
Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Abstract and section 1.

(b) Did you describe the limitations of your work? [Yes] See section 7
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Please refer to
section 2 and Appendix A.1

(b) Did you include complete proofs of all theoretical results? [Yes] Please refer to section
2 and Appendix A.1

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See Ap-
pendix A.8 and the source code in supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See section 5 and Appendix A.8.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See section 5 and Appendix A.8.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See section 5 and

Appendix A.8.
(b) Did you mention the license of the assets? [Yes] See section 5 and Appendix A.8.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

We do not use any new datasets in this paper.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] The datasets used in this paper are publicly available.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Appendix A

A.1 Proof of Proposition 1

Proof. To prove Proposition 1, given a graph G = {X,A}, where X ∈ RN×D, A ∈ RN×N and a
GNN encoder g(·). We consider g(·) as a one-layer GCN, which can be expressed as:

H = σ(D̂
− 1

2 ÂD̂
− 1

2 ZW), (5)

where σ(·) is non-linear activation function, H ∈ RN×D′
is the output embedding, Z = norm(X)

(norm(·) is row normalisation), W ∈ RD×D′
is learnable weight matrix, Â = A + I (I is identity

matrix), and D̂ is the degree matrix for Â.

13

We consider Ã = D̂
− 1

2 ÂD̂
− 1

2 and V = ÃZ, where elements vik ∈ V, the i-th row and the k-th
column element of V, are definite. After that, we conduct P = VW, where P ∈ RN×D′

and W is
Xavier initialised.

An elment wmk ∼ U(−a, a) of W is the m-th row and the k-th column of W, where U(−a, a)

is a uniform distribution. Here a = α ×
√

6
D+D′ , where D′ is the hidden dimension, and α is a

hyperparameter defaultly set to 1. Then, we know the mean value of wmk distribution is 0 and its
standard deviation is 2

D+D′ .

For any pik ∈ P, which is the i-th row and k-th column of P, it can be calculated as:

pik =

D∑
m

vimwmk, (6)

where wmk ∈ W is the m-th row and the k-th column of W, and vim ∈ V is the i-th row and m-th
column of V. According to the analysis on the weighted sum of uniform random variables [33], we
have the mean µ and the standard deviation δ of pik:

µ = 0, δ =

√√√√ 2

D +D′

D∑
m=1

v2im. (7)

Here we assume pik ∼ N(µ, δ2) and use [µ − cδ, µ + cδ] to approximate the value scope of pik,
where c is a parameter that controls the precision of approximation.

Case 1 (ReLu/Leaky ReLu/PReLu). In this case, we consider ReLu σReLu(·), Leaky ReLu
σLReLu(·), and PReLu σPReLu(·) as non-linear activation for the GNN encoder g(·). Here we take
hik = σReLu(pik) (hik ∈ H) as an example to show that the value range of σsig(σReLu(pik)) is
bounded with δ. Please noted that, in practice, H will be averaged to a summary vector s and input
to σsig(·). As σsig(s) (s ∈ s) shares the same value range as σsig(σReLu(pik)), for simplicity, we
conducted analysis with σReLu(pik) instead.

Given pik as input, the value range of σReLu(pik) = max(0, pik) is [0, cδ]. Similarly, we can
also obtain σLReLu(x) = max(0.01 ∗ x, x) ∈ [−0.01cδ, cδ] and σPReLu(x) = max(0, x) + b ∗
min(0, x) ∈ [−bcδ, cδ](when b ≥ 0) or [0,max(−bcδ, cδ)](when b < 0). Given σReLu(pik) ∈
[0, cδ], the infimum of σsig(σReLu(pik)) is 1

2 since sigmoid activation is a monotone increasing
function. To estimate the value range of final outputs, here we use the Taylor series of σsig(·) at 0 to
estimate the upper bound [34], i.e.,

σsig(x) ≈ σsig(0) + σ′
sig(0)x+

1

2
σ′′
sig(0)x

2 + · · ·. (8)

Since σsig(0) =
1
2 , σ′

sig(x) = σsig(x)(1−σsig(x)), σ′′
sig(x) = σsig(x)(1−σsig(x))(1−2σsig(x)),

and ∂n

∂xnσsig(x) = σsig(x)
∏n

i=1(1− iσsig(x)), Equation (8) can be expressed as:

σsig(x) ≈ σsig(0) + σ′
sig(0)x =

1

2
+

1

4
x. (9)

Thus, the value range of σsig(σReLu(pik)) is [12 ,
1
2 + cδ

4], which indicates σsig(σReLu(pik)) → 1
2

when δ → 0.

Case 2 (Sigmoid). In this case, we consider Sigmoid σsig(·) as non-linear activation in g(·). We
can also obtain σsig(pik) ∈ [12 − cδ

4 ,
1
2 + cδ

4] through Equation (9) and σsig(pik) → 1
2 when δ → 0,

which also indicates σsig(σsig(pik)) → 0.62 (i.e., σsig(
1
2)) when δ → 0. In our experiments, we

observe that δ owns a almost zero positive value, which results in our observations in Table 2.

A.2 Proof for Theorem 1

Proof. The following proof is inspired by the theoretical proof in GAN [35]. During training, we
can rewrite the group discrimination loss in Equation 3 into the following objective (maximise to
optimise):

L = Eh∼Ppos
log(agg(h)) + Eh∼Pneg

log(1− agg(h)),

=

∫
h
Ppos(h)log(agg(h))dh +

∫
h
Pneg(h)log(1− agg(h))dh,

(10)

14

where agg(·) is the aggregation function to turn h into the 1× 1 prediction, Ppos are the distribution
of positive embeddings, Pneg are the distribution of negative embeddings. As our objective here
is to maximise L, and Ppos(h) > 0;Pneg(h) > 0, we can obtain the optimal solution for agg(h)
is Ppos(h)

Ppos(h)+Pneg(h) . This is because for any (a, b) ∈ R2\{0, 0}, the maximum of a function y =

alog(x)+blog(1−x) is achieved at a
a+b [35]. By replacing agg(h) with Ppos(h)

Ppos(h)+Pneg(h) in Equation
10, we can obtain:

L = Eh ∼Ppos
log(

Ppos(h)
Ppos(h) + Pneg(h)

) + Eh∼Pneg
log(1− Ppos(h)

Ppos(h) + Pneg(h)
),

= Eh∼Ppos
log(

Ppos(h)
Ppos(h) + Pneg(h)

) + Eh∼Pneg
log(

Pneg(h)
Ppos(h) + Pneg(h)

).

(11)

From the equation above, we can see it looks similar to the Jensen-Shannon divergence between two
distribution P1 and P2:

JS(P1 ∥ P2) =
1

2
Eh∼P1

log(
P1

P1+P2

2
) +

1

2
Eh∼P2

log(
P2

P1+P2

2
). (12)

Thus, we can rewrite Equation 11 as:

L = Eh∼Ppos
log(

Ppos(h)
Ppos(h)+Pneg(h)

2
) + Eh∼Pneg

log(

Pneg(h)
Ppos(h)+Pneg(h)

2
)− 2log2,

= 2JS(Ppos ∥ Pneg)− 2log2,

(13)

where we can see maximising L is the same as maximising JS(Ppos ∥ Pneg). Thus, by optimising
L, Ppos and Pneg tend to be separated.

A.2.1 Connection with DGI

In this section, by building a connection with DGI, we explain our theoretical motivation for sim-
plifying DGI objective to group discrimination loss and why group discrimination is efficient in
computation time. We first present the Lemma 1, which is used in DGI [10]:

Lemma 1 Define {Hg}|H|
g=1 as a set of node embeddings drawn from distribution of graphs, p(H),

where |H| is finite number of elements, and p(Hg) = p(Hg′
),∀g, g′. R(·) is a deterministic readout

function, which takes Hg as input and output the summary vector of the g-th graph, sg . sg follows a
marginal distributrion p(s). Then, we assume R(·) is injective and class balance, the upper bound of
the error rate for the optimal classifier between the joint distribution p(H, s) and p(H)p(s) is capped
at Er∗ = 1

2

∑|H|
g=1 p(s

g)2.

Based on our analysis in Section 2.1, we assume s is a constant summary vector ϵI, where ϵ is the
constant in s. In addition, we assume ϵ in s is independent from p(H). Then, we can derive the
following lemma:

Lemma 2 We assume s is a constant summary vector ϵI and ϵ of s is independent from p(H), the
error rate for the optimal classifier between the joint distribution p(H, s) and the product of marginals
p(H)p(s) is Er∗ = 1

2 .

Proof. As ϵ is independent from p(H), we can see p(s) is independent from p(H). Thus, the joint
distribution p(H, s) equals to the product of marginals p(H)p(s). As a result, every sample from the
joint is also a sample from the product of marginals. In this case, no classifier performs better than
random guess, i.e., no classifier can discriminate samples from p(H, s) and p(H)p(s) in this case.
Therefore, we prove that Er∗ = 1

2 [10].

Then we present Theorem 2, which is presented in DGI[10]:

Theorem 2 Define s∗ as the optimal summary vector under the classification error of an optimal
classifier between p(H, s) and p(H)p(s). s∗ = argmaxsMI(H; s), where MI stands for mutual
information.

15

Based on Theorem 2, in DGI, they claim that for finite input sets and appropriate deterministic
functions, minimising the classification error in the discriminator D(·) (as shown in Equation 2) can
be used to maximise the MI between the input and output of R(·). However, under the aforementioned
assumptions, the error rate Er∗ is a constant, and it is not practical to minimise the classification
error. In addition, as p(s) is independent from p(H), we know MI(H; s) = 0. Thus, we can see these
findings contradict to Theorem 2.

Instead of maximising the MI(H; s), in this case, the discriminator D(·) is responsible for maximising
the similarity between positive embeddings and the constant summary vector s, while minimising
the similarity between negative embeddings and s. This operation is equivalent to maximising the
Jensen-Shannon divergence between the distribution of positive embeddings and negative embeddings.
We show a theorem to explain this as follows:

Theorem 3 Assuming s is a constant summary vector ϵI and ϵ of s is independent from p(H). Given
a graph G, a corrupted graph G̃, and a GNN encoder gθ(·), we consider the distribution of positive
embeddings gθ(G) as Ph

pos and negative embeddings gθ(G̃) as Ph
neg. Optimising the DGI loss is

equivalent to maximising the Jensen-Shannon divergence between P ĥ
pos and P ĥ

neg , where ĥ is linearly
transformed h.

Proof. We first present the DGI loss with a constant summary vector:

L = Eh∼P h
pos

logD(h, s) + Eh∼P h
neg

log(1−D(h, s)),

= Eh∼P h
pos

log(h · W · s) + Eh∼P h
neg

log(1− h · W · s),

= Eh∼P h
pos

log(h · W · ϵ) + Eh∼P h
neg

log(1− h · W · ϵ),
(14)

where h is node embedding and W is learnable weight matrix. Here, we consider h · W (i.e., linearly
transformed h) as ĥ. Then, we consider the distribution of ĥ generated with positive samples h as
P ĥpos and the distribution of ĥ with negative samples h as P ĥpos . Then, the equation becomes:

L = Eĥ∼P ĥ
pos

log(sum(ϵĥ)) + Eĥ∼P ĥ
neg

log(1− sum(ϵĥ)),

= Eĥ∼P ĥ
pos

log(ϵ · agg(ĥ)) + Eĥ∼P ĥ
neg

log(1− ϵ · agg(ĥ)),
(15)

the above equation is very similar to Equation 11 and the only difference is there is a ϵ multiply with
the agg(·) output. Here, agg(·) is summation. Thus, the proof for Theorem 2 still holds and prove
Theorem 3.

Based on Theorem 3, we can see group discrimination without the summary vector is doing the same
thing as DGI with a constant summary vector (i.e., separating positive and negative distribution). Thus,
we are motivated to remove the summary vector from the loss and proposed the group discrimination
loss in Equation 3.

Instead of relying on a summary vector s to discriminate positive and negative samples in H (i.e.,
calculating their similarity with the summary vector), we directly use a binary cross entropy loss to
classify these samples. Removing the summary vector s is beneficial to the computation efficiency
because it eases the burden of gradient computation, e.g., to compute the gradient for s, we need to
store and use all the parameters in the model to conduct backward propagation. However, in group
discrimination, we do not need the summary vector and only aggregate node embeddings to obtain
prediction.

A.3 Evaluation on aggregation function

Table 11: The experiment result on three
datasets with different aggregation function
on node embeddings.

Method Cora CiteSeer PubMed

Sum 82.5 ±0.2 71.7 ±0.6 77.7 ±0.5
Mean 81.8 ±0.5 71.8 ±1.1 76.5 ±1.2
Min 80.4 ±1.3 61.7 ±1.8 70.1 ±1.9
Max 71.4 ±1.2 65.3 ±1.4 70.2 ±2.8
linear 82.2 ±0.4 72.1 ±0.7 77.9 ±0.5

To explore the effect of other aggregation functions,
we replace the summation function in Equation 1
with other aggregation methods, including mean-,
minimum-, maximum- pooling and linear aggrega-
tion. We report the experiment results (i.e., averaged
accuracy on five runs) in Table 11. The table shows
that replacing the summation with other aggregation
methods still works, while summation and linear ag-
gregation achieve comparatively better performance.

16

A.4 Rethinking MVGRL

Corrupt

Augment

Pooling

Pooling

maximise

maximise

Corrupt

minimise

minimise

Figure 7: The architecture of MVGRL. Here augment means augmentation. s is the summary vector
based on G, and saug is the summary vector based on the augmented graph Gaug .

Extending the architecture of DGI, MVGRL resorts to multi-view contrastiveness via additional
augmentation. Specifically, as shown in Figure 7, it first uses the diffusion augmentation to create
Gaug . Then, it corrupts G and Gaug to generate negative samples G̃ and G̃aug . To build contrastiveness,
MVGRL also generates two summary vectors saug and s by averaging all embeddings in Gaug and G,
respectively. Based on the design of MVGRL, the model training is driven by mutual information
maximisation between an anchor node embedding and its corresponding augmented summary vector.
However, MVGRL has the same technical error in their official JSD-based implementation as DGI,
which makes it also becomes a group-discrimination-based approach.

Similar to Equation 3 of DGI, the proposed loss in MVGRL can also be rewritten as a binary cross
entropy loss:

LMVGRL = − 1

4N
(

4N∑
i=1

yi log ŷi + (1− yi) log(1− ŷi)), (16)

here the number of nodes is increased to 4N as we include both nodes in Gaug and G̃aug as data
samples. The indicator yi for G and Gaug are 1, while G̃ and G̃aug are considered as negative samples
(i.e., the indicator yi for them are 0). To explore why MVGRL can achieve a better performance
than DGI, we replace the original MVGRL loss with Equation 16 and conduct ablation study of
MVGRLbce by removing different set of data samples in Equation 16, and report the experiment
result in Table 12. From the table, the performance of MVGRLbce is on par with MVGRL, which
reconfirms the effectiveness of using the BCE loss. Also, we can observe that including Gaug

and G̃aug is the key of MVGRL surpassing DGI. With Gaug and G̃aug, the model performance of
MVGRLbcew/oGaug and G̃aug is improved from 82.2 to 83.1. We conjecture this is because, with
the diffusion augmentation, MVGRL is trained with the additional global information provided by
the diffused view Gaug. However, the diffusion augmentation involves expensive matrix inversion
computation and significantly densifies the given graph, which requires much more memory and time
to store and process than the original view. This can hinder the model from extending to large-scale
datasets [21].

A.5 Complexity Analysis

The time complexity of our method consists of two components: the siamese GNN and the loss
computation. Existing self-supervised baselines share similar time complexity for the first component.
In GGD, given a graph G = {X ∈ RN×D,A ∈ RN×N} in the sparse format, taking a L-layer

17

Table 12: The ablation study of MVGRL from the perspective of Group Discrimination.
Method Cora CiteSeer PubMed

MVGRL 82.9 ±0.9 72.6 ±0.8 78.8 ±0.6
MVGRLBCE 83.1 ±0.6 72.8 ±0.5 79.1 ±1.1
MVGRLBCE w/o Gaug 81.2 ±0.8 52.8 ±3.1 76.6 ±1.3
MVGRLBCE w/o G 82.1 ±0.6 71.8 ±1.1 77.1 ±1.2

MVGRLBCE w/o G̃aug 81.1 ±0.8 56.7 ±2.1 74.9 ±1.3

MVGRLBCE w/o G̃ 82.7 ±0.9 72.0 ±0.9 78.6 ±0.9

MVGRLBCE w/o Gaug and G̃aug 82.2 ±0.6 71.8 ±1.0 77.0 ±0.8

MVGRLBCE w/o G and G̃ 83.1 ±0.6 72.6 ±0.6 78.5 ±1.4

GCN [19] encoder as an example, the time complexity is O(LND + LND2) 3. As we need to
process both the augmented graph Ĝ and the corrupted graph G̃, GGD requires the encoder computation
twice. Then, the projector network (i.e., MLP) with K linear layers will be applied to the encoder
output, which takes O(ND2) for each layer in computation 4. Before group discrimination, we
aggregate the generated embedding with aggregation techniques. Here we take the simple summation,
which consumes O(ND) as example. For the loss computation, we use the BCE loss, i.e., Equation
3, to category summarised node embeddings, i.e., scalars. The time complexity of this final step
is O(2N) (i.e., processing all data samples from the positive and negative groups). Ignoring the
computation cost of the augmentation, the overall time complexity of GGD for computing a graph G is
O(2(LND+ LND2 +KND2 +ND+N)) → O

(
ND(L+ LD+KD)

)
, where we can see the

time complexity is mainly contributed by the siamese GNN. Also, our model scales linearly w.r.t. the
number of nodes N .

A.6 The power of Graphs

To show the easiness of computation for the power of graphs, we conduct an experiment to evaluate
the time consumption for graph power computation on eight datasets, whose statistics are shown in
Appendix A.7. Specifically, we set the hidden size of Hθ to 256, and n is fixed to 10 for all datasets.
The experiment results are shown as below:

Table 13: Graph power computation time in seconds on eight benchmark datasets. The experiment
is conducted using CPU: Intel Xeon Gold 5320. ‘Cite’ , ‘Comp’, ‘Photo’, ‘Arxiv’, ‘Products’,
‘Papers’ means Citeseer, Amazon Computer, Amazon Photo, ogbn-arxiv, ogbn-products and ogbn-
papers100M.

Cora Cite PubMed Comp Photo Arxiv Products Papers

5.4e-3 7.3e-3 9.8e-3 1.2e-2 8.5e-3 2.2e-2 24.5 208.8

This table shows that the computation of graph power is very trivial on small and medium size
graphs, e.g., ogbn-arxiv, which has million of edges, consuming only 0.22 seconds. Extending to an
extremely large graph, ogbn-papers100M, which has over 1 billion edges and 11 million nodes, the
computation only requires 209 seconds (i.e., around three minutes), which is acceptable considering
the sheer size of the dataset.

A.7 Dataset Statistics

The following table presents the statistics of eight benchmark datasets including five small to medium
-scale datasets and three large-scale datasets from OGB Graph Benchmark[29].

3Here we assume for simplicity that the graph is sparse with the number of edges |E| = O(N).
4For simplicity we assume the hidden dimension size is D. In practice, the hidden dimension size D′ will be

smaller than D.

18

Table 14: The statistics of eight benchmark datasets.
Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
Amazon Computers 13,752 245,861 767 10
Amazon Photo 7,650 119,081 745 8
ogbn-arxiv 169,343 1,166,243 128 40
ogbn-products 2,449,029 61,859,140 100 47
ogbn-papers-100M 111,059,956 1,615,685,872 100 172

A.8 Experiment Settings & Computing Infrastructure

Extending to Extremely Large Datasets. Extending to extremely large graphs (i.e., ogbn-products
and ogbn-papers100M), we adopt a simple neighbourhood sampling strategy introduced in Graph-
Sage [23] to decouple model training from the sheer size of graphs. Specifically, we create a fixed
size subgraph for each node, which is created by sampling a predefined number of neighbours in each
convolution layer for sampled nodes. The same approach is employed in the testing phase to obtain
final embeddings.

General Parameter Settings. In our experiment, we mainly tune four parameters for GGD ,which
are learning rate, hidden size, number of convolution layers in the GNN encoder, and number of
linear layers in the projector. For simplicity, we set the the power of a graph for global embedding
generation fixed to 5 for all datasets (i.e., Equation 4). The parameter setting for each dataset is
shown below:

Table 15: Parameter settings on eight datasets. ‘lr’ means the learning rate for pretraining, ‘num-conv’
and ‘num-proj’ represent number of convolution layers in GNNs and number of linear layers in
projector, respectively.

Dataset lr hidden num-conv num-proj

Cora 1e-3 512 1 1
CiteSeer 1e-5 1024 1 1
PubMed 1e-3 1024 1 1
Amazon Computers 1e-3 1024 1 1
Amazon Photo 1e-3 512 1 1
ogbn-arxiv 5e-5 1500 3 1
ogbn-products 1e-4 1024 4 4
ogbn-papers-100M 1e-3 256 3 1

Large-scale Datasets Parameter Settings. To decouple model training from the scale of graphs,
we adopt the neighbouring sampling technique, which has three parameters: batch size, sample size,
and number of hops to be sampled. Batch size refers to the number of nodes to be processed in
one parameter optimisation step. Sample size means the number of nodes to be sampled in each
convolution layer, and the number of hops determines the scope of the neighbourhood for sampling.
In GGD implementation, the batch size, sample size, and the number of hops are fixed to 2048, 12 and
3, respectively.

Memory and Training Time Comparison. As memory and training time are very sensitive to hyper-
parameters related to the structure of GNNs, including hidden size, number of convolution layers,
and batch processing for large-scale datasets, e.g., batch size and number of neighbours sampled in
each layer. Thus, in memory and training comparison, to be fair, we set all these parameters to be the
same for all baselines and GGD. The specific parameter setting for each dataset is shown below:

19

Table 16: Parameter settings on eight datasets for memory and training time comparison.
Dataset hidden num-

conv
batch num-neigh

Cora 512 1 - -
CiteSeer 512 1 - -
PubMed 256 1 - -
Amazon Computers 256 1 - -
Amazon Photo 256 1 - -
ogbn-arxiv 256 3 - -
ogbn-products 256 3 512 10
ogbn-papers-100M 128 3 512 10

Computing Infrastructure. For experiments in Section 2, 3 and 6.1, they are conducted using
Nvidia GRID T4 (16GB memory) and Intel Xeon Platinum 8260 with 8 core. For experiments on
large-scale datasets (i.e.,ogbn-arxiv, ogbn-products and ogbn-papers100M), we use NVIDIA A40
(48GB memory) and Intel Xeon Gold 5320 with 13 cores.

A.9 Algorithm

We have summarised the overall procedure of GGD in Algorithm 1 in as follows.

Algorithm 1: The Overall Procedure of GGD

Input :Input Graph G = {X ∈ RN×D,A ∈ RN×N}; GNN encoder gθ(·); Projector fθ(·);
Number of nodes N ; Number of feature dimensions D; Number of hidden
dimensions D′; Number of training epochs T

Output :Final representation H
1 //Model Training;
2 for t = 1 to T do
3 //Augmentation(optional);
4 Conduct feature dropout and edge dropout on G to obtain Ĝ = {X̂, Â};
5 //Corruption;
6 Corrupt Ĝ to obtain G̃ = {X̃, Ã};
7 //Compute Encoding;
8 Input Ĝ and G̃ to gθ(·) and fθ(·) to obtain graph embedding Ĥθ = fθ(gθ(Ĝ)) and H̃θ

= fθ(gθ(G̃)), respectively;
9 //Aggregation;

10 Concatenate Ĥθ and H̃θ to obtain H̄θ;
11 Conduct aggregation on H̄θ ∈ R2N×D′

to obtain the prediction vector ŷθ ∈ R2N ;
12 //Compute Loss;
13 Calculate loss L = − 1

2N (
∑2N

i=1 yi log ŷi + (1− yi) log(1− ŷi)), where ŷi ∈ R1 is the
prediction for one node sample and ŷi ∈ ŷθ;

14 //Update parameters;
15 Update trainable parameters in gθ(·) and fθ(·);
16 //Inference;
17 Obtain local embedding Hθ = fθ(gθ(G)) ;
18 Obtain global embedding Hglobal

θ = AnHθ;
19 Obtain final embeddings for downstream tasks H = Hglobal

θ + Hθ;

Specifically, we first conduct augmentation on G to obtain Ĝ. Then, Ĝ is corrupted to generate the
corrupted graph G̃ . In the encoding phase, we feed Ĝ and G̃ to GNN encoder gθ and projector fθ to
generate embeddings Ĥθ for positive samples and H̃θ for negative samples. After that, we obtain
the binary classification result by aggregating the concatenation of Ĥθ and H̃θ. The result is a 2N
dimension vector, which can be used for calculating the loss with a BCE loss. Finally, based on the

20

calculated loss, trainable parameters in gθ(·) and fθ(·) can be updated. This training process will
continue iteratively until we reach the predefined number of epochs T . When the training process is
completed, we freeze the gθ(·) and fθ(·) and feed G to these two encoding components to obtain the
local embedding, Hθ. Then, we obtain global embedding Hglobal

θ with a global information injection
operation. By summing Hθ and Hglobal

θ , we can get the final embeddings H.

A.10 Ablation Study

In this section, we conduct an ablation study to evaluate the effectiveness of different compo-
nents in GGD. Specifically, we evaluate three variants of GGD, including GGDw/o aug, GGDw/o proj ,
GGDw/o power, which represent GGD without augmentation, the projector and the global information
injection process respectively. The experiment results on five small to medium size datasets are
presented in Table 17. From the table, we can see without any mentioned component, the performance
of GGD degrades, which validates the effectiveness of these components. It is worth noting that even
without the global information injection in the inference phase, GGDw/o power still achieves the
highest performance in 4 out of 5 datasets compared with six self-supervised baselines. This indicates
that even without global information injection, GGD is still effective.

Table 17: Ablation Study for GGD.
Method Cora CiteSeer PubMed Comp Photo

GGDw/o aug 83.6±0.3 72.4±0.4 81.2±0.2 89.6±0.4 92.2 ±0.5
GGDw/o proj 83.0±0.5 72.5±0.4 81.1±0.4 89.4±0.5 91.6 ±0.5
GGDw/o power 83.0±0.5 72.5±0.4 80.1±0.4 89.9±0.6 91.6±0.4
GGD 83.9±0.4 73.0±0.6 81.3±0.8 90.1±0.9 92.5±0.6

21

	Appendix A
	Proof of Proposition 1
	Proof for Theorem 1
	Connection with DGI

	Evaluation on aggregation function
	Rethinking MVGRL
	Complexity Analysis
	The power of Graphs
	Dataset Statistics
	Experiment Settings & Computing Infrastructure
	Algorithm
	Ablation Study

