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S1 Connections to Other GP Approximations

S1.1 Pivoted Cholesky Decomposition

Theorem S3 (Pivoted Cholesky Decomposition)
Let (ji)ni=1 be a set of indices defining the pivot elements of the pivoted Cholesky decomposition and
P ∈ Rn×n the corresponding permutation matrix. Assume the actions of Algorithm 1 are given by
the standard unit vectors si = Pei = eji , i.e.

(si)j = (eji)j =

{
1 if j = ji
0 otherwise

. (S17)

Then Algorithm 1 recovers the pivoted Cholesky decomposition, i.e. it holds for all i ∈ {0, . . . , n}
that

P ⊺QiP = LiL
⊺
i , (S18)

where Li ∈ Rn×i is the (partial) Cholesky factor of P ⊺K̂P as computed by Algorithm S2.
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i = 1 ≈

i = 2 ≈

i = 3 ≈

P ⊺K̂P Li L⊺
i

Algorithm S2: (Pivoted) Cholesky Decomposition

Input: kernel matrix K̂, permutation matrix P
Output: lower triangular Li, s.t. LiL

⊺
i ≈ P ⊺K̂P

1 procedure CHOLESKY(K̂,P )
2 A← P ⊺K̂P
3 for i ∈ {1, . . . , n} do
4 li ← A:i/

√
Aii

5 A← A− lil
⊺
i = P ⊺K̂P −LiL

⊺
i

6 Li = (Li−1 li)

7 return Li

Figure S1: Cholesky decomposition. Every column added to the lower triangular Cholesky factor
L defines the ith “right angle ruler”-pattern in P ⊺K̂P . The bottom right matrix in gray given by
P ⊺K̂P −LiL

⊺
i = P ⊺K̂P −

∑i
j=1 ljl

⊺
j changes every iteration.

Proof. We proceed by induction. Assume (S18) holds after i iterations of Algorithm 1. For the base
case i = 0, it holds by assumption that P ⊺Q0P = P ⊺K̂C0K̂P = 0. Now for the induction step
i→ i+ 1, we have

1

ηi+1
K̂did

⊺
i K̂ =

1

ηi+1
K̂ΣiK̂si+1s

⊺
i+1K̂ΣiK̂

=
1

ηi+1
K̂(Σ0 −Ci)K̂si+1s

⊺
i+1K̂(Σ0 −Ci)K̂

=
1

ηi+1
(K̂ −Qi)si+1s

⊺
i+1(K̂ −Qi)

IH
=

1

ηi+1
(K̂ − PLiL

⊺
i P

⊺)si+1s
⊺
i+1(K̂ − PLiL

⊺
i P

⊺)

=
(K̂ − PLiL

⊺
i P

⊺)Pei+1√
e⊺i+1P

⊺(K̂ − PLiL
⊺
i P

⊺)Pei+1

e⊺i+1P
⊺(K̂ − PLiL

⊺
i P

⊺)√
e⊺i+1P

⊺(K̂ − PLiL
⊺
i P

⊺)Pei+1

=
P (P ⊺K̂P −LiL

⊺
i )ei+1√

e⊺i+1(P
⊺K̂P −LiL

⊺
i )ei+1

e⊺i+1(P
⊺K̂P −LiL

⊺
i )P

⊺√
e⊺i+1(P

⊺K̂P −LiL
⊺
i )ei+1

= Pli+1l
⊺
i+1P

⊺.

where li+1 is given by Algorithm S2. Combining this with one more use of the induction hypothesis
we obtain

P ⊺Qi+1P = P ⊺QiP +
1

ηi+1
P ⊺K̂di+1d

⊺
i+1K̂P

= LiL
⊺
i + li+1l

⊺
i+1 = (Li li+1)

(
L⊺

i
l⊺i+1

)
= Li+1L

⊺
i+1

This proves the claim.

S1.2 Singular / Eigenvalue Decomposition

Theorem S4 (Singular / Eigenvalue Decomposition)
Let the actions si = ui of Algorithm 1 be given by the eigenvectors ui of K̂ in arbitrary order. Then
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for i ∈ {1, . . . , n} it holds that

Ci = UiΛ
−1
i U⊺

i = SVDi(K̂
−1)

Qi = UiΛiU
⊺
i = SVDi(K̂),

where U = (u1, . . . ,ui) ∈ Rn×i and Λ = diag(λ1, . . . , λi) ∈ Ri×i is the diagonal matrix of
eigenvalues of K̂ with the order given by the order of the actions.

Proof. It holds by assumption and eq. (S37), that

Ci = Si(S
⊺
i K̂Si)

−1S⊺
i = Ui(U

⊺
i K̂Ui)

−1U⊺
i = UiΛ

−1
i U⊺

i ,

as well as

Qi = K̂CiK̂ = K̂UiΛ
−1
i U⊺

i K̂ = UiΛiΛ
−1
i ΛiU

⊺
i = UiΛiU

⊺
i

This proves the claim.

S1.3 Conjugate Gradient Method

Algorithm S3: Preconditioned Conjugate Gradient Method [38]

Input: kernel matrix K̂, labels y, prior mean µ, preconditioner P̂
Output: representer weights vi ≈ K̂−1(y − µ)

1 procedure CG(K̂,y − µ, P̂ )
2 v0 ← 0
3 s0 ← 0
4 while ∥ri∥2 > max(δrtol∥y∥2, δatol) and i < imax do
5 ri−1 ← (y − µ)− K̂vi−1

6 si ← P̂−1ri−1 − (P̂−1ri−1)
⊺K̂si−1

s⊺
i−1K̂si−1

si−1

7 vi ← vi−1 +
(P̂−1ri−1)

⊺ri−1

s⊺
i K̂si

si

8 return v

Theorem S5 (Preconditioned Conjugate Gradient Method)
Let P̂ ∈ Rn×n be a symmetric positive definite preconditioner. Assume the actions of Algorithm 1
are given by

sCG
1 = P̂−1r0

sCG
i = P̂−1ri−1 −

(P̂−1ri−1)
⊺K̂si−1

s⊺i−1K̂si−1
si−1

(S19)

the preconditioned conjugate gradient method. Then Algorithm 1 recovers preconditioned CG
initialized at vCG

0 = 0, i.e. it holds for i ∈ {1, . . . , n} that

si = di = sCG
i (S20)

vi = vCG
i (S21)

ri−1 = rCG
i−1. (S22)

Proof. First note that by assumption si = sCG
i for all i. We prove the remaining claims by induction.

For the base case we have by assumption d0 = Σ0K̂s0 = s0 = sCG
0 and v0 = 0 = vCG

0 . Now for
the induction step i→ i+ 1 assume the hypotheses (S20), (S21) and (S22) hold ∀j ≤ i. Using the
properties of CG it holds for j′ < i that

s⊺i K̂sj′ = 0 (S23)

(P̂−1ri)
⊺sj′ = 0 (S24)

(P̂−1ri)
⊺rj′ = 0 (S25)

⟨s1, . . . , si⟩ = ⟨r0, P̂−1K̂r0, . . . , (P̂
−1K̂)i−1r0⟩ = ⟨P̂−1r0, . . . , P̂

−1ri−1⟩ (S26)
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We now first show K̂-conjugacy of the actions in iteration i+ 1. We have for j ≤ i that

s⊺i+1K̂sj =
(
P̂−1ri −

(P̂−1ri)
⊺K̂si

s⊺i K̂si
si
)⊺
K̂sj

= (P̂−1ri)
⊺K̂sj −

(P̂−1ri)
⊺K̂si

s⊺i K̂si
s⊺i K̂sj

Now if j = i, clearly s⊺i+1K̂sj = s⊺i+1K̂si = 0. If j < i, we have using (S26), that

P̂−1K̂sj ∈ ⟨P̂−1K̂r0, . . . , (P̂
−1K̂)jr0⟩ ⊂ ⟨P̂−1r0, . . . , P̂

−1rj⟩. (S27)

Therefore we obtain for j < i, that

s⊺i+1K̂sj
(S23)
= r⊺i P̂

−1K̂sj
(S27)
= r⊺i

( j∑
ℓ=1

γℓP̂
−1rℓ

)
(S25)
= 0. (S28)

Thus in combination we have

∀j ∈ {1, . . . , i} : s⊺i+1K̂sj = 0. (S29)

Now for the search direction we have

di+1 = ΣiK̂si+1 =

(
Σ0 −

i∑
j=1

djd
⊺
j

ηj

)
K̂si+1

= si+1 −
i∑

j=1

d⊺
j K̂si+1

ηj
dj

(S20)
= si+1 −

i∑
j=1

s⊺j K̂si+1

ηj
dj

(S29)
= si+1.

(S30)

Further, we have for the solution estimate, that vi+1 = vi + di+1
αi+1

ηi+1
. It holds that

αi+1 = s⊺i+1ri =
(
P̂−1ri −

(P̂−1ri)
⊺K̂si

s⊺i K̂si
si
)⊺
ri

= (P̂−1ri)
⊺ri −

i∑
j=

cj(P̂
−1rj−1)

⊺ri
(S25)
= (P̂−1ri)

⊺ri

as well as

ηi+1 = s⊺i+1K̂ΣiK̂si+1 = d⊺
i+1K̂si+1

(S30)
= s⊺i+1K̂si+1

Combining the above and recalling Algorithm S3, we obtain

vi+1 = vi + di+1
αi+1

ηi+1
= vi + di+1

(P̂−1ri)
⊺ri

s⊺i+1K̂si+1
= vCG

i+1.

Finally, the residual is computed identically in Algorithm 1 as in Algorithm S3, giving

ri = (y − µ)− K̂vi = (y − µ)− K̂vCG
i = rCG

i .

This proves the claims.

Corollary S2 (Preconditioned Gradient Actions as CG Actions)
Choosing actions

si = P̂−1ri−1 (S31)
in Theorem S5 instead also reproduces the preconditioned conjugate gradient method, i.e. it holds
for i ∈ {1, . . . , n} that

di = sCG
i (S32)

vi = vCG
i (S33)

ri−1 = rCG
i−1. (S34)
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Proof. It suffices to show that di = sCG
i . The rest of the argument is then identical to the proof of

Theorem S5. We prove the claim by induction. For the base case by assumption s1 = P̂−1r0 = sCG
1 .

Now for the induction step i→ i+ 1, assume that dj = sj for all j ≤ i, then

di+1 = ΣiK̂P̂−1ri

= (I −CiK̂)P̂−1ri

= P̂−1ri −Di(D
⊺
i K̂Di)

−1D⊺
i K̂P̂−1ri By eq. (S37).

IH
= P̂−1ri − SCG

i ((SCG
i )⊺K̂SCG

i )−1(SCG
i )⊺K̂P̂−1ri

Now by the same argument as in eq. (S28) in the proof of Theorem S5 we have for all j < i that
r⊺i P̂

−1K̂sCG
j = 0. Therefore

= P̂−1ri − sCG
i ((sCG

i )⊺K̂sCG
i )−1(sCG

i )⊺K̂P̂−1ri

= sCG
i+1 By eq. (S19).

This proves the claim.

Corollary S3 (Deflated Conjugate Gradient Method)
Let the first 0 < ℓ < n actions (si)ℓi=1 of Algorithm 1 be linearly independent and the remaining
ones be given by si = P̂−1ri, where P̂ ≈ K̂ is a preconditioner. Then Algorithm 1 is equivalent to
the preconditioned deflated CG algorithm [63, Alg. 3.6] with deflation subspace span{Sℓ}.

Proof. By the form of preconditioned deflated CG given in Algorithm 3.6 of Saad et al. [63] and
Corollary S2, it suffices to show that the residual rℓ satisfies S⊺

ℓ rℓ = 0 and that for all i > ℓ, it holds
that

sdefCG
i = di = (I −Ci−1K̂)si.

Now it holds by Lemma S2 and eq. (S37), that

S⊺
ℓ rℓ = S⊺

ℓ (I − K̂Cℓ)(y − µ) = S⊺
ℓ (I − K̂Sℓ(S

⊺
ℓ K̂Sℓ)

−1S⊺
ℓ )

=0

(y − µ) = 0.

This proves the first claim. Now, by Saad et al. [63, Alg. 3.6], the search directions (sdefCG
i )ni=ℓ+1 of

preconditioned deflated CG are given by

sdefCG
i = sCG

i − Sℓ(S
⊺
ℓ K̂Sℓ)

−1S⊺
ℓ K̂P̂−1ri

= (I −Cℓ+1:(i−1)K̂)si − Sℓ(S
⊺
ℓ K̂Sℓ)

−1S⊺
ℓ K̂P̂−1ri Corollary S2

= (I −Cℓ+1:(i−1)K̂)si −CℓK̂si

= (I − (Cℓ+1:(i−1) −Cℓ)K̂)si

= (I −Ci−1K̂)si
= di

This proves the claim.

Remark S1 (Preconditioning and Algorithm 1)
Iterative methods typically have convergence rates depending on the condition number of the system
matrix. One successful strategy in practice to accelerate convergence is to use a preconditioner
P̂ ≈ K̂ [64]. A preconditioner needs to be cheap to compute and allow efficient matrix-vector
multiplication v 7→ P̂−1v. Now, Algorithm 1 implicitly constructs and applies a deflation-based
preconditioner, which are defined via a deflation subspace to be projected out [65]. In Algorithm 1 this
is precisely the already explored space span{Si} = span{Di} spanned by the actions. Therefore, if
we run a mixed strategy, meaning first choosing actions that define a certain subspace and then choose
residual actions, we recover the deflated conjugate gradient method [63] (see Corollary S3 for a proof).
Alternatively, one can also use byproducts of the iteration of Algorithm 1 to construct a diagonal-plus-
low-rank preconditioner of the form P̂ = σ2I +UU⊺ ≈ K̂ where U = KDi diag(η1, . . . , ηi) ∈
Rn×i. Therefore, again if running a mixed strategy, one can first construct a preconditioner and then
accelerate the convergence of subsequent CG iterations. In this sense one can double-dip in terms of
preconditioning (conjugate) gradient iterations by combining these two techniques at essentially no
overhead.
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v∗ + span{Di}⊥K̂

=span{Si}⊥K̂

vi−1 + span{di}

vi

v∗

vi−1

Figure S2: Geometric perspective on the probabilistic linear solver learning representer weights v∗.

S1.4 Inducing Point Methods

Theorem S6 (Approximate Posterior Mean of Nyström, SoR, DTC and SVGP)
Let Z ∈ Rn×m be a set of distinct inducing inputs such that rank(KXZ) = m ≤ n. Then
the posterior mean of the Nyström variants subset of regressors (SoR) and deterministic training
conditional (DTC) is identical to the one of SVGP and given by

µ(·) = k(·,Z)(KZXKXZ + σ2KZZ)
−1KZX(y − µ)

= q(·,X)KXZ(KZX(q(X,X) + σ2I)KXZ)
−1KZX(y − µ)

(S35)

Proof. First, note that by eqns. (16b) and (20b) of Quiñonero-Candela and Rasmussen [20] the
posterior mean of SoR and DTC is identical and given by

µ(·) = k(·,Z)(KZXKXZ + σ2KZZ)
−1KZX(y − µ)

Now, by Theorem 5 of Wild et al. [43] the posterior mean of SVGP for a fixed set of inducing
points is equivalent to the Nyström approximation, which takes the form above. Recognizing that
KZXKXZ ∈ Rm×m is invertible, it holds that

µ(·) = k(·,Z)(KZXKXZ + σ2KZZ)
−1KZX(y − µ)

= k(·,Z)(KZZ(K
−1
ZZKZXKXZ + σ2I))−1KZX(y − µ)

= k(·,Z)K−1
ZZ((KZXKXZ)

−1(KZXKXZK
−1
ZZKZXKXZ + σ2KZXKXZ))

−1KZX(y − µ)

= k(·,Z)K−1
ZZKZXKXZ(KZX(KXZK

−1
ZZKZX + σ2I)KXZ)

−1KZX(y − µ)

= q(·,X)KXZ(KZX(q(X,X) + σ2I)KXZ)
−1KZX(y − µ)

This proves the claim.

S2 Theoretical Results and Proofs

S2.1 Properties of Algorithm 1

Lemma S1 (Geometric Properties of Algorithm 1)
Let i ∈ {1, . . . , n}, and assume Σ0 is chosen such that Σ0K̂sj = sj for all j ≤ i (e.g. Σ0 = K̂−1).
Then it holds for the quantities computed by Algorithm 1 that

span{Si} = span{Di} (S36)

Ci = Di(D
⊺
i K̂Di)

−1D⊺
i = Si(S

⊺
i K̂Si)

−1S⊺
i (S37)

CiK̂ is the K̂-orthogonal projection onto span{Di} (S38)

ΣiK̂ is the K̂-orthogonal projection onto span{Di}⊥K̂ (S39)

d⊺
i K̂dj = 0 for all j < i (S40)

where Si = (s1 · · · si) ∈ Rn×i and Di = (d1 · · ·di) ∈ Rn×i.

Proof. We prove the claims by induction. We begin with the base case i = 1.
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By assumption it holds that S1 = s1 = Σ0K̂s1 = d1 = D1. Now by Algorithm 1, we have
C1 = 1

η1
d1d

⊺
1 , which with the above proves (S37). By the batched form (S37) of Ci, the statements

(S38) and (S39) follow immediately. Finally, K̂-orthogonality for a single search direction holds
trivially.

Now for the induction step i→ i+ 1. Assume that eqs. (S36) to (S40) hold for iteration i. Then we
have that

di+1 = ΣiK̂si+1 = si+1 −CiK̂si+1
(S37)
= si+1 − Si(S

⊺
i K̂Si)

−1S⊺
i K̂si+1 ∈ span{Si+1}

By the induction hypothesis the above also implies span{Si+1} = span{Di+1}. This proves
eq. (S36). Next, we have by the induction hypotheses (S37) and (S40) that

Ci+1 = Ci +
1

η
di+1d

⊺
i+1

= Di(D
⊺
i K̂Di)

−1D⊺
i +

1

ηi+1
di+1d

⊺
i+1

=

i+1∑
k=1

1

ηk
dkd

⊺
k

= Di+1(D
⊺
i+1K̂Di+1)

−1D⊺
i+1

This proves the first equality of eq. (S37). For the second, first recognize that an orthogonal
projection onto a linear subspace span{A} with respect to the B-inner product is given by PA =
A(A⊺BA)−1A⊺B. The projection onto its B-orthogonal subspace is given by PA⊥B = I − PA.
Therefore eqs. (S38) and (S39) follow directly from the above argument. Now since projection onto a
subspace is unique and independent of the choice of basis, we have by span{Di+1} = span{Si+1}
that

CiK̂ = PDi+1 = PSi+1 = Si(S
⊺
i K̂Si)

−1S⊺
i K̂

Now since K̂ is non-singular, the second equality of eq. (S37) follows. Finally, we will prove
K̂-orthogonality of the search directions. Let j < i+ 1, then it holds that

d⊺
i+1K̂dj = ( ΣiK̂si+1

∈span{Si}⊥K̂

)⊺K̂ dj

∈span{Si}

= 0

by eqs. (S36) and (S39). This completes the proof.

Corollary S4
Let i ∈ {1, . . . , n}. It holds for CiK̂, the K̂-orthogonal projection onto Si, that

(CiK̂)2 = CiK̂ (S41)
CiK̂Ci = Ci (S42)

Further for Hi = ΣiK̂ = I −CiK̂ the K̂-orthogonal projection onto S⊥K̂
i , we have

H2
i = Hi (S43)

H⊺
i K̂Hi = H⊺

i K̂ = K̂Hi (S44)

Proof. By Lemma S1, it holds that Ci = Si(S
⊺
i K̂Si)

−1S⊺
i . Therefore

CiK̂Ci = Si(S
⊺
i K̂Si)

−1S⊺
i K̂Si(S

⊺
i K̂Si)

−1S⊺
i = Ci.

This proves (S42) and (S41). Define Hi = I −CiK̂, then

HiHi = (I −CiK̂)(I −CiK̂) = I − 2CiK̂ + (CiK̂)2 = I −CiK̂ = Hi

as well as

H⊺
i K̂Hi = (I −CiK̂)⊺K̂(I −CiK̂) = (K̂ − K̂CiK̂)(I −CiK̂)

= K̂ − 2K̂CiK̂ + K̂(CiK̂)2

= K̂ − K̂CiK̂ = H⊺
i K̂ = K̂Hi.
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Lemma S2
Let Σ0 = K̂−1, then it holds that

Ci(y − µ) = vi, (S45)
Σi(y − µ) = v∗ − vi. (S46)

Proof. We prove the statement by induction. By assumption C0(y − µ) = v0. Now assume (S45)
holds. Then for i→ i+ 1, we have

Ci+1(y − µ) = (Ci +
1

ηi+1
di+1d

⊺
i+1)(y − µ)

IH
= vi +

d⊺
i+1(y − µ)

ηi+1
di+1

Now by the update to the representer weights in Algorithm 1 it suffices to show that αi+1 =
d⊺
i+1(y − µ). We have

d⊺
i+1(y − µ) = (ΣiK̂si+1)

⊺(y − µ) = s⊺i+1K̂Σi(y − µ)

= s⊺i+1K̂(K̂−1 −Ci)(y − µ)
IH
= s⊺i+1((y − µ)− K̂vi) = s⊺i+1ri = αi.

Lemma S3
Let Σ0 = K̂−1, C0 = 0 and consequently v0 = 0, then it holds for the residual at iteration
i ∈ {1, . . . , n} that

ri−1 = K̂(v∗ − vi−1) (S47)
= K̂Σi−1K̂v∗ (S48)
= (K̂ −Qi−1)v∗. (S49)

Proof. It holds by definition, that

ri−1 = (y − µ)− K̂vi−1 = K̂v∗ − K̂vi−1 = K̂(v∗ − vi−1).

Further we have by eq. (S46), that

= K̂Σi−1(y − µ) = K̂Σi−1K̂v∗,

and finally, by the definition of the kernel matrix approximation in Algorithm 1, we obtain

= K̂(K̂−1 −Ci−1)K̂v∗ = (K̂ −Qi−1)v∗.

Proposition S3 (Batch of Observations)
Let Σ0 such that Σ0K̂sj = sj for all j ∈ {1, . . . , i}. Then after i iterations the posterior over the
representer weights in (4) is equivalent to the one computed for a batch of observations, i.e.

vi = Σ0K̂Si(S
⊺
i K̂Σ0K̂Si)

−1S⊺
i (y − µ)

Σi = Σ0 −Σ0K̂Si(S
⊺
i K̂Σ0K̂Si)

−1S⊺
i K̂Σ0

Proof. This can be seen as a direct consequence of recursively applying Bayes’ theorem

p(v∗ | {αi}mi=1, {si}mi=1) =
p(αm | sm,v∗)p(v∗ | {αi}m−1

i=1 , {si}m−1
i=1 )∫

p(αm | sm,v∗)p(v∗ | {αi}m−1
i=1 , {si}m−1

i=1 )dv∗
.

However, here we also give a geometric proof based on the projection property of the precision matrix
approximation Ci. By using eq. (S37) and the assumption on Σ0 we have that

Ci = Si(S
⊺
i K̂Si)

−1S⊺
i = Σ0K̂Si(S

⊺
i K̂Σ0K̂Si)

−1S⊺
i

= Σ0K̂Si(S
⊺
i K̂Σ0K̂Si)

−1S⊺
i K̂Σ0

This proves that

Σi = Σ0 −Ci = Σ0 −Σ0K̂Si(S
⊺
i K̂Σ0K̂Si)

−1S⊺
i K̂Σ0

Now by eq. (S45) it holds that Ci(y − µ) = vi. This proves the claim.
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Proposition S4 (Posterior Contraction)
Let Si ∈ Rn×i be the actions chosen by Algorithm 1, then its posterior contracts as

tr
(
ΣiΣ

−1
0

)
= tr(ΣiK̂) = n− rank(Si).

Proof. Since Σ0 = K̂−1, we have by eq. (S37), that

tr
(
ΣiΣ

−1
0

)
= tr((Σ0 −Ci)K̂)

= tr
(
In − Si(S

⊺
i K̂Si)

†S⊺
i K̂

)
= tr(In)− tr(S⊺

i K̂Si(S
⊺
i K̂Si)

†

∈Ri×i

)

= n− rank(Si)

Now, if the actions Si are chosen linearly independent, then rank(Si) = i.

Theorem S7 (Online GP Approximation with Algorithm 1)
Let n, n′ ∈ N and consider training data sets X ∈ Rn×d,y ∈ Rn and X ′ ∈ Rn′×d,y′ ∈ Rn′

.
Consider two sequences of actions (si)

n
i=1 ∈ Rn and (s̃i)

n+n′

i=1 ∈ Rn+n′
such that for all i ∈

{1, . . . , n}, it holds that

s̃i =

(
si
0

)
(S50)

Then the posterior returned by Algorithm 1 for the dataset (X,y) using actions si is identical to
the posterior returned by Algorithm 1 for the extended dataset using actions s̃i, i.e. it holds for any
i ∈ {1, . . . , n}, that

ITERGP(µ, k,X,y, (si)i) = (µi, ki) = (µ̃i, k̃i) = ITERGP
(
µ, k,

(
X
X ′

)
,

(
y
y′

)
, (s̃i)i

)
.

Proof. Define X̃ =

(
X
X ′

)
and ỹ =

(
y
y′

)
. We begin by showing that the search directions of both

methods satisfy

d′
i =

(
di

0

)
. (S51)

We proceed by induction. For i = 0 it holds by definition of Algorithm 1 and eq. (S50) that

d̃0 = s̃0 =

(
s0
0

)
=

(
d0

0

)
. (S52)

Now for the induction step i→ i+ 1, assume that (S51) holds for j ∈ {1, . . . , i}. Then, we have

d̃i+1 = Σ̃i−1(k(X̃, X̃) + σ2In+n′)s̃i+1

= (In+n′ − C̃i(k(X̃, X̃) + σ2In+n′))s̃i+1

= s̃i+1 −
i∑

j=1

1

η̃j
d̃j(d̃j)

⊺(k(X̃, X̃) + σ2In+n′)s̃i+1

IH
=

(
si+1

0

)
−

i∑
j=1

1

η̃j

(
dj

0

)(
d⊺
j 0

)(k(X,X) + In k(X,X ′)
k(X ′,X) k(X ′,X ′) + In′

)(
si+1

0

)

=

(
si+1 −

∑i
j=1

1
ηj
dj(dj)

⊺K̂si+1

0

)
=

(
di+1

0

)
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where we used that η̃j = s̃⊺j (k(X̃, X̃) + σ2In+n′)d̃j = s⊺j K̂dj = ηj . This proves eq. (S51). Now
recognize that

α̃j = s̃⊺j r̃j = s̃⊺j (ỹ − µ̃− K̃C̃i(ỹ − µ̃))

= s̃⊺j (ỹ − µ̃− (K̃ + σ2I)

j∑
ℓ=1

1

η̃ℓ
d̃ℓd̃

⊺
ℓ (ỹ − µ̃))

= s⊺j (y − µ)−
j∑

ℓ=1

1

ηℓ
s⊺j K̂dℓd

⊺
ℓ (y − µ)

= s⊺j (y − µ− K̂Cj(y − µ))

= s⊺j rj

= αj

Therefore, we finally have that

µ̃i(·) = µ(·) + k(·, X̃)ṽi = µ(·) + k(·, X̃)

i∑
j=1

α̃j

η̃j
d̃j

= µ(·) + k(·,X)vi

as well as

k̃i(·, ·) = k(·, ·)− k(·, X̃)C̃ik(X̃, ·) = k(·, ·)− k(·, X̃)

i∑
j=1

1

η̃j
d̃j(d̃j)

⊺k(X̃, ·)

= k(·, ·)− k(·,X)

i∑
j=1

1

ηj
dj(dj)

⊺k(X, ·) = k(·, ·)− k(·,X)Cik(X, ·) = ki(·, ·).

Remark S2 (Streaming Gaussian Processes)
Theorem S7 shows that any variant of IterGP can be used in the online setting where data arrives
sequentially while the algorithm is running. Now, if we assume data points arrive one at a time, we
choose unit vector actions (IterGP-Chol) and perform one iteration of Algorithm 1 after each data
point, then Algorithm 1 simply computes the mathematical GP posterior.

S2.2 Approximation of Representer Weights

Proposition 2 (Relative Error Bound for the Representer Weights)
For any choice of actions a relative error bound ρ(i), s.t. ∥v∗ − vi∥K̂ ≤ ρ(i)∥v∗∥K̂ is given by

ρ(i) = (v̄⊺
∗ (I −CiK̂)

projection onto span{Si}⊥K̂

v̄∗)
1
2 ≤ λmax(I −CiK̂) ≤ 1 (9)

where v̄∗ = v∗/∥v∗∥K̂ . If the actions {si}ni=1 are linearly independent, then ρ(i) ≤ δn=i.

Proof. Define Hi = ΣiK̂ = I −CiK̂. We have by Lemma S2, that

∥v∗ − vi∥2K̂ = ∥Hiv∗∥2K̂ = (Hiv∗)
⊺K̂Hiv∗

(S44)
= v∗

⊺Hiv∗ = v̄⊺
∗Hiv̄∗∥v∗∥2K̂

This proves the first equality of Proposition 2. Further it holds that

∥Hiv∗∥K̂ = ∥K̂ 1
2Hiv∗∥2 = ∥(I − K̂

1
2CiK̂

1
2 )K̂

1
2v∗∥2 ≤ ∥I − K̂

1
2CiK̂

1
2 ∥2∥v∗∥K̂

= λmax(I − K̂
1
2CiK̂

1
2 )∥v∗∥K̂ .

Now by Weyl’s inequality and the fact that K̂
1
2CiK̂

1
2 is positive semi-definite, it holds that

λmax(Hi) = λmax(I − K̂
1
2CiK̂

1
2 ) ≤ λmax(I)− λmin(K̂

1
2CiK̂

1
2 ) ≤ 1.
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Now, recall that similar matrices A and B = P−1AP have the same eigenvalues. Therefore

I − K̂
1
2CiK̂

1
2 = K̂

1
2 (I −CiK̂)K̂− 1

2

and I − CiK̂ have the same eigenvalues. Finally, since by eq. (S39) Hi is a projection onto
span{Si}⊥K̂ , it has full rank at iteration n if the actions are linearly independent and therefore
λmax(Hn) = 1. This proves the claim.

S2.3 Convergence Analysis of the Posterior Mean Approximation

Theorem 1 (Convergence in RKHS Norm of the Posterior Mean Approximation)
Let Hk be the RKHS associated with kernel k(·, ·), σ2 > 0 and let µ∗ − µ ∈ Hk be the unique
solution to the regularized empirical risk minimization problem

argminf∈Hk

1
n

(∑n
j=1(f(xj)− yj + µ(xj))

2 + σ2∥f∥2Hk

)
(11)

which is equivalent to the mathematical posterior mean up to shift by the prior µ [e.g. 1, Sec. 6.2].
Then for i ∈ {0, . . . , n} the posterior mean µi(·) computed by Algorithm 1 satisfies

∥µ∗ − µi∥Hk
≤ ρ(i)c(σ2)∥µ∗ − µ0∥Hk

(12)

where µ0 = µ is the prior mean and the constant c(σ2) =
√
1 + σ2

λmin(K) → 1 as σ2 → 0.

Proof. Let ρ(i) such that ∥v∗ − vi∥K̂ ≤ ρ(i)∥v∗ − v0∥K̂ , where v0 = 0. Then, we have for
i ∈ {0, . . . , n}, that

∥v∗ − vi∥2K ≤ ∥v∗ − vi∥2K̂ ≤ ρ(i)2∥v∗ − v0∥2K̂

= ρ(i)2
(
∥v∗ − v0∥2K + σ2 1

λmin(K)
λmin(K)∥v∗ − v0∥22

≤∥v∗−v0∥2
K

)
≤ ρ(i)2

(
1 +

σ2

λmin(K)

)
∥v∗ − v0∥2K

Now by assumption µi(·) = µ(·) +
∑n

j=1(vi)jk(·,xj) = µ(·) + k(·,X)Ciy. By the reproducing
property we obtain for ∆ = v∗ − vi that

∥v∗ − vi∥2K = ∆⊺K∆

=

n∑
ℓ=1

n∑
j=1

∆ℓ∆jk(xℓ,xj)

=

n∑
ℓ=1

n∑
j=1

∆ℓ∆j⟨k(·,xℓ), k(·,xj)⟩Hk
k is the reproducing kernel ofHk

= ⟨
n∑

ℓ=1

∆ℓk(·,xℓ),

n∑
j=1

∆jk(·,xj)⟩Hk

=

∥∥∥∥∥
n∑

ℓ=1

∆ℓk(·,xℓ)

∥∥∥∥∥
2

Hk

=

∥∥∥∥∥
n∑

ℓ=1

(v∗)ℓk(·,xℓ)−
n∑

ℓ=1

(vi)ℓk(·,xℓ)

∥∥∥∥∥
2

Hk

= ∥µ∗ − µi∥2Hk
See Theorem 3.4 in Kanagawa et al. [36]

Combining the above and setting c(σ2) = 1 + σ2

λmin(K) we obtain

∥µ∗ − µi∥Hk
= ∥v∗ − vi∥K ≤ ρ(i)c(σ2)∥v∗ − v0∥K = ρ(i)c(σ2)∥µ∗ − µ0∥Hk

.
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S2.4 Combined Uncertainty as Worst Case Error

Theorem 2 (Combined and Computational Uncertainty as Worst Case Errors)
Let σ2 ≥ 0 and let ki(·, ·) = k∗(·, ·) + kcomp

i (·, ·) be the combined uncertainty computed by Algo-
rithm 1. Then, for any x ∈ X (assuming x /∈X if σ2 > 0) we have

sup
g∈Hkσ :∥g∥Hkσ

≤1

error of approximate posterior mean

g(x)− µg
∗(x)

error of math. post. mean

+ µg
∗(x)− µg

i (x)

computational error

=
√

ki(x,x) + σ2, and (13)

sup
g∈Hkσ :∥g∥Hkσ

≤1

µg
∗(x)− µg

i (x)

computational error

=
√

kcomp
i (x,x) (14)

where µg
∗(·) = k(·,X)K̂−1g(X) is the mathematical and µg

i (·) = k(·,X)Cig(X) IterGP’s
posterior mean for the latent function g ∈ Hkσ . If σ2 = 0, then the above also holds for x ∈X .

Proof. Let x0 = x, c0 = 1 and cj = −(Cik
σ(X,x))j for j = 1, . . . n, where kσ(·, ·) := k(·, ·) +

σ2δ(·, ·). Then by Lemma 3.9 of Kanagawa et al. [36], it holds that(
sup

g∈Hkσ :∥g∥Hkσ
≤1

(g(x)− µg
i (x))

)2

=

(
sup

g∈Hkσ :∥g∥Hkσ
≤1

n∑
j=0

cjg(xj)

)2

=

∥∥∥∥∥∥kσ(·,x0)−
n∑

j=1

k(x,xj)Cik
σ(·,xj)

∥∥∥∥∥∥
2

Hkσ

= ∥kσ(·,x)− k(x,X)Cik
σ(X, ·)∥2Hkσ

= ⟨kσ(·,x), kσ(·,x)⟩Hkσ − 2⟨kσ(·,x), k(x,X)Cik
σ(X, ·)⟩Hkσ

+ ⟨k(x,X)Cik
σ(X, ·), k(x,X)Cik

σ(X, ·)⟩Hkσ

Now by the reproducing property, it follows that

= kσ(x,x)− 2kσ(x,X)Cik
σ(X,x) + kσ(x,X)Cik

σ(X,X)Cik
σ(X,x)

If σ2 > 0 and x ̸= xj or if σ2 = 0, it holds that kσ(x,X) = k(x,X). Further by definition
kσ(X,X) = K̂ and finally by (S42), it holds that CiK̂Ci = Ci. Therefore we have

= k(x,x) + σ2 − 2k(x,X)Cik(X,x) + k(x,X)CiK̂Cik(X,x)

= k(x,x)− k(x,X)Cik(X,x) + σ2

= ki(x,x) + σ2

We prove eq. (14) by an analogous argument. Choose cj := ((K̂−1 −Ci)k
σ(X,x))j . We have(

sup
g∈Hkσ :∥g∥Hkσ

≤1

(µg
∗(x)− µg

i (x))

)2

=

(
sup

g∈Hkσ :∥g∥Hkσ
≤1

n∑
j=0

cjg(xj)

)2

=

∥∥∥∥∥∥
n∑

j=1

k(x,xj)(K̂
−1 −Ci)k

σ(·,xj)

∥∥∥∥∥∥
2

Hkσ

=
∥∥k(x,X)(K̂−1 −Ci)k

σ(X, ·)
∥∥2
Hkσ

= kσ(x,X)K̂−1K̂K̂−1kσ(X,x)− 2kσ(x,X)K̂−1K̂Cik
σ(X,x) + kσ(x,X)CiK̂Cik

σ(X,x)

Again, we use that kσ(x,X) = k(x,X) by assumption and (S42). Therefore

= k(x,X)(K̂−1 −Ci)k(X,x)

= kcomp
i (x,x)

This concludes the proof.
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Figure S3: Illustration of IterGP analogs of commonly used GP approximations.

S3 Implementation of Algorithm 1

S3.1 Policy Choice

As illustrated in Figure 2, the choice of policy of Algorithm 1 determines where computation in
input space is targeted and therefore where the combined posterior contracts first. However, the
policy also determines whether the error in the posterior mean or (co-)variance are predominantly
reduced first, as Figure S3 shows (cf. IterGP-Chol and IterGP-PBR). Therefore the policy choice
is application-dependent. If I am primarily interested in the predictive mean, I may select residual
actions (IterGP-CG). If downstream I am making use of the predictive uncertainty, I may want to
contract uncertainty globally as quickly as possible at the expense of predictive accuracy (IterGP-PI).
Such a choice is not unique to IterGP, but necessary whenever we select a GP approximation. What
IterGP adds is computation-aware, meaningful uncertainty quantification in the sense of Corollary 1
no matter the choice of policy.
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S3.2 Stopping Criterion

In our implementation of Algorithm 1 we use the following two stopping criteria. Our computational
budget can be directly controlled by specifying a maximum number of iterations, since each iteration
of IterGP needs the same number of matrix-vector multiplies. Alternatively, we terminate if the
absolute or relative norm of the residual are sufficiently small, i.e. if

∥ri∥2 < δabstol or ∥ri∥2 < δreltol∥y∥2. (S53)

Of course other choices are possible. From a probabilistic numerics standpoint one may want to
terminate once the combined marginal uncertainty at the training data is sufficiently small relative to
the observation noise.

S3.3 Efficient Sampling from the Combined Posterior

Sampling from an exact GP posterior has cubic cost O(n3
⋄) in the number of evaluation points n⋄,

which is prohibitive for many useful downstream applications such as numerical integration over the
posterior using Monte-Carlo methods. Wilson et al. [46, 47] recently showed how to make use of
Matheron’s rule [45, 66, 67] to efficiently sample from a GP posterior by sampling from the prior
and then performing a pathwise update. We can directly make use of this strategy since Algorithm 1
computes a low-rank approximation to the precision matrix. Assume we are given a draw f ′

prior ∈ Hθ
k

from the prior3 such that y′ ∼ N (f ′
prior(X), σ2I) constitutes a draw from the prior predictive. Then

f ′(·) = f ′
prior(·) + k(·,X)Ci(y − y′) (S54)

is a draw from the combined posterior by Matheron’s rule, which we can evaluate in O(n⋄ni) for n⋄
evaluation points, since Ci has rank i.

S4 Additional Experimental Results
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Figure S4: Generalization of CGGP and its closest IterGP analog. GP regression using an RBF
and Matérn(32 ) kernel on UCI datasets. The plot shows the average generalization error in terms of
NLL and RMSE for an increasing number of solver iterations. The posterior mean of IterGP-CG and
CGGP is identical, which explains the identical RMSE.

3In infinite dimensional reproducing kernel Hilbert spaces samples f ∼ GP(µ, k) from a Gaussian process
almost surely do not lie in the RKHS Hk [Cor. 4.10, 36]. However, there exists f ′ ∈ Hθ

k in a larger RKHS
Hθ

k ⊃ Hk such that f ′(x) = f(x) with probability 1 [Thm. 4.12, 36].
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Figure S5: Generalization of SVGP and its closest IterGP analog. GP regression using an RBF and
Matérn( 32 ) kernel on UCI datasets. The plot shows the average generalization error in terms of NLL
and RMSE for an increasing number of identical inducing points. After a small number of inducing
points relative to the size of the training data, IterGP has significantly lower generalization error than
SVGP. For the “KEGGundir” dataset after ≈ 128 iterations we observe numerical instability in some
runs when computing the combined posterior of IterGP using a Matérn( 32 ) kernel.
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