cover’s 1-capacity (instead of the standard 0.5-capacity). We denote it as Cap1[F].

Proposition 20 (Sufficiency of sample-optimal �⇤ for general probes). Let T be all invariant tasks
w.r.t. (X ,⇠), and F be any set of predictors for T that satisfies Assmp. 5. Let �⇤

: X ! R
d be any

encoder that induces representations �!(X) in general position and satisfies all requirements from
Prop. 19. Then any �⇤ is sample optimal for T ,F if the dimension d is such that Cover’s 1-capacity
of F is at least the number of equivalence classes, Cap1[F] = |X/⇠|.

Proof. Suppose that all requirements from Prop. 19 are satisfied. Then �⇤ is invariant and clearly
|�⇤

!(X) | = |X/⇠| due to F predictability of M . By Lemma 17 we know that it suffices for �⇤
!(X)

to be classically shattered by F to ensure that �⇤ is sample optimal for F , T . We also know by
assumption that �⇤

!(X) lie in general position. By definition �⇤
!(X) can be shattered by F if

Cap1F � |X/⇠|, which concludes the proof.

Note that the VC dimension is by definition an upper bound on Cover’s capacity. So putting
together both Props. 19 and 20 we essentially have that F predictability of M(X) and invariance are
necessary and that there is a tight necessary dimensionality dnec(F) and a sufficient dimensionality
dsu↵(F) � dnec(F), which respectively depend on the VC dimension and the capacity of F . Using
classical statistical learning theory results:

6The probability that we would learn such encoders would be 1 if we worked in continuous spaces. In
arbitrary large finite spaces, the probability can be still arbitrarily close to 1.

35

Linear for linear probes Flin we have dsu↵(Flin) = dnec(Flin) = |X/⇠|� 1 as in Theorem 1.
Universal for unconstrained probes Quniv we have dsu↵(Quniv) = dnec(Quniv) = 1.
MLP for MLP probes Fmlp we generally have dsu↵(Fmlp) dnec(Fmlp) both of which depend on

the number of parameters, layers, width, and activations of the MLP. For VC dimensions
MLPs refer to [89, 90]. For Cover’s 1-capacity MLPs and related quantities refer to [82, 84–
88, 91–93].

Monotonicity increasing the functional family cannot increase the dimensionality requirements, i.e.,
for any F9 ✓ F+ we have dsu↵(F+

) dsu↵(F9
) and dnec(F+

) dnec(F9
). This comes

directly from the definition of VC dimension and capacity which are monotonic.

36

C Practical ISSL objectives

In this section, we derive our objectives to approximate the ISSL log loss and provide a minimal
practical implementation of both objectives. In contrast to the proofs of main theoretical results (in
Appx. B) derivations will be less formal. We focus on the case of linear probes Flin for simplicity.
For simplicity, we assume throughout that the equivalence classes are equiprobable pX([x]) =

1
|X/⇠|

although our claims should easily generalize to any distribution with non-zero support on equivalence
classes.

Recall the ISSL log loss that we want to minimize by Prop. 3 is:

LI(�; pX) := inf
w2W1

EpX

"
� log

exp
�
w(M(X))

>�(X)
�

P|X/⇠|
m0=1 exp(w(m0)>�(X))

#
, (64)

The main difficulty is approximating the ISSL log loss using samples from augmentations A(X̃|X)

instead of knowing M(X) or |X/⇠|.

C.1 Deriving contrastive ISSL (Sec. 4.1)
The ISSL log loss and the CISSL loss are equivalent in that the encoders that minimize them are
the same (even though the value of the losses are different). The key result that we rely on is that
Ma and Collins [31] showed that for any number of negatives k � 1 the ranking-based variant
[30, 31] of noise contrastive estimations (NCE; [29]) gives consistent parameter estimates under weak
assumptions. For conciseness let us denote by X̃ := {X̃+, X̃�

1 , . . . , X̃
�
k } a sequence of augmented

inputs where the positive X̃0 = X̃+ is sampled from the conditional A(X̃ |X), while the k negatives
X̃�

i come from the marginal A(X̃) = EpX [A(X̃|X)]. We use p(X̃|X; A) to denote the distribution
of such sequence of random variables. Let us also denote by G1 := {g : X ! S} all functions
from X to unit-normalized outputs in R

d. Let us also denote X by X0. Finally, we assume that any
equivalent inputs have the same augmentation distribution x ⇠ x+ () A(X̃|x) = A(X̃|x+

) and
X̃ ⇠ x+. Note that this is the standard conditional independence assumption X̃ �M(X)�X (e.g.
[3, 12]). As a result, we have:

argmin
�2�1

LI(�; pX) (65)

= argmin
�2�1

inf
w2W1

EpX

"
� log

exp
�
w(M(X))

>�(X)
�

P|X/⇠|
m0=1 exp(w(m0)>�(X))

#
def (66)

= argmin
�2�1

inf
w2W1

EpX({Xi}k)

"
� log

exp
�
w(M(X))

>�(X)
�

Pk
i=0 exp(w(M(Xi))

>�(X))

#
cons. NCE (67)

= argmin
�2�1

inf
w2W1

EpXp(X̃|X;A)

2

4� log

exp

⇣
w(M(X̃+

))
>�(X)

⌘

Pk
i=0 exp

⇣
w(M(X̃i))

>�(X)

⌘

3

5 M Inv. (68)

= argmin
�2�1

inf
g2G1

EpXp(X̃|X;A)

2

4� log

exp

⇣
g(X̃+

)
>�(X)

⌘

Pk
i=0 exp

⇣
g(X̃i)

>�(X)

⌘

3

5 DPI (69)

where Eq. (67) uses the consistency of ranking-based NCE and Eq. (68) uses the invariance of the
maximal invariant and the fact that the augmentation preserves the equivalence structure X̃ ⇠ x+.
Eq. (69) uses the fact that when the Markov Chain X̃ � M(X) � X is satisfied, we can replace
w(M(X)) by g(x)) essentially by the data processing inequality of the Bayes risk [12, 94] of
convex loss functions. To see that, we clearly have the conditional independence g(X̃)??X|M(X)

due to X̃ � M(X) � X . Now recall that one characterization of conditional independence (CI)
is that X̃??X |M(X) if and only if X̃ = g0(M(X), U) almost surely for some function g0 and
U d⇠ Unif(0, 1) with U??(M(X), X) [95, Prop. 6.13]. In the following we use X := cat({Xi}k),
U := cat({Ui}k), and all functions applies to a vector to denote element-wise functions. We thus

37

have:

inf
g2G1

Ep(X̃|X;A)

2

4� log

exp

⇣
g(X̃+

)
>�(X)

⌘

Pk
i=1 exp

⇣
g(X̃i)

>�(X)

⌘

3

5 (70)

= inf
g02G1

EpX(X)p(U)

"
� log

exp
�
g0(M(X), U)

>�(X)
�

Pk
i=1 exp(g

0(M(Xi), Ui)
>�(X))

#
CI

(71)

= inf
g02G1

EpX(X)p(U)

"
log

1 +

kX

i=1

exp
�
(g0(M(Xi), Ui)� g0(M(X), U))

>�(X)
�
!#

(72)

= inf
g02G1

EpX(X)p(U)

⇥
log
�
1 + 1>

exp
�
(g0(M(X),U)� g0(M(X), U))

>�(X)
��⇤

(73)

� inf
g02G1

EpX(X)

h
log

⇣
1 + 1>

exp

⇣
Ep(U)[g

0
(M(X),U)� g0(M(X), U)]

>
�(X)

⌘⌘i
Jen.

(74)

where the last line uses the fact that g0(M(X),U) � g0(M(X), U) is necessarily negative (there
exists a g0 such that all labels classified correctly), (log(1 + exp(�x))) is strictly convex, that U is
independent of X . Jensen’s inequality is tight for strictly convex functions if and only if the function
is constant. We thus have that g0(M(X),U) � g0(M(X), U) must be a constant for all U from
which we conclude that g(X̃) must be independent of U and so there exists g0 s.t. g = g0 �M (i.e. g
will be invariant). Letting w = g0 we recover Eq. (68) as desired.

C.2 Deriving distillation ISSL (Sec. 4.2)
By simply rearranging terms in the ISSL log loss we get (differences are in red) that the ISSL log
loss is equal to

inf
w2W1

EpXq(M̂ |X)

h
� log s�,w(M̂ |X)

i
, s�,w(m |x) =

exp
�
w(m)

>�(x)
�

PC
m=1 exp(w(m)>�(x))

, (75)

if C = |X/⇠| and some maximal invariant r.v. is distributed as M(X)
d⇠ q(M̂ |X). The teacher

q(M̂ |X) and the student s�,w(M̂ |X) are both categorical distributions over C categories. By Def. 4
of the maximal invariant, we thus have that Eq. (75) is exactly the ISSL log loss if and only if:

Deterministic the teacher is a deterministic distribution maxm2{1,...,C} q(m |X) = 1;
Invariant the teacher maps positives together x ⇠ x+

=) q(M̂ |x) = q(M̂ |x);
Maximal the teacher maps negatives separately x 6⇠ x�

=) q(M̂ |x) 6= q(M̂ |x�
).

Using information-theoretical quantities we have the following equivalent requirements

Deterministic the teacher is deterministic iff it minimizes the conditional entropy H[M̂ |X] = 0;
Invariant the teacher is invariant iff the KL divergence between its outputs on equivalent examples

is minimal DKL[q(M̂ |x)kq(M̂ |x+
)] = 0 for all x ⇠ x+;

Maximal an invariant and deterministic teacher is maximal if and only if the KL diver-
gence between its marginal q(M̂) = EpX [q(M̂ |X)] and the true one is minimized
DKL[q(M̂)kp(M(X))] = 0.

Determinism and invariance are trivial to prove by standard properties of entropy and KL divergence.
It is also easy to show by contrapositive that q(M̂) = p(M(X)) implies maximality for a deter-
ministic and invariant teacher (the other direction is trivial when C = |X/⇠|). Suppose that the
marginals were matched but some non-equivalent examples were matched together, i.e., 9x 6⇠ x�

s.t. q(M̂ |x) = q(M̂ |x�
). Then by invariance of the teacher, it means that the outputs of all the

examples in two equivalence classes would be mapped together. By determinism of the teacher, this
means that the support of the marginal q(M̂) would have to be on less than C = |X/⇠| examples.
Due to the premise q(M̂) = p(M(X)) we would have that p(M(X)) is supported on less than

38

|X/⇠| examples which contradicts the maximal invariance of M or the fact that pX is supported over
all equivalence classes and concludes the proof.

Now note that the cross-entropy is equal to the KL divergence plus the entropy

DKL

h
q(M̂ |x)

���q(M̂ |x+
)

i
= Eq(M̂ | x)

"
log

q(M̂ |x)
q(M̂ |x+)

#
(76)

= �H

h
M̂ |x

i
+ Eq(M̂ | x)

h
� log q(M̂ |x+

)

i
(77)

DKL

h
q(M̂ |x)

���q(M̂ |x+
)

i
+H

h
M̂ |x

i
= Eq(M̂ | x)

h
� log q(M̂ |x+

)

i
. (78)

As all those information-theoretic terms are positive for discrete (categorical) r.v., we have that the KL
and the entropy are 0 if and only if the cross-entropy is zero. In other words, a teacher is deterministic
and invariant if and only if the cross-entropy of its outputs on equivalent examples is zero. Now
assume that the augmentations A(X̃|x) are such that for all x 2 X we have supp(A(X̃|x)) = [x].
Then the minimization of the cross-entropy for each example can be written as an expectation:
EpXA(X̃|X)q(M̂ |X)

h
� log q(M̂ | X̃)

i
= 0. By transitivity arguments, it is easy to show that the same

holds as long as there is a path through images and preimages of augmentations that can map any
example to another equivalent examples, i.e., as long as the equivalence classes are the connected
component of the augmentation graph [8].

Putting it all together, the ISSL log loss can be written as:

LI(�; pX) = inf
w2W1

EpXq(M̂ |X)

h
� log s�,w(M̂ |X)

i
(79)

s.t. EpXA(X̃+|X)q(M̂ |X)

h
� log q(M̂ | X̃+

)

i
= 0 (80)

DKL

h
q(M̂)

���p(M(X))

i
= 0 (81)

Using a Lagrangian relaxation and joint training of the weight and teacher (over unconstrained
predictors) we get our DISSL objective:

LD(�; pX) = inf
w2W1,q

�DKL

h
q(M̂)

���p(M(X))

i
(82)

� EpXA(X̃+|X)q(M̂ |X)

h
� log q(M̂ | X̃+

) + log s�,w(M̂ |X)

i
(83)

Note that because the augmentations are label-preserving and the teacher will be forced to be invariant
we can also augment the input X to the teacher q(M̂ |X)and/or the student s�,w(M̂ |X).

Finally, by using Monte-Carlo estimates from a dataset D sampled from pnX we get our empirical
DISSL objective from the paper L̂D(�;D) :=

inf
w2W1,q

�DKL

h
q(M̂)

���p(M(X))

i
�
X

x2D
EA(X̃|X)q(M̂ | x)

h
� log q(M̂ | X̃) + log s�,w(M̂ |x)

i

(84)

Using the strong law of large numbers, we have that as |D| ! 1 the empirical L̂D(�;D) becomes
almost surely equal to LD(�; pX), which is equal to Eq. (79) when q is optimized in a universal
variational family and �,� ! 1. As we have seen, Eq. (79) is equal to the ISSL log loss when
the marginal p(M(X)) is known and the equivalence classes are the connected component of the
augmentation graph. Using Prop. 3 we thus conclude that DISSL learns optimal encoders in idealized
settings.

C.3 Minimal PyTorch implementation
In the following, we provide a minimal practical implementation of both of our objectives. For the
actual code we used see github.com/YannDubs/Invariant-Self-Supervised-Learning.

C.3.1 CISSL
Source Code 1 show a minimal practical (batch) implementation of CISSL. For a version with
minimal dependencies/training/evaluation see this self-contained notebook.

39

github.com/YannDubs/Invariant-Self-Supervised-Learning
https://colab.research.google.com/github/YannDubs/Invariant-Self-Supervised-Learning/blob/main/notebooks/minimal_cissl.ipynb

import torch.nn as nn
import torch.nn.functional as F

class CISSL(nn.Module):
def __init__(self , proj_dim=128):

super().__init__ ()
self.encoder = resnet () # to define
teacher projection should be as expressive as possible
self.teacher_proj = MLP(z_dim , proj_dim) # to define
student projection should be linear (note: BN is linear)
self.student_proj = nn.Sequential(nn.Linear(z_dim , proj_dim),

nn.BatchNorm1d(proj_dim))

def loss(self , x1 , x2, temp=0.07):
x1 , x2 = batch
bs , device = x1.size(0), x1.device

logits shape: [2*bs , 2*bs]. Normalizes for cosine sim.
z = self.encoder(torch.cat([x1, x2], dim=0))
z_student = F.normalize(self.predictor(z), dim=1, p=2)
z_teacher = F.normalize(self.projector(z), dim=1, p=2)
logits = z_student @ z_teacher.T / self.temp

there are two positives for each example x1: x1 and x2
note: SimCLR removes x1-x1 as those are typically equal.
But not for CISSL due to asymmetric proj heads =>
CE between predicted proba and 0.5 for each positive
log_q = logits.log_softmax(-1)
select_pos = torch.eye(bs , device=device).bool().repeat(2, 2)
CE = - log_q[select_pos].view(bs*2, 2).sum(1) / 2
return CE.mean()

Source Code 1: Minimal PyTorch for CISSL

Compared to SimCLR we see two differences:

Asymmetric projection heads One of the two projections head (self.teacher_proj) is an MLP
just as in SimCLR. The other projection head (self.student_proj) has the same archi-
tecture as downstream probes (here linear7). This ensures that downstream probes will be
able to extract the desired information.

Self-contrastive In SimCLR the current augmented example is contrasted with all the other aug-
mented examples in a batch except itself. Indeed, if projection heads are symmetric then the
same augmented example would have the same projected output on both branches and so we
can discard it as a positive. For CISSL this is not the case as projection heads are asymmetric.
As a result instead of having a single positive example for every example, we now have
two of them (both augmented versions of the example). The loss is then the cross-entropy
between the predicted probability of both of those examples and a categorical distribution
where each positive has a probability 0.5. Using this “self-contrasting” is simpler/shorter to
implement and works slightly better (⇡ 0.5% accuracy gains on TinyImageNet)

C.3.2 DISSL
Source Code 2 shows a minimal practical (batch) implementation of DISSL. Compared to other
non-contrastive methods (e.g. SwAV or DINO) we see that DISSL is very simple to implement and
understand. In particular, there are no stop-gradients, momentum encoders, or complicated internal
algorithms (e.g. Sinkhorn-Knopp in SwAV). For a version with minimal dependencies/training/evalu-
ation see this self-contained notebook.

7Note that a batch normalization is linear and so a linear layer followed by a batch normalization is also linear.
We use batch normalization to be more consistent with SimCLR and found that this also improves performance.

40

https://colab.research.google.com/github/YannDubs/Invariant-Self-Supervised-Learning/blob/main/notebooks/minimal_dissl.ipynb

from torch.distributions import Categorical
import torch.nn as nn

class DISSL(nn.Module):
def __init__(self , n_equiv=16384 , zdim=512):

super().__init__ ()
self.encoder = resnet () # to define
teacher projection should be as expressive as possible
self.teacher_proj = MLP(z_dim , n_equiv)
student projection should be same architeture as probe
self.student_proj = nn.Linear(z_dim , n_equiv)

def loss(self , x1 , x2):
z1 , z2 = self.encoder(x1), self.encoder(x2)
return (self.asym_loss(z1,z2) + self.asym_loss(z2 ,z1)) / 2

def asym_loss(self , z1, z2, lambd=2.3, beta=0.8, temp=0.5):
logits_t1 = self.teacher_proj(z1) / temp
logits_t2 = self.teacher_proj(z2) / temp
logits_s = self.student_proj(z2)
q_Mlx = Categorical(logits=logits_t1) # q(\hat{M}|X)

MAXIMALITY. -H[\hat{M}]
mxml = -Categorical(probs=q_Mlx.probs.mean(0)).entropy ()

INVARIANCE and DETERMINISM. E_{q(M|X)}[log q(M|\tilde{X})]
det_inv = (q_Mlx.probs * logits_t2.log_softmax(-1)).sum(-1)

DISTILLATION. E_{q(M|X)}[log s(M|\tilde{X})]
dstl = (q_Mlx.probs * logits_s.log_softmax(-1)).sum(-1)

return lambd * mxml - beta * det_inv.mean() - dstl.mean()

Source Code 2: Minimal PyTorch code for DISSL

41

D Relation to previous work

D.1 Related work
Learning theory and self-supervised learning. There have been many recent works that aim to
explain why specific SSL algorithm work by bounding the performance of downstream linear probes
i.e., proving that specific algorithms are not too bad in practice. Saunshi et al. [3] (extended in
[54, 96–100]) and Tosh et al. [6] bound downstream performance for contrastive learning using an
approximate conditional independence assumptions similar to the one we use for CISSL. Lee et al.
[5] provides similar guarantees for a reconstruction pretext task. Bansal et al. [4], provided guarantees
for a wider range of SSL algorithms by assuming small rationality and robustness gaps rather than
through statistical assumptions. Other works have also tried incorporating the optimization of neural
networks in SSL theory [7, 101]. All these works differ from our theory in that they start from existing
algorithms and are thus mostly descriptive rather than prescriptive. A notable exception is HaoChen
et al. [8] which introduces the concept of augmentation graph and then proposes a simple SSL
algorithm motivated by spectral decomposition of that graph. They provide downstream guarantees
and show experimentally that their methods match standard SSL baselines. Their theory (and others)
can be seen as providing sufficient conditions for achieving good downstream performance, while our
theory gives sufficient and necessary conditions for achieving perfect performance. The advantage
of HaoChen et al. [8] theory is that by analyzing their specific algorithm, they provide practical
guarantees and use less stringent assumptions. The advantage of our theory is that by giving necessary
conditions and working at the representation level (agnostic to the algorithm) we can give a unifying
framework for SSL that suggests common improvements and can be used to derive future SSL SSL
algorithms. Our framework’s prescriptions also seem more useful in practice as we outperform all
baselines.

Optimal encoders and idealized representations. In contrast to standard theoretical work, we start
from our ideal requirements, then characterize all optimal encoders that satisfy those requirements,
and finally derive practical algorithms and actionable insights from this idealized framework. This
approach is inspired by recent work on idealized representations for supervised learning [62] and
domain adaptation [63]. One advantage of dealing directly with the properties of the representations
is that we can abstract away the encoder’s architecture and training algorithm. This is similar to the
recent “layer-peeled” [23, 80] and “unconstrained feature” [22, 102] approach to neural collapse
where features are modeled as free optimization variables.

Properties of self-supervised representations. Wang and Isola [103] (and follow-ups, e.g., [104])
also work with properties of the representations rather than the algorithms. Specifically, they show that
contrastive learning forces the positive representations to be close (alignment) while all normalized
representations will be uniformly distributed on a hypersphere. The difference with our work is
that we start with the ideal requirements for downstream performance and use those to derive the
characterization of optimal encoders. Instead, they start from the contrastive learning algorithm and
analyze the resulting representations without giving any theoretical relation between those conditions
and downstream performance. In fact, these two properties provably do not ensure good linear probing
[57, 100]. This can be seen by Theorem 1, as uniformity needs lower-dimensional representations.
We instead show that minimizing the ISSL log loss in higher dimensions will give optimal encoders
that induce ETF representations (normalized and aligned but not uniform) which leads to better
downstream performance.

Our actionable insights. Some of our prescriptions have been hinted at in previous work:

• Effective dimensionality: The need for a large dimension is indirectly suggested by Saunshi et al.
[57] theory which shows that one can have bad downstream performance when the dimension is
small even if the SSL loss is small (their goal is to show that one needs to incorporate inductive
bias in SSL theory). HaoChen et al.’s [8] theoretical guarantees for their specific ISSL algorithm
also require a large ambient dimension. For a fixed ambient dimensionality previous work [41, 42]
also suggested that low effective dimensionality, dubbed dimensional collapse, can be an issue
and provided solutions to alleviate this issue and improve performance (as proved by Theorem 1).

• Augmentations: Many prior work have suggested that a good augmentation or view is one that
is information preserving while removing as much nuisance information as possible [12, 44–
48]. Prop. 2 (and Appx. B.3) can be seen as a new perspective on why coarser augmentations
are useful, by proving the exact relation between optimal sample efficiency and the number of

42

equivalences. An example of coarse label-preserving augmentations for standard classification
are the text-image pairs from Radford et al. [15].

• Asymmetric projections heads: It is well known empirically that using large non-linear projection
heads improves performance of downstream probes (e.g. [1, 25, 43]). To our knowledge, we are
the first to theoretically prove and derive the need for projection heads. In particular, we show that
we should only project one of the two representations and that this helps in practice. We are not
aware of any previous empirical or theoretical work that uses such asymmetric heads (SimSiam
uses asymmetric projection heads but still projects both sides with a non-linear mapping).

Non-linear probes. The standard evaluation of SSL representations uses linear probes [27, 37, 38].
However, if the goal is to maximize performance it is natural to consider non-linear predictors. For
example, Dubois et al. [12] uses MLP probes. To our knowledge, we are the first to provide a
theoretical SSL framework for non-linear probing.

Understanding non-contrastive SSL. Many recent work [55, 101, 105, 106] have studied how
distillating SSL methods work and the importance of optimization tricks such as stop-gradients,
exponential moving average, and normalizations. From our framework’s perspective, those works
explain how previous distillation methods enforce the maximality of the teacher. Using our formal
requirement we provide a new objective derived from first principles, DISSL, that does not require
any optimization tricks and performs better than previous non-contrastive methods.

Invariances and augmentations. Empirically, SSL have been shown to learn invariances from the
data augmentations [12, 107], and downstream performance improves when using methods to increase
invariance [108]. The standard way of modeling invariances to data augmentations is through group
theory [10, 11]. Such a framework is nevertheless too constrained as standard augmentations are not
group actions (e.g. cropping). Dubois et al. [12] proposed modeling invariances to data augmentations
using the more general framework of equivalence relations, which we follow in our work. Mitrovic
et al. [47] also used equivalence relations to formalize SSL using an invariant causal mechanism
perspective. von Kügelgen et al. [109] takes a similar invariant causal mechanism perspective and
analyses whether and when the invariant component, i.e. M(X), is identifiable. One potential issue
with an invariance perspective on SSL is that real augmentations might not be exactly label-preserving.
In our framework we somewhat deal with this issue by only considering invariance of the most-like
label argmaxy pt(y|X) rather than the entire distribution pt(Y |X) as in [12, 47]. Still, this might
not perfectly hold. HaoChen et al. [8] instead uses a more general framework (augmentation graph)
which can be seen as formalizing approximate invariances.

Neural collapse. Prop. 3 shows that the ISSL log loss is sufficient for optimality by using arguments
from the neural collapse literature [16, 18, 22, 23]. Similar arguments were used by Galanti et al.
[110] to try to explain transfer learning. Concurrently to our work, Awasthi et al. [99] also used
similar arguments in SSL to explain why contrastive learning does not degrade with more negatives
(contrary to Saunshi et al.’s [3] claims). A standard criticism (e.g. [111]) of neural collapse in
supervised learning is that the phenomena seem to only hold on the training set. For SSL, we found
in Fig. 16b that neural collapse happens also on the test set. This is most likely due to the fact that
equivalent classes given by standard augmentations are much more fine-grained than those given by
class labels.

Our DISSL objective. Our DISSL objective is most similar and can be seen as a simpler and
theoretically-motivated version of DINO and SwAV. In particular, all those methods (and others,
e.g., [49, 50]) can be seen as simultaneously training a teacher to perform online clustering and then
distilling it into a student. Using the perspective and notation from our framework (to make the
similarities more obvious) we have that:

• DINO [24]: also uses a categorical teacher q(M̂ |X) that they distill in a categorical student
s�,w(M̂ |X). The main difference in the student is that they use a non-linear projection head
before the softmax, which as discussed in Sec. 4.1 does not ensure linear predictability of
downstream tasks. For the teacher, DINO aims at ensuring maximality by setting the teacher
to the exponential moving average of the student, stopping the gradients, and applying some
centering. In contrast, DISSL does not require any optimization trick and enforces maximilaity
by maximizing the entropy of the teacher’s output (assuming uniform prior).

• SwAV[2]: also uses a categorical teacher q(M̂ |X) that they distill in a categorical student
s�,w(M̂ |X). Just as with DINO, SwAV’s student uses a non-linear projection head and thus does

43

not ensure linear predictability of downstream tasks. For SwAV’s teacher, they assume like us that
the equivalent classes are equiprobable. But instead of performing essentially soft equiprobable
clustering like us, they essentially perform hard equiprobable clustering using the Sinkhorn
algorithm [52]. Specifically, they keep in memory a queue of previous examples, and at every step
they essentially perform equiprobable hard clustering using 3 steps of the Sinkhorn algorithm.
The advantages are that this clearly ensures maximality and determinism. The disadvantage is
that their algorithm is significantly more complicated than ours, uses essentially hard constraints,
requires storing a queue of previous examples, and requires stop-gradients.

D.2 Taxonomy

Table 7: Taxonomy of previous models using our framework. ‘Opt. if dim "‘ whether all trained
encoders would be optimal in idealized settings if the dimension was large. ‘Optimal‘ whether all
trained encoders would be optimal in idealized settings if the dimension was large enough. “Opt.
if asym.” denotes whether an objective would be objective when using our asymmetric projection
heads. If we can write down a solution to the objective that is not optimal we use “7” if we can show
the converse in idealized settings we use “3 ”, if we do not know we use “?”. “Jensen” denotes the
lower loss of deterministic outputs due to Jensen’s inequality. “temp” denotes a temperature rescaling
in a softmax. “stop” denotes stop-gradient. “pred” denotes the use of a prediction head in addition
to the projector head. “decor” denotes decorrelation of different dimensions of the representations.
“var” denotes increasing the marginal variance of the representation. “sinkhorn” denotes the use
of Sinkhorn-Knopp algorithm for equiprobable clustering. “cluster” denotes forcing an essentially
deterministic clustering. “transfer” denotes the use of a pretrained teacher. “optim?” denotes that
optimization process (SGD and batchnorm) might play an important role but it is not clear yet. “ema”
denotes momentum encoder. “ce” denotes cross-entropy loss. “mse” denotes mean squared error loss.
“neg” denotes contrastive with negatives.

Determinism Invariance Maximality Optimal Opt. if asym.
SimSiam [25] Jensen,temp ce stop,pred,optim? 7 7
DINO [24] Jensen,temp ce stop,ema,center,optim? 7 7
BYOL [36] Jensen,temp ce stop,ema,optim? 7 7
W-MSE [34] Jensen mse whitening 7 ?
Barlow T. [40] Jensen mse decorr 7 ?
VICReg [112] Jensen mse decorr,var 7 ?
SwAV [2] cluster ce sinkhorn 7 3
SELA2 [2, 50] cluster ce sinkhorn 7 3
DC2 [2, 49] cluster ce stop,optim? 7 3
ClusterFit [113] cluster ce transfer 7 3

SimCLR [1] Jensen,temp ce neg 7 3
MOCO [35] Jensen,temp ce neg 7 3

CISSL Jensen,temp ce contr. 3 3
DISSL minH[M |Z] ce maxH[M] 3 3

Table 7 provides a unifying perspective/taxonomy of some previous SSL algorithms from the per-
spective of our distillation ISSL framework. As a reminder, distillating the teacher into a student is
equivalent to ISSL log loss, which gives give optimal encoders in idealized setting, if and only if:

Deterministic the teacher is a deterministic distribution maxm2{1,...,C} q(m |X) = 1;
Invariant the teacher maps positives together x ⇠ x+

=) q(M̂ |x) = q(M̂ |x);
Maximal the teacher maps negatives separately x 6⇠ x�

=) q(M̂ |x) 6= q(M̂ |x�
).

Note that we also provide three contrastive methods (SimCLR,MOCO,CISSL) as those can be
seen as a specific instantiation of our distillation ISSL where maximality is enforced through nega-
tive examples and the denominator of the distillation loss is approximated using noise contrastive
estimation.

As all recent methods use asymmetric heads, we have that none of them are optimal even in idealized
settings. (see “optimal” column). So we also provide an “opt. if asym.” column that shows whether
the objectives would recover optimal encoders in the case where losses were we used asymmetric
projection heads (and idealized assumptions). We see that all methods that are based on clustering

44

and contrastive learning would be optimal, but those that rely on optimization tricks are not. This
suggests that understanding why such methods work requires analyzing the training dynamics as in
[7, 101].

D.3 Additional insights in relations of previous work
Using our framework we can also provide new insights or perspectives into common framing and
questions about ISSL.

SSL does not maximize Shannon’s information but the F-information IF [�(X) ! M(X)].
Many previous work have framed SSL as mutual information maximization between encoded views
I

h
�(X̃);�(X̃+

)

i
or even with the input I[X;�(X)] [e.g. 27, 44, 46, 114–116]. Tschannen et al.

[117] has shown empirically that the amount of mutual information is uncorrelated to downstream
performance. This is best seen by the fact that due to the data processing inequality, any encoding of
the input would necessarily give the worst representations in terms of information. Our framework
shows two things: (1) if you had unconstrained downstream probes then you would want to maximize
the information between the representation and the maximal invariant I[M(X);�(X)] as shown in
[12]; and (2) in the case of constrained probes F , e.g., linear, you instead want to minimize the
risk when predicting M(X) for �(Z) which is equivalent to maximizing the (generalized [62]) F-
information IF [�(X) ! M(X)] [118]. F -information is a generalization of Shannon’s information
that takes into account whether the information can be used by the desired predictors. For example F -
information does not satisfy the data processing inequality and can thus explain why a representation
is more useful than raw inputs.

Contrastive SSL should only project augmented representations. It is well known large non-
linear projection heads improves downstream performance compared to no projection heads (e.g.
[1, 25, 43]). As a result, most SSL algorithms use projection heads on both views. Our work shows
theoretically and empirically that one should apply the projection head asymmetrically.

Non-contrastive learning should care about maximality rather than avoiding collapsing. Most
work [24, 25, 34, 36, 55, 101, 105, 106] in designing and understanding non-contrastive methods
concerns how to avoid the “collapsing” of the teacher to a constant. Pokle et al. [119] empirically
showed that there are many non-collapsing solutions that are just as bad. Indeed, intuitively there
is nothing special about collapsing to a single constant solution. What if the teacher collapses to 2
possible constants, this is also intuitively bad. What about 3, 4, . . . , k constants? To our knowledge,
we are the first to formalize (and prove) exactly what is needed: maximality. I.e. no equivalent
examples should be mapped together. This shows that the minimum number of representations to
still ensure perfect downstream prediction is |X/⇠| which is much larger than a single constant.

Larger encoder might help due to larger dimensionality rather than more parameters. It is
well known that larger encoders can improve downstream probing accuracy, which is typically
attributed to the complexity/number of parameters of the encoder [e.g. 1, 2, 24, 25, 36]. The standard
way of increasing parameters is by increasing the width of every bottleneck of a ResNet. In particular,
this means that the dimensionality of the representation will also increase. The gains that we see
from increasing dimensionality (Fig. 7c in the main paper) suggest that such a confounder might be
important. Indeed, we show in Appx. G.4 that much of the gains when going from a ResNet18 to a
ResNet50 are due to an increase in dimensionality (512 to 2048) rather than the number of parameters
(11M to 23M). Practically, this suggests that we might be able to get nearly as much gains from
increasing the dimensionality of the representations rather than training prohibitively large models.

45

E Limitations

In the main paper, we briefly mentioned important limitations of our current framework. Here we
discuss them in more detail.

Need for approximate optimality. First, we only consider optimal encoders which will never be
exactly achieved in practice, even in the simpler settings. As a result, we cannot currently give
any theoretical guarantees on encoders learned in practice. A more useful notion would be some
✏-approximate optimality which quantifies how far an encoder is from optimality and provide practical
guarantees based on that ✏. The resulting framework would likely enable us to give more fine-grained
insights into some of the requirements, e.g., quantify theoretically how much one gains by increasing
the dimensionality by a certain amount (currently we have a minimum and sufficient dimensionality
for optimality which is a binary statement). Such extension would help bridge our current framework
to more standard statistical learning theory perspectives. It is nevertheless not clear whether such
extension would be most interesting in theory or whether it would provide additional actionable
insights.

Need for constrained encoders and finite ISSL data. The main theoretical simplification is that we
analyze optimal encoders without modeling the constrained or inductive bias from realistic functional
family and optimization schemes. This is a major simplification, which allows us to study the form of
the representations without really considering how they are learned. As a result, our current simplified
framework provides no insights into how to improve the computational or data efficiency of the
ISSL pretraining. We believe that incorporating such constraints could provide many new actionable
insights into the designing of ISSL algorithms.

Need for considering meaningful tasks. In our work, we consider all possible invariant tasks T . In
reality, only a subset of those tasks is meaningful and likely of interest. This subset of meaningful
tasks cannot only be defined using augmentations. A potential solution to model this subset would be
to incorporate the inductive bias of the model. This might yield interesting actionable insights by
relating the downstream tasks with the choice of encoder’s architecture or training algorithm.

What are idealized representations? The main starting point of our work is the definition of optimal
encoders: the population and sample optimal ones. An obvious limitation is that not everyone might
agree on that goal, in particular the sample-optimal one. For example, one could want to consider
average case ERMs, average case tasks, worst-case datasets, or only specific dataset sizes n . . . We
note that replacing the sup over tasks (resp. expectation over dataset) with an expectation whose
support is all invariant tasks (resp. sup over datasets) would not change the resulting representations
as sample-optimal representations are actually optimal for any n, dataset, task as proven in Lemma 12.
The biggest possible remaining point of disagreement (besides perfect optimality already discussed
above) concerns the worst-case ERM. For example, one could argue that in practice the ERMs would
have some inductive bias or implicit regularization towards margin maximizing ERMs.8 This would
definitely give different results for our main theorem and our current choice can then be seen as
a limitation of our framework. We hope that our work will encourage others to derive a different
framework for alternative definitions of optimality.

8For the specific case of max-margin classifiers, the resulting algorithms would likely not change as ETFs
can be shown to already maximize the expected margin of ERMs.

46

F Reproducibility

Table 8: Details of all datasets used in the paper.
Dataset Classes Train size Test size Evaluation metric
ImageNet [59] 1000 1 281 167 50 000 accuracy
TinyImageNet [56] 200 100’000 10’000 accuracy

Food [120] 102 75’750 25’250 accuracy
Cifar10 [121] 10 50’000 10’000 accuracy
Cifar100 [121] 100 50’000 10’000 accuracy
Cars [122] 196 8’144 8’041 accuracy
Aircrafts [123] 100 6’667 3’333 mean per class
Describable Textures (DTD) [124] 47 3’760 1’880 accuracy
Pets [125] 37 3’680 3’669 mean per class
Caltech [126] 102 3’060 6’085 mean per class
Flowers [127] 102 2’040 6’149 mean per class

F.1 TinyImageNet experiments
For TinyImageNet experiments, all results come from our own implementation. The code to reproduce
all our experiments is at github.com/YannDubs/Invariant-Self-Supervised-Learning.

Unless stated otherwise we have the following hyperparameters for all experiments. All experiments
ran with 16 bits precision.

Data. For the first experiments in the main paper, we use TinyImageNet [56], which contains
100k ImageNet [59] images of 200 classes downscaled to 64×64. We normalize each image with
mean=[0.480, 0.448, 0.398] and std=[0.277, 0.269, 0.282].

Encoder’s architercture. The encoder is a pre-activation ResNet18 [128] with a one hidden layer of
1024 neurons MLP projection head. Both the MLP and the ResNet use batch normalization [129].
All activations are ReLUs. As is standard, the representation is the 512-dimensional output of the
res5avg block.

ISSL training. For training all the ISSL encoders we use a batch size of 512, 300 epochs, the
optimizer is Adam [130], the learning rate follows a cosine schedule with a maximum of 4e-3 with
10 epochs warmup, the weight decay is 1e-6.

Hyperparameter tuning. For tuning hyperparameters, we first tuned optimizers (weight decay,
learning rate, . . .) on a 10% held-out training data for SimCLR and DINO which were respectively
the best performing contrastive and distillation methods. We found that the hyperparameters were
relatively similar so we chose values that worked for both. We then used those values for CISSL
and DISSL without further tuning those training parameters. The main hyperparameters that were
tuned during the development of CISSL and DISSL were tuned on CIFAR10 [121]. We tuned the
�,� Lagrangian parameters of DISSL on a 10 held-out training set of TinyImageNet.

Baselines. For contrastive baselines, we use SimCLR with standard hyperparameters (output dimen-
sionality 128, temperature 0.07). For distillation baselines, we chose the best over DINO, SwAV,
SimSiam. SwAV did not perform well on TinyImageNet. SimSiam could generally perform slightly
worst than DINO but sometimes better (it had high variance and dependence on hyperparameters,
especially weight decay). We thus used DINO as a baseline but were surprised to see that all distilla-
tion baselines significantly underperformed compared to SimCLR on TinyImageNet. For DINO we
use all the hyperparameters from their paper besides the size of the teacher outputs. Indeed, we found
that the large output of 65000 used in ImageNet did not perform well, we thus decreased it to 1000

(which performed similarly to 10000).

CISSL. For CISSL we essentially use the implementation provided in Source Code 1.

DISSL. For DISSL we essentially use the implementation provided in Source Code 2. The only
difference is that to avoid having a large number of parameters when we increase dimensions we use
low-rank linear layers (rank 512) for the last layers of the projection heads. This can be efficiently

47

github.com/YannDubs/Invariant-Self-Supervised-Learning

implemented by stacking linear layers, e.g., in Pytorch we have [nn.Linear(z_dim,512),nn.
BatchNorm1d(512),nn.Linear(z_dim,n_equiv)].

Augmentations.. We augment every input twice in a batch (e.g. once for the teacher
and once for the student). For augmentations we follow [34] and use: (i) grayscaling
with probability p=0.1↵; (ii) color jittering with strength brightness=0.4↵, contrast=0.1↵,
saturation=0.2↵, hue=0.1↵; (iii) cropping with scale scale=[0.1/↵, 1]. By default ↵ = 1.
When sweeping over augmentation strength in Fig. 7a we sweep over ↵ 2 {0.25, 0.5, 1, 2}. For
“coarse aug.” in Table 1 we use ↵ = 2 and additionally apply a Gaussian blur with probability 0.5 and
kernel size of 10% of the image.

Modifying the dimensionality of the representation. Naively increasing the dimensionality by
mapping the representation through a linear layer is not sufficient as the effective dimensionality
of the representation would still be small (the representation would live on a manifold of at most
the dimensionality of the previous layer). To increase dimensionality we thus increased the number
of channels right before the average pooling layer. We tried two ways that worked equally well.
The first and simplest method, is to pass the latent image (ie before average pooling) through a
linear layer (i.e. convolution layer of kernel size 1) followed by batchnorm and ReLU. Although
this worked well for ResNet18, it would significantly increase the number of parameters for larger
models. For example, if we want the dimension of a ResNet50 to be 8192 we would need a linear
layer of 8192⇥ 2048 ⇡ 16M parameters. We thus ended up using a bottleneck so that our method
is a general way of increasing dimensionality while keeping the number of parameters manageable.
Specifically, we used a small convolution bottleneck block that consists of [cbr(out_chan=512,
k=1),cbr(out_chan=512,k=3),cbr(out_chan=z_dim,k=1)], where cbr denotes convolution,
batchnorm,relu and k denotes kernel size. We emphasize that those layers are not necessary and
are just a way of keeping the number of parameters small if the input is already relatively high
dimensional (which is not the case with ResNet18s).

Linear probing. For the linear probe, we use a logistic regression trained with SGD, momentum=0.9,
cosine learning rate schedule with a maximum of 0.6, batch-size 512, 100 epochs. We found the best
weight-decay to be different for different models and so we evaluate all models with a probe trained
with weight decay 1e-4, 1e-5, 1e-6 and always give the best result.

Non-linear probing. For non-linear probing, we use a 2 hidden layer (2048 units) MLP with batch-
normalization. The optimization is the same as for linear probing. When using non-linear probes we
use non-linear projection heads of the same architecture for our objectives, as discussed in Sec. 5.

Distance to ETF. To compute the distance to ETFs in Fig. 4 we consider how close positive examples
and how far negatives are from one another. In particular, we first center each representation
at 0 by subtracting the (exponential moving average) of the mean. We then unit-normalize the
representation. Let �̃(x̃) denote this unit-normalized centered representation of the augmented
example x̃. To compute how close positives x̃, x̃+ are to one another we consider one minus their
expected dot products pos = 1� Ex̃,x̃+

h
�̃(x̃)>�̃(x̃+

)

i
, which is always a positive quantity due to

the unit+centering processing. To compute how far positives x̃, x̃� are from one another we consider
their expected dot product neg = 1 � Ex̃,x̃�

h
�̃(x̃)>�̃(x̃�

)

i
, which is at least � 1

|X/⇠|�1 ⇡ 0 (the
minimal value is typically positive and grows as the number of equivalences grows for a fixed ambient
dimension). Note that we have an ETF if and only if both metrics are minimized pos = 0 and
neg = � 1

|X/⇠|�1 we will thus loosely refer to pos + neg as “distance to ETF”.

F.2 ImageNet experiments
For ImageNet experiments we used Facebook’s VISSL package [60]. All the implementations of all
baselines are thus well tested, furthermore this package is maintained in part by the authors of SwAV
which is our main baseline. We reran all baselines using the same batch size, optimization schemes,
evaluation pipeline, and numerical precision for a fair comparison. For all the implementation details
and hyperparameters we do not discuss, we refer the reader to VISSL’s code and documentation.
After the anonymous period, we will push our code and configuration files to VISSL.

Our methods. For our CISSL and DISSL, we did not perform any hyperparameter tuning and used
all the same hyperparameters as in the TinyImagenet experiments (besides for the optimization, in
which case we used the one from baseline as discussed below). The only difference compared to

48

TinyImageNet is that in all our ImageNet experiments we used a dimensionality of 8192 for the
representation (using the method discussed in Appx. F.1).

Standard augmentations (Table 3). For Table 3 we compare methods with standard ImageNet
experiments (augmentations from SimCLR [1]). We optimize all methods using the optimization
procedure from SwAV and SimCLR in VISSL. Namely, cosine learning rate schedule with 10 epochs
of linear warmup, learning rather of 0.3 for a batch size of 256 but linearly rescaled for larger batch
sizes, SGD+LARC optimizer with 0.9 momentum, batchnorm synchronization over GPUs. We use
100 epochs (due to computational constraints) and a batch size of 320 per GPU (maximum we could
fit) on 8 different GPUs, i.e., a total batch-size of 2560. For all models, we used 16-bit floating
precision.

Multi-cropping (Table 4). For Table 4 we use the same hyperparameters than Table 3 except we use
160⇥ 2 + 96⇥ 4 multi-crop augmentations.

Linear probing in distribution. For training the linear probe efficiently we first featurize all of
ImageNet by the model to be evaluated. This has the advantage of being very computationally efficient
but means that we cannot train the linear probe with augmentations. Once ImageNet featurized, we
train 10 different linear probes using PyTorch and chose the best on a validation set. Each of those
probes is trained with a batch-size of 2048, 16 fp precision, 100 epochs, SGD with momentum, a
standard cosine learning rate schedule. They only differ on their learning rate ([0.03, 0.3]) and weight
decay ([0, 1e� 5]). We generally found that a learning rate of 0.1 and weight decay of 3e� 6 worked
well for most models.

Transfer (Table 5). For Table 5 we evaluate the best SwAV and DISSL models from Table 4 on (a
subset of) the standard transfer benchmarks from [61]. All datasets and their evaluation metrics are
shown in the second part of Table 8. For training the linear probe we use Sklearn [131]. In particular,
we first featurize the training and testing sets (i.e. we do not apply augmentations when training the
linear probes). We then min-max scale features to [0, 1] and train both a linear SVM [132] and a
logistic regression (with lbfgs solver) using Sklearn. The only parameter we tune is the regularization
strength C. In particular, we do so by choosing the best C out of 10 values that are log-uniformly
space in [1e � 4, 100]. The final result is then the best between the linear SVM and the logistic
regression.

49

G Additional experimental results

In the main paper, we only showed experiments that show our framework’s actionable insights in
realistic settings. In the following sections, we provide additional results in realistic settings, as well
as test more carefully our theoretical claims in controlled settings. In Appx. G.1 we validate our
theoretical claims in a setting that is as close as possible to the theory, i.e., the idealized setting. In
Appx. G.4 we add additional results in the more realistic settings considered in the paper.

G.1 Validating our theory in the idealized setting
First, we tested our theory in a controlled setting as close as possible to our theory, i.e., the idealized
setting. Specifically, unless stated otherwise, we used (i) ISSL log loss Eq. (6) to avoid approximate
objectives; (ii) the maximal invariant MA given by the true labels Y (CIFAR10; [121]) which
simulates knowledge of the tasks’ equivalence structure; (iii) the labeled train distribution as testing
distribution to simulate access to infinite unlabeled data p(X); (iv) the worst accuracy over 10
coarsenings of the CIFAR10 task T to estimate the supremum over tasks in Def. 9; (v) a regularizer
enforcing the encoders invariance as in Theorem 1 by minimizing k�(x)� �(x+

)k. All results are
over 3 seeds.

(a) F ISSL vs F EVAL (b) Effect of F on dim.

Figure 9: Different downstream functional family F EVAL require (a) corresponding or smaller func-
tional family during ISSL F EVAL ✓ F ISSL; (b) smaller dimensionality of Z when F is larger. The
X-axis of the heatmap “ISSL” shows the predictors F ISSL used during ISSL to predict M(X). The
Y-axis of the heatmap “predictor” shows the downstream probes F EVAL used for evaluation. We used
three families F9 ✓ F ✓ F+: a linear F9, a small MLP F (hidden unit: [10]), and a large MLP F+

(hidden units: [2048, 2048]). The values of the heatmap, as well as the Y-axis of the line-plot, show
the performance of the worst (over 10) binary invariant tasks. The X-axis shows the dimensionality
of the learned representation. The data is CIFAR10 and the underlying invariance structure is given
by the labels of CIFAR10.

First, we considered the effect of predictors F on ISSL. The results are shown in Fig. 9 .

Increasing F decreases the required dimensionality. Props. 19 and 20 show that the necessary
and sufficient dimensionalities dmin(F), dsu↵(F) decrease (monotically) with the complexity of F ,
while Theorem 1 shows that for linear F9 we have dmin(F9

) = dsu↵(F9
) = |X/⇠| � 1. To test

that we swept over dimensionality of the representation and complexity of the probing family. As
predicted, Fig. 9b shows that for linear F� the required dimensionality is d(F�

) = |X/ ⇠ |�1 = 9,
while it shrinks for more complex predictors: d(F) ⇡ 5, d(F+

) ⇡ 2.

One should consider F during ISSL. Prop. 19 suggests that one should predict the maximal
invariant using a family F ISSL that is (at most) a subset of the true downstream probes F EVAL to ensure
that M(X) is predictable by some f 2 F EVAL. We tested this by sweeping predictor size for F ISSL and
F EVAL. As predicted, Fig. 9a shows perfect performance only when F ISSL ✓ F EVAL. This suggests that
it is important to consider downstream F EVAL during ISSL. Furthermore, we see that, at least in theory,
the performance can be very low when using the wrong predictors and worst case. Table 2 of the
main paper shows much smaller gains for realistic settings and realistic tasks (not worst-case).

We then investigated the augmentations or equivalences ⇠A used for ISSL.

50

(a) Dimensionality (b) Sample efficiency

Figure 10: Using coarser but sufficient augmentations decreases the required (a) dimensionality; and
(b) the number of samples to perfectly predict all invariant tasks. Each line style/color corresponds to
a different equivalence structure used for ISSL: “Exact” denotes 10 equiv. classes given by CIFAR10
labels; “Finer” denotes 100 equiv. classes given by aggregating 10% of same-label images; “Std”
denotes standard data augmentations; “None” denotes no augmentations; “Coarser” denotes 2 equiv.
classes given by aggregating labels; “Rand” denotes 1000 equiv. classes given by aggregating any
images together. Note that both “coarser” and “rand” are not invariant tasks. In (a) the X-axis
shows the dimensionality of the representation and the Y-axis shows the performance on the worst
binary invariant task over 10 samples. In (b) the X-axis shows the number of samples used to train
downstream probes and the Y-axis shows the performance of a standard ERM on CIFAR10. 3 seeds.

Coarser augmentations improve sample efficiency. As predicted by Prop. 2, Fig. 10b shows that
augmentation that give finer equivalences (“Finer” / “Std” / “None”) than desired (“Exact”) achieve
optimal performance but require more downstream samples. Furthermore, for “Exact” and “Finer” we
see that as long as one example is seen per equivalence class the performance is perfect (respectively
achieved at a number of classes 10 and 100) as predicted by Corollary 14.

Coarser augmentations require smaller dimensionalities. Theorem 1 shows that the dimensional-
ity requirement depends on the invariance structure. So although any label-preserving augmentation
can give optimal encoders, coarser augmentation will need smaller dimensionalities. Fig. 10a indeed
shows that ISSL with finer equivalences (“Finer” / “Std” / “None”) than desired (“Exact”) achieve
optimal performance on invariant tasks but require higher dimension of the representation d. In
contrast, other augmentations (“Coarser” / “Rand”) underperform. By construction “Exact” and
“Finer” have 10 and 100 equivalence classes, and we see that the required dimensionality d(Flin) is 9
and 99 as predicted by Theorem 1.

G.2 Validating our theory in a more practical setting

(a) Effect of aug. on dim. (b) Effect of aug. on eff. (c) Effect of F on dim.

Figure 11: Fine-grained predictors from our theory hold beyond the ideal setting. In particular: (a)
shows the same trend as Fig. 10a; (b) as Fig. 10b; and (c) as Fig. 9b. The difference in this figure is
that we use CISSL and consider unseen test examples.

51

Figure 12: DISSL teacher estimates well M(X) for CIFAR10 test set. DISSL is trained with
supervised augmentations so that the true M(X) is the underlying labels (up to permutation).

Our theory generalizes to more realistic settings. In the previous section, we validated some of
our theoretical claims in a setting that is as close as possible to our theory. Fig. 11show the same
results in a more practical setting: where we use CISSL instead of ISSL log loss and we do not
assume access to the underlying distribution, i.e., we use the test set for evaluating the probe. In
particular: Fig. 11a shows the same trend as Fig. 10a with the best performance achieved from a
dimensionality of d(F) = 9 when using optimal augmentations; Fig. 11b shows the same trend as
Fig. 10b with best performance achieved using 10 sample for exact augmentations; Fig. 11c shows the
same trend as Fig. 9b. This suggests that our theory provides the right intuition in practical settings
and can likely be generalized to cover those such cases of practical/approximate ISSL.

DISSL’s teacher estimates well M(X). DISSL’s and CISSL’s teacher respectively estimates of
M(X) and w(M(X)), a natural question concerns the quality of those estimates. For DISSL we can
easily test that by using supervised augmentations, in which case M(X) should be the supervised
labels (up to permutations). Fig. 12 shows the confusion matrix between the predicted M(X) and the
underlying labels for CIFAR10’s test set. We see that the teacher recovers M(X) for all but cats and
dogs. The teacher’s M(X) is 85% accurate, while linear probing on the student’s representations
gives 90% accuracy.

G.3 Monitoring and understanding DISSL’s training dynamics
As stated in Sec. 4.2, one of the advantages of DISSL is that it uses information theoretic losses,
which are relatively interpretable. In the following, we discuss and analyze some of the quantities
which we found helpful to monitor in order to understand and debug DISSL. All the following
correspond to the DISSL model used for the second row of Table 1, i.e., a ResNet18 trained for
300 epochs on TinyImageNet with standard (512) dimensions and uniform prior over C = 16384

equivalence classes. All shown curves are on the training set and we use natural logarithms (base e).

Maximality and marginal entropy H[M̂]. A fundamental quantity in DISSL training is the KL
divergence between the teacher’s marginal and the prior probability of equivalence classes. Indeed,
deterministic and invariant teachers are maximal if and only if DKL[q(M̂)kp(M(X))] = 0. In
practice, the prior is typically uniform so minimizing the desired divergence is equal to maximizing
the entropy of the teacher’s marginal because DKL[q(M̂)kp(M(X))] = logC � H[M̂]. We thus
monitor the marginal entropy, which is maximized at logC = log 16384 ⇡ 9.7 nats. Fig. 13a
shows that the marginal entropy stays high over the course of training. The final marginal entropy is
H[M̂] ⇡ 8.4 nats, which means that the effective number of equivalence classes is exp(8.4) ⇡ 4447.
This is lower than the 16384 number of classes, which suggests either that the equivalence classes
are not actually uniform (as is likely the case) or that the hyperparameter � in Algorithm 1 could be
increased. Importantly, H[M̂] ⇡ 8.4 nats is still very far from a collapsed teacher, which would have

52

(a) Entropies (b) KL Divergences

Figure 13: Components of the DISSL objective are useful metrics to monitor during training. Left:
The marginal H[M̂] (in blue) and conditional H[M̂ |X] (in orange) entropies respectively quantify
the maximality and determinism of the teacher. Both entropies are non-negative and upper bounded
by log 16384 ⇡ 9.7. Right: The teacher-augmented teacher DKL[q(M̂ |X)kq(M̂ |X+

)] (in red)
and student-teacher DKL[q(M̂ |X)ks�,w(M̂ |X)] (in green) KL divergences respectively quantify
the invariance of the teacher and distillation of the student. ResNet18 trained with DISSL on
TinyImageNet for 300 epochs.

H[M̂] = 0 (one effective class). In practice, we found that having a large marginal entropy is key for
learning good representations and so � is an important hyperparameter. In our TinyImageNet and
ImageNet experiments we use � = 2.3 and generally found that � 2 [1.8, 2.8] gives good results.

For the following two metrics recall that in Sec. 4.2 we saw that we minimize the cross-entropy
Eq(M̂ | x)[� log q(M̂ |x+

)] between teacher’s outputs on equivalent examples x ⇠ x+ as this is
equivalent to minimizing the conditional entropy H[M̂ |x] (equivalent to determinism) and the
KL divergence DKL[q(M̂ |x)kq(M̂ |x+

)] (equivalent to invariance). As a result we use the same
hyperparameter � to control both determinism and invariance.

Determinism and conditional entropy H[M̂ |X]. Maximizing the previous marginal entropy is
trivial if the teacher is not deterministic, the teacher can simply predict a uniform distribution regard-
less of the input. Indeed, maximality and maximizing entropy are equivalent only for deterministic
encoders. It is thus very important to monitor the conditional entropy H[M̂ |X], which quantifies
the “distance” to a deterministic teacher (H[M̂ |X] = 0 () deterministic teacher). Fig. 13a
shows that the conditional entropy greatly decreases during training and so the teacher becomes
closer to determinism. At the end of training, we have H[M̂ |X] ⇡ 3.2 nats, which intuitively means
that the teacher hesitates in average between exp(3.2) ⇡ 25 different clusters/equivalences classes
for every example. Although the teacher is not actually deterministic, this shows that it clusters
examples relatively confidently—compared to the trivial solution where the teacher would “hesitate”
between 16384 classes and have a maximal conditional entropy of H[M̂ |X] = log 16384 ⇡ 9.7
nats. In practice, we found that as long as we avoid this trivial solution the value of the conditional
entropy always decreased significantly during training. If the conditional entropy does not decrease
H[M̂ |X] ⇡ 9.7 then the teacher is essentially useless and this suggests increasing the hyperparameter
� in Algorithm 1, which controls both determinism and invariance. In our TinyImageNet experiments
we use � = 0.8 and � = 0.6 for ImageNet experiments. Generally, we found that � 2 [0.4, 1] gives
good results and any of those can work well if � is tuned accordingly.

Invariance and KL divergence DKL[q(M̂ |X)kq(M̂ |X+
)]. The third and last requirement of the

teacher is that it is invariant w.r.t. ⇠, meaning that the KL divergence on any equivalent inputs x ⇠ x+

must be zero DKL[q(M̂ |x)kq(M̂ |x+
)] = 0. As with previous requirement, we can also monitor

this during training and Fig. 13b shows that this divergence indeed decreases during training until
DKL[q(M̂ |X)kq(M̂ |X+

)] ⇡ 0.9. This small value shows that the teacher is close to being invariant
but the curve seems to suggest that the model could benefit from longer training (not yet converged).
Note that contrary to the previous entropies, the KL divergence does not have an upper bound.

53

Distillation and KL divergence DKL[q(M̂ |X)ks�,w(M̂ |X)]. In addition to the three requirements
from the teacher, we also monitor the distillation loss between teacher and student. Recall that
in Eq. (9) we minimize the cross-entropy EpXq(M̂ |X)[� log s�,w(M̂ |X)] for distillation. This is
nevertheless not a good monitor for distillation if the teacher q(M̂ |X) is also being trained. Indeed,
distillation can be perfect and cross-entropy not be zero because EpXq(M̂ |X)[� log s�,w(M̂ |X)] =

H[M̂ |X] + DKL[q(M̂ |X)ks�,w(M̂ |X)], i.e., that cross-entropy is lower-bounded by the entropy of
the teacher which is non-zero during training. To monitor distillation irrespective of the teacher’s
entropy we thus use the KL divergence. Fig. 13b shows that the distillation decreases during training
until DKL[q(M̂ |X)ks�,w(M̂ |X)] ⇡ 0.11, which shows that distillation is very effective.

Figure 14: Cosine similarity between representations of equivalent (positives in purple) and non-
equivalent examples (negatives in orange). ResNet18 trained with DISSL on TinyImageNet for 300
epochs.

Cosine similarity between equivalent and non-equivalent representations. In addition to the
previous components of the losses, it can be useful to analyze and monitor the cosine similarity
between representations of equivalent and non-equivalent examples. Recall that Prop. 3 is based
on the fact that our objective can recover sETF representations. In particular, the representations
of equivalent examples should be the same, while non-equivalent ones should have the largest
possible angle between them. We thus monitor the expected cosine similarity between equivalent
and non-equivalent examples. Note that for equivalent examples the cosine similarity would ideally
achieve its maximum of 1. For negatives, the cosine similarity would ideally be minimized, and the
expected minimum is � 1

d ⇡ �0.002 where d = 512 is the dimensionality of the representation.9
Fig. 14 shows that, as desired, the cosine similarity between positives increases during training, while
the opposite is true for negatives. The final expected cosine similarity for positives is ⇡ 0.81 and
⇡ �0.002 for negatives. This shows that the learned representations are indeed close to ETFs but
that representations are not yet completely invariant—which makes sense given that the teacher still
seems to be learning to be invariant as seen in Fig. 13b).

G.4 Realistic

Table 9: ResNet18 and ResNet50 with the same dimensions. Linear probing TinyImageNet, DISSL.

RESNET18 RESNET50

d=512 45.9
d=2048 47.7 49.1

Gains from ResNet50 come from increasing dimensionality. In Fig. 7c of the main text, we say
that increasing dimensionality has a large impact on downstream performance. This naturally begs

9� 1
d is only achievable if the number of equivalence classes is |X/⇠| = d+ 1, more generally the expected

minimum is � 1
|X/⇠|�1 but the true number of equivalence classes is typically unknown and typically larger

than the dimensionality.

54

the question of whether the gains when increasing the model size are due to the increase in capacity
(number of parameters) or the fact that such models use larger dimensionalities. Table 9 shows that
for DISSL on TinyImagenet, half of the gains are due to an increase in dimensionality (512 to 2048)
rather than the number of parameters (11M to 23M).10

(a) Train ISSL loss vs Acc. (b) Test vs test ISSL loss.

Figure 15: Training ISSL log loss is highly correlated with (a) linear probing accuracy on TinyIma-
geNet; (b) test ISSL log loss. Each 44 point corresponds to a CISSL model trained with different
hyperparameters as in Fig. 7b.

ISSL training log loss correlates with performance. In Fig. 7b we have seen that the test ISSL
log loss correlates highly with the downstream performance. Fig. 15a shows that the same holds
for the training log loss. We also see that the test and train ISSL log loss are very similar Indeed
Fig. 15b shows that train ISSL loss is highly correlated to test ISSL loss. Note that the testing loss
is slightly better likely due to freezing of the batch normalization layer. This suggests that in ISSL
generalization of the pretext task is not an issue. The points in Fig. 15a are a subset of those from
Fig. 7b as we did not originally log the training ISSL log loss.

(a) Distance to ETF during training (b) Train vs test dist. to ETF

Figure 16: ISSL representations tend towards ETFs both during training and on the test distribution of
TinyImageNet. (a) Distance of the representations learned by DISSL and DINO to an ETF. Both seem
to converge to ETFs although DISSL does it quicker. (b) Correlation between the training and the
test distance to ETFs for various CISSL and SimCLR models trained with different hyperparameters.

ISSL learns ETFs during training. Prop. 3 suggests that optimizing ISSL log loss achieves optimal
representations that are essentially ETFs. To investigate that, we computed during training the
distance between the representations in a batch and an ETF (see Appx. F.1). Fig. 16a suggests that
the train representations become closer to an ETF as training advances, i.e., ISSL log loss decreases.
Furthermore, this seems to hold both for our methods (here DISSL) and baselines (here DINO),
although our DISSL converges quicker and closer to an ETF.

10For reasons that we do not yet understand, d = 512 with ResNet50 gave NaNs.

55

Figure 17: Test representations learned by DISSL on 15 labels of ImageNet. The representations are
reduced from 8192 to 2 dimensions using UMAP [133] with 15 nearest neighbors and an effective
distance of 0.05 between embedded points. There are 15⇥ 50 = 750 examples.

ISSL learns ETFs even on test. A standard criticism (e.g. [111]) of neural collapse in supervised
learning is that the phenomena seem to only hold on the training set. For ISSL, we see in Fig. 16b that
neural collapse happens also on the test set (the values are not only correlated but nearly identical).
This is likely because equivalent classes given by standard augmentations are much more fine-grained
than those given by class labels.

ISSL clusters representations meaningfully. Fig. 17 shows (using UMAP) the representations
learned by DISSL on ImageNet. We see that DISSL clusters meaningfully each of the test examples
for a subset of 15 labels. In particular, we see that examples are either clustered with examples from
the same labels or from a similar one, e.g., “great white shark” with “tiger shark” or “coffee mug”
close to “coffeemaker”. This shows that the equivalence class perspective does not explain everything:
examples from semantically similar equivalence classes are typically clustered together. This suggests
that one should consider also the relation between equivalence classes to fully understand ISSL.

Table 10: DISSL results on ImageNet for different epochs, dimensionalities and multi-crops. 2056
batch size, ResNet50.

EPOCHS DIM. MULTI-CROPS TOP 1 ACC. (NO AUG) TOP 1 ACC. TOP 5 ACC.

100 2048 2⇥ 224 66.3 66.9 87.5
100 8192 2⇥ 224 67.7 68.9 88.5
100 8192 2⇥ 160 + 4⇥ 96 69.7 70.7 89.4
400 2048 2⇥ 224 70.4 71.1 90.2
400 2048 2⇥ 160 + 4⇥ 96 71.4 73.0 91.3
400 8192 2⇥ 160 + 4⇥ 96 72.6 74.0 91.9
800 8192 2⇥ 224 + 4⇥ 96 72.8 73.9 91.9

Additional DISSL results on ImageNet. Table 10 shows additional results of DISSL on ImageNet.
In particular, it shows that the trends we saw on TinyImageNet (Table 1) hold on ImageNet. Namely,
increasing dimensionality, training for longer, and coarsening augmentations give significant linear
probing gains. We show both results of a linear probe trained with augmentations (as is standard in
the literature) and without augmentations (as is more realistic in small compute regimes). Indeed,
without augmentations, one can featurize the training set once, which is much more efficient.

56

	Introduction
	Problem statement
	Invariant Self-Supervised Learning
	Idealized representations for ISSL

	Theoretical framework for linear probes F
	Characterizing optimal encoders for linear ISSL
	The impact of augmentations on downstream performance

	Practical ISSL objectives for linear probes F
	Contrastive ISSL (CISSL)
	Distillation ISSL (DISSL)

	ISSL for non-linear predictors F+
	Summary of insights and relation to previous work
	Experiments
	Summary and Outlook
	Appendix
	 Appendix
	Preliminaries
	Notation
	Assumptions
	Definitions

	Proofs and additional theoretical results
	Useful known lemmas
	Linear optimal (Sec. 3.1)
	Augmentations (Sec. 3.2)
	ISSL Log Loss (Sec. 4)
	Non-linear optimality (Sec. 5)

	Practical ISSL objectives
	Deriving contrastive ISSL (Sec 4.1)
	Deriving distillation ISSL (Sec 4.2)
	Minimal PyTorch implementation

	Relation to previous work
	Related work
	Taxonomy
	Additional insights in relations of previous work

	Limitations
	Reproducibility
	TinyImageNet experiments
	ImageNet experiments

	Additional experimental results
	Validating our theory in the idealized setting
	Validating our theory in a more practical setting
	Monitoring and understanding DISSL's training dynamics
	Realistic

