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Abstract

Despite the empirical successes of self-supervised learning (SSL) methods, it
is unclear what characteristics of their representations lead to high downstream
accuracies. In this work, we characterize properties that SSL representations should
ideally satisfy. Specifically, we prove necessary and sufficient conditions such
that for any task invariant to given data augmentations, desired probes (e.g., linear
or MLP) trained on that representation attain perfect accuracy. These requirements
lead to a unifying conceptual framework for improving existing SSL methods and
deriving new ones. For contrastive learning, our framework prescribes simple but
significant improvements to previous methods such as using asymmetric projection
heads. For non-contrastive learning, we use our framework to derive a simple and
novel objective. Our resulting SSL algorithms outperform baselines on standard
benchmarks, including SwAV+multicrops on linear probing of ImageNet.

1 Introduction

We study self-supervised learning (SSL), where the goal is to learn representations from minimal
supervision, such that simple probes trained on these representations achieve high downstream
accuracy. Recently, there has been many different SSL methods achieving impressive empirical results
(e.g. SimCLR [1], SwAV [2]) using label-preserving augmentations (e.g. cropping or color jittering)
as supervision. We dub this setting invariant SSL (ISSL). Despite these empirical successes, it remains
unclear how these various SSL methods relate to one another, how to improve them, and how to derive
new ones. Our goal is to provide a simple conceptual framework to think about those questions.

To derive such a framework, we ask ourselves: what are the ideal requirements that ISSL representa-
tions should aim to satisfy? We prove necessary and sufficient requirements to ensure that probes from
a specified family, e.g. linear or multi-layer perceptron (MLP), perfectly classify any task that is invari-
ant to desired data augmentations. This complements theoretical work in ISSL [3–8], which analyze
specific ISSL algorithms. Our work instead focuses on properties of representations that should serve
as a goal for any ISSL algorithm. These ideal properties are: (i) desired predictors should be able to
distinguish positive and negative examples from the representation; (ii) the dimensionality of the rep-
resentation should be sufficiently large; (iii) augmented inputs should map to the same representations.

Previous ISSL methods can be seen as approximations of our ideal requirements. Using our require-
ments, we derive simple improvements to those approximations as well as new ISSL objectives. Our
theory thus results in a unifying conceptual ISSL framework, with practical prescriptions including:

• improvements to existing methods, such as increasing the dimensionality of representations and
using asymmetric projections heads, which lead to 5% point gains on TinyImageNet;

• a novel non-contrastive ISSL objective that outperforms all baselines, including
SwAV+multicrops, by at least 1% point on linear classification of ImageNet;

• extensions of ISSL algorithms to learn representations that are better suited for non-linear probes.
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2 Problem statement

2.1 Invariant Self-Supervised Learning

... 

 

    
Figure 1: ISSL setting. (Top) 1D inputs, partitioned
into 3 equivalence classes (shapes), are encoded
by � into a 2D representation. (Bot. left) 3 ⇠-
invariant tasks, where labels are the colors. (Bot.
right) examples of probes for 2 of the invariant tasks.

SSL learns an encoder � that maps an input x
from a finite space X (e.g., 256⇥ 256 images)
into a representation �(x) 2 R

d. Given the
encoder and a dataset Dt drawn from some
task of interest pt(X,Y ), we fit a classifier f
from a desired family of probes F . Families
of probes are sets of k-ary classifiers for any
k � 2 such as linear or MLP probes. For clar-
ity, we consider linear probes F until Sec. 5.

Supervision for ISSL comes from unlabeled data pX and label-preserving augmentations. Augmenta-
tions are ways of sampling “positive” x, x+ examples that are equivalent for downstream classification
tasks. We formalize this using an equivalence relation x ⇠ x+ that partitions the inputs X into
equivalent classes [x] 2 X/⇠, and we consider the following downstream tasks T whose labelings
are deterministic and constant within these classes (we allow stochastic labeling in appendices).

Definition 1. The ⇠-invariant tasks T , is the set of all input-label distributions pt(X,Y ) such that
the labeling pt(Y |X) is deterministic and invariant to ⇠, i.e.,

for all pt 2 T , x, x+ 2 X : x ⇠ x+
=) argmax

y2Y
pt(y|x) = argmax

y2Y
pt(y|x+

). (1)

As an illustration, consider the 3 classes (triangle, square, and circle) shown in Fig. 1. Then T consists
of all tasks that are predictable from those shapes, e.g., recognizing shapes with vertices (blue/orange
in Fig. 1) or recognizing the shape (yellow/red/purple in Fig. 1). Importantly, equivalence classes (here
shapes) are different from—and essentially refinements of—downstream classes Y (here colors). Note
that equivalence relations can model arbitrary transformations including cropping and adding Gaus-
sian noise, which contrasts with typical restrictions to augmentations defined by group actions[9–11].

2.2 Idealized representations for ISSL
In this section, we define the optimal encoders, those that induce idealized representations that ISSL
should be striving for. Although such encoders exist, they will likely not be learned in practice. Those
idealized representations will nevertheless allow us to derive practical algorithms in Sec. 4. Note
that our approach to defining ideal representations is to take into account how they will be used
downstream, and thus depends on the desired family of probe F and potential invariant tasks T .

The goal of ISSL is to learn representations from which (typically simple) probes f 2 F classify well
downstream tasks pt 2 T , i.e., they achieve low 0-1 risk Rt(�, f) := Ept(X,Y )[1[Y 6= f(�(X)))]].
Ideally, for any task of interest pt 2 T there will be a probe that can classify it perfectly.

Definition 2. An encoder � is population optimal for T ,F , denoted as � 2 �pop, iff predictors
realize the Bayes error on any invariant task, i.e., for all pt 2 T we have inff2F Rt(�, f) = 0.

Population optimality ensures the existence of perfect downstream probes, which would be learned
with infinite downstream data. In practice, however, predictors will be trained from finite datasets
Dt of possibly small size n with empirical risk minimization. When n is small a fitted probe (ERM)
f̂ 2 bF(Dt,�) := argminf2F |Dt|�1

P
x,y2Dt

1[y 6= f(�(x)))] could be a terrible population
predictor even when the underlying encoder is population optimal. Ideally, representations would
thus also guarantee that any ERM performs as well as possible for any desired task and dataset size
n. This suggests minimizing the following worst-case expected risk over tasks and ERMs.

Wn(�,F , T ) := sup
t2T

EDt
iid⇠pn

t (X,Y )

"
sup

f̂2bF(Dt,�)

Rt(�, f̂)

#
. (2)

Definition 3. An encoder �⇤ is sample optimal for T ,F iff if it is population optimal and minimizes
the worst-case expected risk of ERMs for arbitrary sample sizes, i.e.,

for all n � 1 : �⇤ 2 argmin
�2�pop

Wn(�,F , T ). (3)
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(a) M not predictable (b) M non-lin. predictable (c) M linearly predictable (d) Tasks are not lin. pred. (e) Population optimal

Figure 2: Representations are population optimal for linear F iff their dimensionality is sufficiently
large and equivalence classes M(X) are linearly classifiable. The first 2 figures show representations
from which M(X) is (a) never or (b) only non-linearly classifiable. Although (c) ensures linear
classification of M(X), there exist invariant tasks, e.g. (d), that are not classifiable linearly. (e) Linear
classifiability of M(X) ensures population optimality iff the dimensionality is at least |X/⇠|� 1.

3 Theoretical framework for linear probes F

3.1 Characterizing optimal encoders for linear ISSL
In this section, we characterize all sample-optimal encoders (Def. 3), with simple properties that give
insights into the form of the idealized representation. The key for our theory is that any ⇠-invariant
function g can be written as a composition between some function cg and a maximal invariant M
[12], i.e., g = cg �M where M : X ! {1, . . . , |X/⇠|} indexes the equivalence class:

for any x, x+ 2 X : x ⇠ x+ () M(x) = M(x+
). (4)

To build intuition for the final characterization, let us first discuss population optimal encoders (Def. 2)
for unconstrained probes, then linear probes, and finally sample optimality (Def. 3).

Unconstrained probes. By Def. 1, labels of downstream tasks pt 2 T are ⇠-invariant. Labels can
thus be written as some function ct of M , i.e., argmaxy pt(y|X) = ct(M(X)). This shows that
M(X) contains all and only information about desired tasks T . If probes are unconstrained, an
encoder is population optimal iff M(X) is predictable/classifiable, i.e., there exist an hM such that
M(X) = hM (�(X)). Indeed, this ensures that the probe defined by ct �hM can classify the task pt.

Linear probes F . The problem with constrained probes is that they might not be able to use the
information about desired tasks. In particular, the previous probe might not be linear ct � hM 62 F .
As an illustration, consider 4 equivalence classes: cats, dogs, oranges, and lemons. Fig. 2b shows a
representation from which M(X) is predictable but invariant tasks are not linearly classifiable. In
fact, even when M(X) is linearly predictable, i.e., hM 2 F as in Fig. 2c, downstream labels might
not be, i.e., ct � hM 62 F as shown in Fig. 2d. By standard VC dimension arguments [13, 14], such
binary task is linearly predictable if the representation’s dimensionality d is one less than the number
of equivalence classes |X/⇠|� 1, as in Fig. 2e. Building on this intuition we prove that population
optimal encoders are essentially1 those that induce d � |X/⇠|� 1 dimensional representations from
which M(X) is linearly predictable.

train

test

Figure 3: Invariance of population-optimal en-
coders is (a) necessary and (b) sufficient to en-
sure that there exists no bad ERM.

Sample optimality. Although population optimal-
ity ensures the existence of a perfect linear probe,
ERM probes trained on finite samples might still
be bad due to generalization issues (Fig. 3 left).
Intuitively, one can remove such bad ERMs by
mapping equivalent examples to the same repre-
sentation, i.e., by using invariant encoders. Indeed,
this ensures that ERMs that correctly predict one
example in an equivalence class also correctly
predict all the other ( Fig. 3 right). We prove that
such invariance of population optimal encoders is
necessary and sufficient for sample optimality.

1The difference with learning theory is that instead of (binary) shatterability of all examples, we want k-ary
shatterability of all equivalence classes from representations. The key is that both notions coincide for specific
probes (e.g. linear) and invariant encoders, which are necessary for sample optimality.
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Putting all together gives the following necessary and sufficient properties of sample-optimal encoders.

Theorem 1. An encoder �⇤ is sample optimal for ⇠-invariant tasks T and linear F if and only if

• F-predictability of M : there exists a max. invariant M and an f 2 F s.t. M(X) = f(�⇤
(X));

• Invariance: �⇤ is ⇠-invariant, i.e., for any x, x+ 2 X we have x ⇠ x+
=) �⇤

(x) = �⇤
(x+

);
• Dimensionality: the effective dimensionality of the representations is at least one less than the

number of equivalence classes, i.e., dim(span({�⇤
(x)|x 2 X})) � |X/⇠|� 1.

3.2 The impact of augmentations on downstream performance
Let us compute the worst-case excess risk Wn(�,F , T ) of sample optimal encoders and show its
dependence on the invariance structure. The key is that since sample optimal encoders are invariant
(Theorem 1), ERMs only need to be trained on a single example per equivalence class to perfectly clas-
sify all other examples from that class. The risk then depends on the proportion of equivalence classes
seen when training the probe, which can be computed in closed form as a function of the number of
equivalence classes |X/⇠| and downstream samples n. For other similar results refer to Appx. B.3.

Proposition 2. The worst expected risk of a sample optimal �⇤ for ⇠-invariant tasks T and any F is

Wn(�
⇤,F , T ) =

✓
1� 1

|X/⇠|

◆n

(5)

Prop. 2 shows that fewer equivalence classes, i.e., coarser ⇠, leads to better downstream sample
efficiency. Of course, the convergence rate will be slower for practical encoders than for sample
optimal ones. The result nevertheless suggests that good augmentations should be as strong as
possible (induce coarser ⇠) while being label-preserving. Examples of coarse augmentations are
those from CLIP [15], which map many images to similar sentences.

4 Practical ISSL objectives for linear probes F

The main remaining question is how to practically enforce requirements from Theorem 1. In this
section, we derive simple objectives that learn optimal encoders in ideal settings (infinite data, perfect
optimizers, universal approximators). In the process, we shed light on why previously proposed ISSL
methods work, and how to improve them in practice.

Figure 4: sETF are
idealized representa-
tions that collapse
same-class examples
and maximize the an-
gle across classes.

Our key insight is that we can learn sample-optimal encoders by jointly
training an encoder and a logistic regression to predict M(X) from the
representations. Indeed, the resulting representations will be characterized
by three properties, each of which implies a requirement from Theorem 1
(F-predictability, invariance, effective dimensionality). First, the repre-
sentations will allow linear predictability of M(X) due to the linearity of
logistic regression. Second, the variance of same-class representations will
be minimized due to Jensen’s inequality. Finally, the effective dimensionality
will be maximal. Indeed, logistic regression favors maximal angles between
representations of different classes to increase the confidence of the predicted
class. Specifically, the representations learned by this joint procedure form a
simplex equiangular tight frame (sETF)—as illustrated in Fig. 4 and discussed
in the neural collapse literature [16–21]—and we prove that those are optimal.

More formally, we prove in Prop. 3 that high dimension encoders trained to minimize the following
multinomial logistic regression of M(X), dubbed ⇠-ISSL log loss, will be sample optimal,

LI(�; pX) := inf
w2W1

EpX

"
� log

exp
�
w(M(X))

>�(X)
�

P|X/⇠|
m0=1 exp(w(m0)>�(X))

#
, (6)

where w maps classes to weights, e.g., by indexing a weight matrix. Following previous work on
neural collapse, we assume for this section that classes are equiprobable pX([x]) = 1/|X/⇠|, and that
classifier’s weights and representations are unit-normalized, i.e., w 2 W1 := {1, . . . , |X/⇠|} ! S
and � 2 �1 := X ! S where S denotes the (d�1)-sphere (these assumptions can be relaxed e.g.
[22, 23]). We then have the desired relation between ISSL log loss and sample-optimal encoders.
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Proposition 3. Let pX be a distribution with support X and equiprobable equivalence classes
pX([x]) = 1/|X/⇠|, 8x 2 X . If d � |X/⇠|� 1 then any unit-normalized encoder that minimizes the
⇠-ISSL log loss �⇤ 2 argmin�2�1

LI(�; pX) is sample-optimal for ⇠-invariant tasks and linear F .

Prop. 3 shows that the ISSL log loss is a perfect pretext task in ideal settings. This suggests optimizing
the ISSL log loss in practice and provides a formal relation between self-supervised and classical
supervised learning. The challenge is that we typically neither have access to the maximal invariant
M(X) nor the number of equivalence classes |X/⇠| required to compute the denominator of Eq. (6).
Instead, knowledge about the equivalence structure comes from data augmentations A(X̃|X) from
which we can sample examples that are equivalent to the input X̃ ⇠ X .

Having established our framework, we can re-interpret previous ISSL methods as practical approxima-
tions of the ISSL log loss using data augmentations (e.g., SimCLR, SwAV, DINO [24], SimSiam [25]).
These approximations are nevertheless suboptimal: none of them learn sample- (nor population-)
optimal encoders in idealized settings. By directly deriving ISSL methods from Eq. (6), we will
prescribe improvements to previous ISSL objectives that ensure that sample-optimal encoders are
learned in idealized settings. We broadly categorize prior methods into two families depending on
whether they explicitly select the number of equivalence classes |X/⇠| or if it is implicitly inferred
from augmentations. We call these approaches distillation and contrastive ISSL respectively. For
derivations and Pytorch implementation see Appx. C.

4.1 Contrastive ISSL (CISSL)

augment

represent

project

(a) SimCLR

augment

represent

project

(b) CISSL

Figure 5: CISSL corresponds to SimCLR with
a single (asymmetric) projection head g0(z+)>z.
This ensures linear predictability of downstream
tasks, which will be computed by Wt

>z.

Inspired by previous contrastive objectives [1,
26–28], we show how to optimize the ISSL log
loss using data augmentations and negative sam-
ples to remove the need of knowing M(X) and
the number of classes |X/⇠|. The resulting ob-
jective, dubbed CISSL, corresponds to SimCLR
using only a projection head g on one branch.
See Fig. 5. This asymmetry is necessary to
learn population optimal encoders for linear F .

CISSL bypasses the need for M(X) by noticing
that it only appears in the ISSL log loss through
the class weights w(M(X)). CISSL thus learns
a function g mapping equivalent (augmented)
inputs X̃ to w(M(X̃)). Such mapping exists
since M is invariant, e.g., g := w �M .

When augmentations satisfy the Markov Chain X̃ �M(X)�X , we show that we can replace the
class weights w(M(X)) in the ISSL loss by g(X̃), where g is optimized over. Intuitively, this is
because predicting X̃ contains only information about M(X) due to the data processing inequality.

The only remaining challenge is computing the denominator of Eq. (6) without summing over the
unknown classes X/⇠. To do so we use ranking conditional noise contrastive estimation (NCE;
[29–31]). NCE replaces classification of equivalence classes by classification of positives in a batch
X̃ := {X̃+, X̃�

1 , . . . , X̃
�
k } where the positive X̃+ is sampled from the conditional A(X̃ |X), while

the k negatives X̃�
i come from the marginal A(X̃) = EpX [A(X̃|X)]. Using Monte Carlo (MC)

estimates with an unlabeled dataset D i.i.d.⇠ pX we get our final empirical CISSL objective

L̂C(�;D) := inf
g2SX

X

x2D
Ep(X̃|x,D)

"
� log

exp g(X̃+
)
>�(x)

P
X̃02X̃ exp g(X̃ 0)>�(x)

#
. (7)

By Prop. 3 and NCE’s consistency [31], encoders trained with CISSL �⇤ 2 argmin�2�1
L̂C(�;D)

are sample optimal for linear F in our ideal setting assumption (|D| ! 1 and unconstrained g)
and when X̃ �M(X)�X forms a Markov Chain. While consistency (and thus optimality) holds
for k � 1, more negatives k improves statistical efficiency [31].

Typically X̃,X take value in the same space (e.g. images). If so, we can tie parameters by encoding
X̃ , i.e., we can replace g by g0 � � where g0 : R

d ! S is called a projection head. The logits
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inside of Eq. (7) are then computed by g0(�(X̃))
>�(x) as shown in Fig. 5b. This is very similar to

SimCLR’s objective g0(�(X̃)))
>g0(�(x)) shown in Fig. 5a. The difference is that, by projecting the

current representation, SimCLR learns encoders that are not even population optimal for linear F . In
contrast, CISSL learns sample optimal encoders in ideal settings. Intuitively, this is because CISSL
trains the representations in the same way as they will be used in downstream tasks pt. Indeed,
representations �(X) will be dotted with the downstream tasks’ weights Wt

>�(x) to compute logits.
In ISSL, representations �(x)—rather than their projections g0(�(x))—should thus be used in the
inner product with ISSL weights w(M(X)) = g0(�(X̃))) to compute logits. CISSL thus derives,
from first principles, an asymmetric use of projection heads.

4.2 Distillation ISSL (DISSL)

Figure 6: DISSL. The teacher (top
branch) is trained with the top loss to
ensure M̂ is a maximal invariant r.v.
The student (bottom branch) distills
the teacher by predicting M̂ .

In practice, CISSL requires contrasting many negatives. To
avoid contrastive estimation, we can directly approximate
M(X)—instead of the weight w(M(X))—so that the
denominator of Eq. (6) can be computed exactly. The
resulting method, dubbed DISSL (Fig. 6), is a simpler and
theoretically-grounded version of non-contrastive losses (e.g.
SwAV, DINO, SimSiam). The challenge and main difference
between each of those methods is how they estimate M(X).

As M(X) is discrete, we use a conditional categorical
distribution q(M̂ |X) to estimate M(X) with a random
variable M̂ . Replacing terms in the ISSL log loss then gives
the following objective. Differences with Eq. (6) are in red.

inf
w2W1

EpXq(M̂ |X)

h
� log s�,w(M̂ |X)

i
, s�,w(m |x) =

exp
�
w(m)

>�(x)
�

PC
m=1 exp(w(m)>�(x))

, (8)

To highlight similarities with previous methods [2, 24, 32] we refer to Eq. (8) as distilling the
teacher q(M̂ |X) into the student s�,w(M̂ |X). Importantly, Eq. (8) is exactly the ISSL log loss if
the teacher outputs a maximal invariant random variable, i.e., M̂ = M(X). By Prop. 3, distillation
thus learns sample-optimal encoders when the teacher takes at least C � |X/⇠| values and satisfies
the following requirements, which correspond to the definition of maximal invariance (Eq. (4)).

Deterministic the teacher is a deterministic distribution maxm2{1,...,C} q(m |X) = 1;
Invariant the teacher maps positives together x ⇠ x+

=) q(M̂ |x) = q(M̂ |x);
Maximal the teacher maps negatives separately x 6⇠ x�

=) q(M̂ |x) 6= q(M̂ |x�
).

Intuitively, these requirements ensure that the teacher clusters examples by equivalence classes,
which will then be classified by the student. There are many ways of enforcing such requirements. In
the following, we use information-theoretic quantities (entropies and KL divergences) to jointly train
the teacher (online clustering) and student. Such quantities have the advantage of being interpretable
and computable in closed form for the categorical distributions given by our teacher and student.

Determinism and Invariance. Both properties hold if and only if for any equivalent example x ⇠ x+

the cross-entropy of the teacher’s outputs is minimized Eq(M̂ | x)[� log q(M̂ |x+
)] = 0. Indeed,

zero cross-entropy simultaneously minimizes the conditional entropy H[M̂ |x] = 0 (equivalent to
determinism) and the KL divergence DKL[q(M̂ |x)kq(M̂ |x+

)] = 0 (equivalent to invariance).

Maximality. A natural way of enforcing maximality is to train the teacher to predict differently
negatives x 6⇠ x�. This requires accessing batches of negatives, which we wanted to avoid with
DISSL. Instead, assume that we know (or have a prior on) the true distribution of equivalence classes
p(M(X)). Then a deterministic and invariant teacher is maximal if and only if the KL divergence
between its marginal q(M̂) = EpX [q(M̂ |X)] and the true one is minimized DKL[q(M̂)kp(M(X))] =

0. We can thus avoid contrasting negatives using (a prior on) the distribution of equivalence classes.

Using a Lagrangian relaxation (with multipliers �,�) of the teacher’s constraints with an MC
estimate of the distillation loss (Eq. (8)) we get the following empirical DISSL loss L̂D(�;D) :=

inf
q,w

�DKL

h
q(M̂)

���p(M(X))

i

| {z }
Maximality

�
X

x2D
EA(X̃|x)q(M̂ | x)

h
� log q(M̂ | X̃)

| {z }
Det. and Inv.

+ log s�,w(M̂ |x)
| {z }

Distillation

i
. (9)
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Algorithm 1 Batched DISSL

Require: head g, weights W , enc. �,
batched inputs X , aug. A, hyp. �, �.

1: X̃, X̃+  sample(A(X̃ |X), 2)

2: q(M̂ |X̃) = softmax(g(�(X̃))

3: q(M̂ |X̃+) = softmax(g(�(X̃+))

4: s(M̂ |X̃+) = softmax(WT�(X̃+))

5: q(M) = batch_avg(q(M |X̃))
6: mxml =

P
m q(m) log q(m)

7: det_inv =
P

m q(m|X̃) log q(m|X̃+)

8: dstl =
P

m q(m|X̃) log s(m|X̃+)
9: return � ⇤mxml� � ⇤ det_inv� dstl

In ideal settings (|D| ! 1, unconstrained q, known
p(M(X))) and for �,� ! 1 we show that encoders
trained with DISSL are sample optimal for linear F and
tasks that are invariant to the equivalences defined by the
connected components of the augmentation graph [8]. If
the marginal is unknown, we follow the MaxEnt [33] and
use a uniform prior p(M(X)) = Unif(1, C). The KL in
Eq. (9) then corresponds to maximizing entropy H[M̂ ].

As with CISSL, when X̃,X are in the same space, we
tie parameters by encoding X̃ before the teacher, i.e.,
q(M̂ |X) = softmax(g0(�(X))) for a head g0 : Rd !
R

C . Algorithm 1 and Fig. 6 illustrate DISSL with a uni-
form prior, and a marginal q(M̂) estimated from batches.

DISSL is one of the many distillation methods that can be derived from our teacher’s requirements.
These requirements generally lead to a framework for deriving, comparing, and analyzing distillation
objectives. In Appx. D we provide a taxonomy of 12 previous SSL methods from this perspective—
none of which recover sample optimal encoders. Typically, previous methods favor: (i) determinism
by “sharpening” the teacher with a temperature parameter; (ii) invariance by making matching
the teacher and student on equivalent inputs q(M̂ |x+

) ⇡ s�,w(M̂ |x); (iii) maximality through
optimization tricks (e.g. stop gradients or momentum encoder) to avoid a constant teacher —referred
to as “collapsing” [25, 34–36]. Note that avoiding constant collapse q(M̂ |x0

) = q(M̂ |x) for any
x, x0 2 X is insufficient, e.g., mapping half the inputs to a constant is also undesirable. Maximality
formalizes the desired requirement: non-equivalent examples should not be mapped together.

5 ISSL for non-linear predictors F+

Linear probes F are standard for evaluating representations [27, 37, 38]. However, if the goal is to
maximize performance it is natural to consider non-linear predictors F+. The question then becomes
how should we learn optimal representations for any F+? In Appx. B.5 we extend our framework
to certain non-linear probes, such as neural networks, that separate into a hidden component h and
linear layer, i.e., f(·) = WTh(·). We informally summarize the theory and implications below.

Theory. There are two main differences between our characterization of optimal encoders for linear
and non-linear probes. First, encoders should ensure predictability of M(X) for the desired F+.
Second, the dimensionality requirement decreases with the complexity of F+, e.g., for universal F+ it
is d � 1. More generally, the necessary dimension and the sufficient dimension for optimality do not
coincide and respectively depend on the predictors’ VC dimension [13] and memory capacity [39].

Implications. Both theoretical differences lead to direct implications for non-linear ISSL. First, we
can decrease the dimensionality when performing ISSL for more complex non-linear probes. Second,
we should use a projection head that ensures the predictability of the maximal invariant with using the
desired probes F+. Similarly to the linear case, we should match how the representation is used in
the ISSL log loss and downstream tasks. We should thus apply the non-linear predictor h in a similar
asymmetric way. For CISSL we should thus compute the right hand side of Fig. 5 as g(�(X̃))h(�(x)).
For DISSL, we should change the line 4 of Algorithm 1 to s(M̂ |X̃+

) = softmax(WTh(�(X̃+
))).

6 Summary of insights and relation to previous work

Let summarize our framework’s main insights and their relation to previous work. Details in Appx. D.

Dimensionality. Theorem 1 shows large representation’s dimensionality is needed to ensure probes
can classify all invariant tasks (note: this is different from the projection’s dimensionality analyzed in
[1, 40]). This suggests: (i) increasing the dimensionality of the representation; and (ii) ensuring that
representations do not live in a lower dimensional subspace. Although the first has surprisingly not
been investigated in SSL, there have been recent empirical analyses about the second [41, 42].

Projection heads. Secs. 4 and 5 theoretically show how to choose projection heads, namely, one
should be as large as possible while the other should have the architecture of downstream probes.
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To our knowledge, we are the first to relate the architecture of the probing family and the projection
head. Furthermore, our theory suggests why projection heads empirically improve performances
[1, 25, 43] in general SSL, i.e., beyond avoiding collapsing in non-contrastive learning [25, 36].

Augmentations. Prop. 2 shows the benefit of using coarse label-preserving augmentations, by
proving the exact relation between optimal sample efficiency and the number of equivalence classes.
This gives a new theoretical perspective on the use of augmentations that remove a lot of information
of the input, which have been suggested to be useful for many different reasons [12, 44–48].

DISSL. In Sec. 4 we derive DISSL to learn optimal encoders in ideal settings, contrary to prior work.
DISSL follows recent methods [49–51], in particular SwAV and DINO, that learn representations by
jointly predicting and learning clusters of examples. DISSL/DINO/SWAV each distill a categorical
teacher but differ in how they enforce its maximality. DINO does it implicitly through optimization
tricks, e.g., exponentially moving averages and stop-gradients. SwAV explicitly enforces maximality
by equiprobably clustering a queue of examples using Sinkhorn’s algorithm [52]. DISSL is also ex-
plicit but uses a more efficient max entropy regularization (no queue/stop-gradient/internal algorithm).
Furthermore, DISSL’s student uses a linear projection head to ensure good linear probing (Sec. 4.1).

Theoretical SSL. Theorem 1 characterizes optimal encoders for ISSL. This contrasts with standard
theoretical work in SSL that typically analyze specific SSL algorithms [3, 5, 6, 8, 53–55] and / or
focus on upper-bounding downstream performance [4]. The advantage of our theory is that it provides
a simple unifying framework from which we can derive a variety of SSL methods and actionable
insights. The downside is that by distancing itself from specific algorithms, the framework does not
provide guarantees outside of ideal settings. We thus see our theory as complementary to prior work.

7 Experiments

The experiments in the main paper focus on evaluating our frameworks’ prescriptive implications.
For more results see Appx. G. For experimental details see Appx. F and our GitHub repository.

In summary, our experimental results show that: (i) CISSL/DISSL outperform their respective
baselines on standard benchmarks as suggested by Sec. 4; (ii) increasing dimensionality improves
downstream probing as suggested by Theorem 1; (iii) coarser augmentations improve sample effi-
ciency as in Prop. 2; (iv) smaller ISSL log loss improves downstream performance as suggested by
Prop. 3; (v) projection heads should be related to probing family as discussed in Secs. 4 and 5.

For the first experiments, we use TinyImageNet [56], 300 pretraining epochs, and ResNet18s. Note
that for ResNet18s the dimensionality of the representation (res5avg) is d = 512. For contrastive
baselines we use SimCLR. For distilling baselines we use the best over DINO, SwAV, SimSiam.
We use standard TinyImageNet augmentations [34] (color jittering, grayscaling, cropping) with a
parameter controlling the probability and strength of augmentations to study the effect of coarsening.

Table 1: Our prescriptive implications im-
proves ISSL for linear probes on TinyIma-
geNet with ResNet18 encoders. 3 seeds.

CONTR. DISTIL.

BASE. (SIMCLR | DINO) 44.9 ±0.2 43.5 ±0.2

OURS (CISSL | DISSL) 45.8 ±0.0 45.5 ±0.1

+ DIM. " 47.6 ±0.1 47.9 ±0.1

+ EPOCHS " 48.7 ±0.1 49.2 ±0.1

+ COARSE AUG. 51.0 ±0.1 50.6 ±0.2

CISSL/DISSL improve linear probing
Table 1 shows that each of our prescriptions sig-
nificantly improve distillation and contrastive ISSL.
“Ours” vs “Base” shows that removing one non-linear
projection head (as in Fig. 5) gives a 1% gain in con-
trastive learning, while our new distillation objective
achieves 2% gains compared to the best distillation
baseline. “dim. "” shows that increasing the dimen-
sionality of representation 512 ! 2048 further im-
proves linear probing by 2%. “Epochs "” and “coarse
aug.” show that training for longer (300 ! 1000

epochs ) and using coarser augmentations both fur-
ther improve performance by 1–2%. Altogether our framework’s insights significantly improve linear
probing accuracy: 6% gains for contrastive learning and 7% for distillation.

Coarse augmentations improve sample efficiency. Prop. 2 suggests that coarser label-preserving
augmentations improve downstream sample efficiency. We test that by training four DISSL encoders
with augmentations of varying strengths ([25%, 50%, 100%, 200%] relative to standard augmenta-
tions) and evaluating them at different downstream samples sizes. As suggested by the theory, Fig. 7a
shows that stronger label-preserving augmentations improve sample efficiency.
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(a) Augmentations (b) ISSL log loss (c) Dimensionality

Figure 7: As suggested by our theory: (a) coarsening augmentations improves sample efficiency;
(b) decreasing ISSL log loss improves representations, which can be achieved by longer training;
and (c) increasing the representation’s dimensionality improves performance for linear F but less so
for MLPs F+. Y-axis is TinyImageNet probing performance. Each point is obtained by sweeping:
(a) augmentation strengths for DISSL and downstream sample sizes; (b) CISSL’s optimization
hyperparameters including epochs; and (c) the dimensionality of CISSL’s representations.

ISSL log loss correlates with performance. Previous work [57] suggested contrastive losses may
not predict probing performance. On the contrary, Prop. 3 shows that minimal ISSL log loss implies
the optimality of encoders if d is large. This suggests that, for fixed augmentations, ISSL log loss is
highly related to performance. To test this relation, we trained 80 CISSL models with various hyper-
parameters, while fixing augmentations and negatives k. Fig. 7b shows that the test ISSL loss indeed
correlates with probing accuracy (gray points). Appx. G.4 shows similar results for the train ISSL loss.

Longer training decreases ISSL log loss. An efficient way of decreasing ISSL log loss is longer
training (blue points in Fig. 7b only vary the number ISSL epochs). Prop. 3 thus provides an
explanation of the well-known performance gains of longer ISSL training [1, 58]. Namely, longer
training decreases ISSL log loss, which results in representations that are closer to optimality.

Increasing dimensionality improves performance. Theorem 1 shows that linear ISSL requires a
dimensionality of d = |X/⇠| � 1 to ensure predictability of all invariant tasks. In practice, the
number of equivalence classes is most likely very large. Although such dimensionality is impractical,
it does suggest increasing the dimensionality beyond the d = 512 of ResNet18s. To test this, we train
CISSL with a larger dimensionality by increasing the output channels before the average pooling
layer. To keep the number of parameters comparable, we use bottlenecks or low-rank linear layers
before and after the representations layer as detailed in Appx. F. Fig. 7c shows that increasing the
dimensionality has a significant effect on downstream performance for linear F (blue).

Previous results concern linear F which are standard for ISSL evaluation. In practice, one would
likely use more complex probes F+ to improve results. In Sec. 5 we discussed how to perform ISSL
for F+. In the following, we evaluate ISSL for MLPs F+ with two hidden layers of 2048 units.

Table 2: MLP probes outperform linear ones
on TinyImageNet when using MLP ISSL.

F ISSL F EVAL ALL 10 SHOT

D
IN

O

- MLP 44.7 ±0.3 22.0 ±0.2

D
IS

SL

LIN. LIN. 45.9 ±0.0 25.3 ±0.0

LIN. MLP 46.4 ±0.1 25.6 ±0.0

MLP MLP 47.5 ±0.2 26.1 ±0.1

Performing ISSL for MLPs F+. Table 2 shows
that MLP probes (“F EVAL: MLP”) outperforms lin-
ear ones (“F EVAL: lin.”) even in few-shot regimes
(10 shot). Furthermore, when predicting with MLP
probes it is desirable to train the ISSL encoders for
MLPs (“F ISSL: MLP”) instead of linear probes (row
4 vs 3). As discussed in Sec. 5, the only difference
between DISSL for different probes is that the stu-
dent’s representation is projected using a head with
the same architecture as downstream probes.

Dimensionality affects less MLPs F+. In Sec. 5 we saw that the optimal dimensionality d decreases
for more complex predictors F+. Fig. 7c indeed shows that larger dimensions result in smaller gains
when the training and evaluation probe are MLPs F+ (orange) compared to linear ones F (blue).

Given encouraging TinyImageNet results, we investigated whether our objectives can be used as a
replacement for standard objectives on ImageNet [59]. We specifically replaced SimCLR with CISSL
and SwAV with DISSL in VISSL’s codebase [60] without modifying hyperparameters.
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Table 3: Our models outperform baselines on ImageNet. All models use ResNet50, 100 epochs, 2560
batch size. For our models, we increase the dimensionality of the representations (2048 ! 8192).

SIMCLR SWAV BARLOW T. CISSL DISSL
65.1 64.6 66.1 67.7 68.9

Our models outperform baselines on ImageNet. Table 3 shows that both CISSL and our novel
DISSL objective significantly outperform all considered baselines, including SwAV by a 4%, when
using standard augmentations. For CISSL we found (contrary to Table 1) that gains compared to
SimCLR were mostly due to increasing the dimensionality of the representation.

Given encouraging results on standard augmentations, we compared the performance of DISSL with
a near SOTA model: SwAV trained with their special multi-crop augmentations.

Table 4: Our DISSL outperforms SwAV
using 2 ⇥ 160 + 4 ⇥ 96 multi-crops on
ImageNet. 2560 batch size, ResNet50.

100 EPOCHS 400 EPOCHS

SWAV 69.5 73.5
DISSL 70.7 74.0

DISSL is competitive with SOTA models at scale.
Table 4 shows that DISSL outperforms SwAV. Combined
with Table 3 this suggests that DISSL works well in
different settings. This is encouraging given the lack
of tuning and the simplicity of DISSL’s out-of-the-box
objective. In contrast, SwAV requires stopping gradients,
storing a queue, running Sinkhorn’s algorithm, and
freezing certain parameters during initial training steps.

Table 5: DISSL is competitive on transfer tasks. Same models as in Table 4 evaluated by linear probes.

FOOD CIFAR10 CIFAR100 CARS AIRCRAFTS DTD PETS CALTECH FLOWERS

SWAV 75.5 92.0 76.2 58.2 49.1 72.6 86.9 92.0 94.7
DISSL 77.9 93.6 77.6 62.2 48.1 73.9 88.0 91.5 95.3

DISSL is competitive on transfer. Table 5 shows that DISSL generally outperforms SwAV on the
standard transfer benchmarks from [61] even though our theory does not discuss transfer.

8 Summary and Outlook

We presented a simple conceptual framework to understand, compare and improve ISSL methods.
Inspired by recent work on optimal representations for supervised [62] and robust [63] learning, we
derived such a framework by studying algorithmic-agnostic goals for ISSL. In particular, Theorem 1
provides the minimal and sufficient requirements for optimal encoders. On the algorithmic side, Sec. 4
uses our framework to derive simpler and theoretically-motivated variants of prior SSL objectives. Al-
together our framework provides actionable insights for ISSL such as how to choose: SSL algorithms,
the dimensionality of the representations, projection heads, and augmentations. On the empirical
side, Sec. 7 shows that our prescriptions leads to significant gains on linear probing benchmarks.

There are many limitations that should be addressed for a more realistic prescriptive framework
for ISSL. See Appx. E for more details. First, our theory is binary, e.g., augmentations are either
label preserving or not, and encoders are optimal or not. Although our framework likely captures
the right intuition, nuance would be more realistic. Second, we consider unconstrained encoders
�, dimensionality, and infinite unlabeled data. As a result, our framework cannot currently improve
the computational or data efficiency of the pretraining phase. Finally, we consider all invariant tasks
T even though only a subset of those are meaningful. Despite those limitations, we showed that
our framework’s insights lead to substantial improvements in ISSL performance.
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