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Abstract

Recent years have witnessed the rise of misinformation campaigns that spread
specific narratives on social media to manipulate public opinions on different areas,
such as politics and healthcare. Consequently, an effective and efficient automatic
methodology to estimate the influence of the misinformation on user beliefs and
activities is needed. However, existing works on misinformation impact estimation
either rely on small-scale psychological experiments or can only discover the corre-
lation between user behaviour and misinformation. To address these issues, in this
paper, we build up a causal framework that model the causal effect of misinforma-
tion from the perspective of temporal point process. To adapt the large-scale data,
we design an efficient yet precise way to estimate the Individual Treatment Effect

(ITE) via neural temporal point process and gaussian mixture models. Extensive
experiments on synthetic dataset verify the effectiveness and efficiency of our
model. We further apply our model on a real-world dataset of social media posts
and engagements about COVID-19 vaccines. The experimental results indicate
that our model recognized identifiable causal effect of misinformation that hurts
people’s subjective emotions toward the vaccines.

1 Introduction

Recent researches reveals that widespread fake news and misleading information have been exploited
by misinformation campaigns to manipulate public opinions in different areas, such as healthcare
[36, 38, 18] and politics [20]. To address this crucial challenge, research efforts from different
perspectives have been devoted, such as fake news detection and coordination detection [35, 36, 38].

However, an essential associated research question has not been explored sufficiently: how to
know a piece of misinformation’s causal influence on a user’s beliefs and activities on a large-scale
social media. Precisely estimating such impact is crucial for misinformation mitigation in various
areas, e.g. delivering the corresponding clarification contents to the users that are most likely to be
affected, allocating resources for more efficient and effective misinformation mitigation, and helping
researchers understand misinformation campaigns better. Nevertheless, most of existing researches in
social media analysis focus on understanding correlation between misinformation and user activities,
rather than causal effect [26, 38, 18, 45]. As a result, they can not distinguish the effect from personal
prior beliefs and engagement with misinformation. Current researches on misinformation’s causal
influence on people are mainly from psychology field [15, 42]. They are usually based on carefully
designed psychological randomised controlled trials on recruited subjects. Thus, it is impossible to
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extend them onto large-scale social media platforms due to the high cost to recruit enough subjects
and ethical risk in conducting such a large-scale psychology experiments.

Since personal beliefs are usually unobservable, researchers usually apply the feature of the tweets
generated or retweeted by the users as a proxy [38]. However, the lack of appropriate algorithmic
tools to conduct causal analysis on social media posts prevents researchers from understanding
causal effect of misinformation. The processes that social media users generate original posts and
engage with existing posts are typical temporal point processes. But existing methodologies for
temporal causal effect estimation mostly focus on covariates and outcomes continuously distributed
on timeline [4, 3, 2, 6, 16], rather than discrete event points randomly scattered on timeline. Although
the essential theory for counterfactual analysis of point process is already established[30], most works
are motivated by healthcare and thus focus on the hazard models, e.g. survival analysis [1] or the
chance to catch cancer [31], which only consider the single occurrence of the most recent future event.
However, on social media, we care more about multiple events happening in a time window. [14]
and [24] are rare works studying the causal effect on multiple occurrences in temporal point process.
But [24] mainly focus on simulating the counterfactual events given an intervened intensity function
rather than learning the treatment effect of specific factors on the process. As for [14], one of its
assumption is that the event marks must be categorized to a finite number of classes, leaving no space
for the rich continuous features of social media posts, such as user sentiment and subjectivity scores.

In this work, we propose a framework that models the causal effect of a given piece of information
on user beliefs and activities via counterfactual analysis on temporal point process [37, 12, 22, 48,
51, 25, 7] with continuous features. We first define a causal structure model that characterizes the
misinformation impact as how the engagement with the misinformation change a user’s intensity
function of generating original posts. In this model, the engagement with misinformation is considered
as the treatment, and the user’s future conditional intensity function is considered as the outcome.
Then we design a functional that converts the change of two functions to a vector with intuitive
physical meaning [23]. To estimate the effect, we design a neural temporal point process model. It
disentangles the distribution of event timestamp and post feature (e.g. the text embedding). Then
it models the distribution of post features and event timestamp with Gaussian Mixture Model and
temporal point process respectively. Such design enables it to acquire a closed-form solution of the
feature expect without losing expressive power, leading to a balance between precision and efficiency.

A critical challenge in training neural networks to recognize causal effect is the hidden bias in the
dataset. In social media data, the most crucial bias is from information cocoons [50]: users tend more
to engage with the contents that they are interested in, and thus personalized recommendation systems
will deliver user more contents that they are interested in to increase user engagement. Such bias
leads to a data distribution different from randomised controlled trials and thus make neural networks
give biased estimation. To decorrelate time-varying treatment from user’s covariates and history in
point process, we apply adversarial training to optimize a min-max game. More specifically, the
encoder tries to minimize the likelihood of the observed treatments while a treatment predictor tries
to maximize it. Our theoretic analysis proves that any balanced solution of the min-max game, rather
than the global optimal solution in existing works [4], can help us remove the bias from information
cocoons. In addition, the extensive experiments on synthetic datasets and real-world datasets indicate
that our framework is able to approximate unbiased and identifiable estimation on the causal effect.
In conclusion, the main contributions of the proposed model are as follows:

• We propose a novel research problem on misinformation impact, which aims to find the
causal effect of misinformation on users’ belief and activities on social media.

• We propose a causal structure model to quantify the causal effect of misinformation and
further design a neural temporal process model to conduct unbiased estimation to the effect.

• We evaluate our model on synthetic datasets to examine its effectiveness and efficiency and
ues it to recognize identifiable causal effect of misinformation from real-world data.

2 Related Work

2.1 Influence of Misinformation

Recent researches about misinformation mainly focus on detecting fake news[35, 27, 32, 34], misinfor-
mation campaign detection [37, 49] and understanding how fake news attract user engagement[8, 9].
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Some researcher attempts to study the relation between misinformation and people’s behaviours
[15, 42, 38, 18]. However, most of them focus on mining the correlation between misinformation
and people behaviours rather than causal effects. Only a limited amount of works, such as [42] try to
understand the causal effect. However, they are usually from psychology field, and mainly rely on
carefully designed randomised controlled trials. Extending such trials on large-scale social media
platforms brings not only high cost but also potential ethical risk.

2.2 Temporal Point Process

The process that a user retweet or posts tweets can usually be modeled as a temporal point process with
event feature [37, 52, 33, 10]. A temporal point process (TPP) with event feature is a stochastic process
whose realization is a sequence of discrete events in a continuous timeline: S = [(f1, t1), (f2, t2), ...],
where f 2 is the event feature (a scalar or a vector) and t is the timestamp of the event. A TPP is fully
characterized by an intensity function �(f , t|Sh) defined in the following integral equation:

E(N(F , T1, T2)|Sh) =

Z

F
df

Z
T2

T1

�(f , t|Sh)dt (1)

where F is an area in the feature space, Sh is the historical sequence of all events happening before
time T1, N(F , T1, T2) is the number of events whose feature vectors are in F and timestamps
are in the range [T1, T2]. The meaning of �(f , t|Sh) is the expected instantaneous speed that the
user generate posts at point f in the feature space on time t. The process after time ti is fully
described by �(·, ·|Sh) [7]. Recent works propose to apply neural networks to model the � function
[12, 22, 48, 51, 25, 7].

2.3 Counterfactual Analysis on Temporal Point Process and Continuous Time Series

The works focusing on studying the causal effect on multiple occurrences in temporal point process
are rare. In [24], the authors mainly focus on the sampling of counterfactual events rather than the
learning the influence of specific factors on the intensity function. Another work[14] proposes a
counterfactual analysis framework to understand the causal influence of event pairs in temporal point
process. It defines the individual treatment effect (ITE) of an event toward future process as:

ITE = µ
1
y
(t, t+ T )� µ

0
y
(t, t+ T ) =

1

T

Z
t+T

t

�
1
y
(t)� �

0
y
(t)dt (2)

where µy is the expect of the event number of type y per unit time in time range [t, t+T ]. µ1
y

indicate
the case that a treatment is applied (exposed to misinformation) and µ

0
y

is in contrary. However,
this metric is only suitable in the case that the events can be categorized to finite discrete types.
This is not applicable for social media post because most meaningful features of the posts, such as
geographical information, sentiment score and subjective score, are naturally continuous. Forcibly
discretizing them will lose meaningful information. Besides, for counterfactual analysis of time
series, [4] proposes CRN, a neural model that can learn unbiased estimation to counterfactual world
and causal effect. [3] proposes to analyze counterfactual estimation using synthetic controls via
a novel neural controlled differential equation model. [2] introduces a new causal prior graph
to avoid the undesirable explanations that include confounding or noise and use a multivariate
Gaussian distribution to model the real continuous values. However, all of them focus on modeling
an observable variable existing on a continuous timeline instead of temporal point process. Unless
getting heavily revised, such previous work can not be simply transferred to our problem scenario.

3 Proposed Causal Structure Model and Treatment Effect

3.1 Causal Structure Model

In this study, we focus on understanding how a user’s engagement with the misinformation post
causally influence the characters of the posts generated by the user in a fixed future time window. We
formulate the process that a user interact the post shared by others and generate social media posts as

2We use bold font to emphasize that f is a feature vector rather than a function.
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two temporal point process where each event carries a continuous outcome vector. We denote the
process of engaging the diffusion of a post as Pe and the process generating new posts as Pg. Then
the realization of the two temporal point process are respectively two sequences Se and Sg of discrete
events with continuous outcome vector in a continuous time range:

Se = [(f (e)
1 , t

(e)
1 ), (f (e)

2 , t
(e)
2 ), ...], Sg = [(f (g)

1 , t
(g)
1 ), (f (g)

2 , t
(g)
2 ), ...] (3)

Treatments:
Engagement with 
Misinformation or
Information

Covariates: 
History Activities

!
Sampling

Post Post Post

Post Engage Post

Engage Engage Post
…

Figure 1: The proposed causal structured model describing the
impact of a piece of information on user.

where f is the feature vector char-
acterizing the event and t is the time
stamp. For Se, each event corre-
spond to an interaction (e.g. "like“
or comment), and the vector f (e) is
the feature of the content (like the
text representation, sentiment score
and metadata) from others. Simi-
larly, for Sg, the vector f (g) is the
feature of the content generated by
the user. To examine the causal ef-
fect of an interaction event on the
posts generated by the user in the
future, we construct the following
causal structure model, formulated as < X,Y, Tr >, where X is the covariate, Y is the outcome
and Tr is the treatment. In this model, given an interaction event (f (e)

i
, t

(e)
i

) whose causal effect is
to be examined, we consider the this event as the treatment Tr, and all the events, including both
engagement events and posting events, that happen before t

(e)
i

are considered as the covariates. As
for the outcome, rather than simply considering the most next generation event after t(e)

i
, we need

a representation that can reflect the change of the whole generating process Sg in a fixed future
time window T . Thus we apply the conditional intensity function of the future process, denoted
as �(f , t|Tr [ X), as outcome. As discussed in the related work section, � function completely
describe the future process. The overview of the model is presented in Figure. 1.

3.2 Treatment Effect Evaluation

In traditional counterfactual analysis works, the outcome is usually a scalar or a vector with finite
dimensions. Thus, the treatment effect can be trivially computed by comparing the difference of the
outcomes from real world and counterfactual world. However, in our framework, it is non-trivial to
compute the difference of two functions. To overcome this challenge, we propose to first apply a
functional F to project the � function to a vector with finite dimensions:

FT (�, T r [X) =
�(t, t+ T,�, T r [X)

µ(t, t+ T,�, T r [X)
(4)

�(t, t+ T,�, T r [X) = ES⇠P (S|�,Tr[X)[
X

(fi,ti)2St:t+T

fi] (5)

µ(t, t+ T,�, T r [X) = ES⇠P (S|�,Tr[X)|St:t+T | = E(N(sup(f), t, t+ T )|Tr [X) (6)

where P (S|�, T r [X) is the distribution of the event sequence S sampled from the temporal point
process described by �(·, ·|Tr [X), T is the time window that is a hyper-parameter, sup(f) is the
support set of f (the area where the probability density is larger than 0), and St:t+T is a sub-sequence
of S. St:t+T contains every event in S that happens at a time between t and t + T . The intuitive
meaning of F is the expected mean feature vector of all posts generated by a user. Thus, by comparing
the outputs of F in real world and counterfactual world, we can see how the engagement with a
specific post change the average features, e.g. general sentiment scores or text embedding. With this
functional, we can simply compute the individual treatment effect as:

ITE = FT (�, T r [X)� FT (�, ; [X) (7)

where ; is an empty set, FT (�, ;[X) is the functional from counterfactual world in which we assume
that the treatment is not applied (e.g. the misinformation post is not recommended or labeled as
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misinformation). For brief, we write FT (�, ; [X) as FT (�, X) The overall impact of the treatment
can be represented with the average treatment effect:

ATE = E(X,Tr)⇠U [FT (�, T r [X)� FT (�, X)] (8)
where U is the set of users who engaged with the treatment post.

3.3 Treatment Effect Calculation

In the above sections, we define the causal structure model and the treatment effect. However, the
above formulas are hard to compute. Therefore, in this subsection, we will derive a computable
formulation of the treatment effect. We will start from the following theorem:
Theorem 1. For a user u, if the intensity function �(f , t|Tr [X) is known, then we have:

µ(t, t+ T,�1, T r [X) =

Z

sup(f)
df

Z
t+T

t

�(f , t|Tr [X)dt (9)

�(t, t+ T,�1, T r [X) =

Z

sup(f)
fdf

Z
t+T

t

�(f , t|Tr [X)dt (10)

The first equation can be trivially proved by replacing the F in Equation 25 with the support set.
The second one can be proved with the Campbell’s Theorem [5]. A detailed proof is provided in
the Appendix A.1. The above formulas contain double integral, which is inefficient to compute. To
transform the double integral to a single integral, based on a previous work in spatial-temporal point
process [7], we have:

�(f , t|Tr [X) = �(t|Tr [X)p(f |t, T r [X) (11)
Thus, we can disentangle �(f , t) and respectively model �(ti) and p(f |t). More importantly, we can
simply model µ as:

µ(t, t+T,�, T r [X) =

Z
t+T

t

�(t|Tr [X)dt

Z

sup(f)
p(f |t, T r [X)df =

Z
t+T

t

�(t|Tr [X)dt

(12)
And with this formula, we have:

�(t, t+ T,�, T r [X) =

Z

sup(f)

Z
t+T

t

f�(t|Tr [X)p(f |t, T r [X)dfdt

=

Z
t+T

t

�(t|Tr [X)dt

Z

sup(f)
fp(f |t, T r [X)df

=

Z
t+T

t

�(t|Tr [X)E[f |t, T r [X]dt

(13)

The above formulas contain only single integrals. Thus, they can be efficiently approximated with
summation:

R
x2

x1
f(x)dx ⇡

P(x2�x1)/�x

i=0 f(x1 + i�x)�x

4 Neural Estimation of Treatment Effects

The above section construct a causal framework that can measure the impact of a given social media
post based on the change of �(t|Tr [X) and p(f |t, T r [X). In this section, as shown in Figure 2
we will further discuss how to estimate the impact with a neural temporal point process model.

4.1 Learning Conditional Intensity Function via Maximum Likelihood Estimation

The log-likelihood of an observed event (f, t) (no matter an engagement event or an generation event)
can be written as:

log p(f , t|Tr [X) = log �(t|Tr [X)�
Z

t

tn

�(t|Tr [X)dt+ log p(f |t, T r [X) (14)

where tn is the timestamp of the last event in the set Tr [X . The above equation provides us with a
way to learn �(t|Tr [X) and p(f |t, T r [X) by maximizing the likelihood of each event given the
historical information (treatment and covariates). To enable the model to make correct prediction for
both �(f , t|Tr [X) and �(f , t|X), we construct two kinds of samples to train the functions:
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Figure 2: The proposed neural model to estimate the impact of
misinformation.

Samples with valid Treatment: If
for a generating event (f (g)

, t
(g)),

its most recent previous event is
an engagement event (f (e)

, t
(e))

(in other words, the user does not
have other activity between the en-
gagement event and the generat-
ing event), then we can construct
a sample (Y, Tr [X), where Y =
(f (g)

, t
(g)), Tr = (f (e)

, t
(e)), and

X is a sequence that contains all
engagement events and generation
events before Tr.

Samples without Treatment: If for
a generating event (f (g)

, t
(g)), its

most recent previous event is still
a generating event (in other words,
the user generate two original posts
without engaging with other posts),
then we can construct a sample
(Y,X), where Y = (f (g)

, t
(g)) and

X is a sequence that contains all en-
gagement events and generation events before Y . In this sample, between the last generation event
in X and Y , there is no interruption from treatment. Thus, it helps the model to learn �(t|X) and
p(f |t,X)

For a sample (Y, Tr [X) or (Y,X), we first use a shared encoder H(·) to project (Tr [X) (or X)
to a representation vector h = H(Tr [X) (or h = H(X) for the case where treatment is NULL).
Then we model the intensity function and feature distribution as �(t|h) and p(f |t, h). For �(t|h),
following FullyNN, we use a multi-layer perceptron MLP (h, t) to model its integral

R
t

tn
�(t|h)dt.

The MLP’s partial derivative with respect to t is �(t|h).
To model p(f |t, h), a straightforward solution borrowed from generative deep learning is to apply
a neural network, i.e. the decoder, to transform a simple distribution, e.g. a Gaussian distribution
whose parameters are decided based on h and t, to a complicated distribution. The decoder can be
trained via different loss function, like reconstruction error (variational auto encoder) and likelihood
(normalizing flow)3 [44, 7]. However, this method has an important drawback: its conditional expect
E[f |t, h] does not have a closed-form solution. To compute the expect, we can only apply sampling or
approximation, e.g. forwarding the expect of the simple distribution into the decoder4. To address the
above challenge, we propose to explicitly model p(f |t, h) with a mixture of Gaussian distributions:

p(f |t, h) =
mX

j=1

wj(t, h)g(
fi � uj(t, h)

�j(t, h)
) (15)

w(t, h) = softmax(MLPw(h, t)),�(t, h) = exp(MLP�(h, t)),µj(t, h) = MLP
(j)
µ (h, t) (16)

where wj is the mixture weight, �j is a scalar, uj is a vector with the same dimension as f , and
g(·) is a standard multivariate gaussian distribution N (0, I) whose covariant matrix is an identical
matrix. Although the formula of each component is simple, their mixture has a theoretical guarantee
on universal approximation to all distributions [46]. Because the expect of a mixture distribution is
the mixture of the expects, we have a closed-form solution for E[f |t, h]:

Ef⇠p(f |t,h)[f |t, h] =
mX

j=1

wj(t, h)uj(t, h) (17)

3GAN is not suitable because for fixed h and t we only have one sample, which can be easily memorized.
4Because the decoder D is a non-linear function, E[D(x)] is usually different from D(E[x])
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4.2 Adversarial Balanced Neural Temporal Point Process

As discussed in the related work section, by maximizing the likelihood of the posts generated by
the users, we can train a neural network that predict �(t|Tr [ X) and p(f |t, T r [ X). However,
previous works have proved that if we do not balance the bias from the correlation between treatment
and covariates, the model will tend to give biased prediction and thus can not give precise estimation
of the treatment effect. A crucial bias in social media data is information cocoon: personalized
recommendation systems will deliver user the contents that they are interested in. For example, it will
deliver more anti-vaccine posts to anti-vaccine users because they are more likely to be interested in
those contents. As a result, the anti-vaccine users will engage more with anti-vaccine posts.

To address the above issue, following previous works in neural counterfactual prediction, we apply
domain adversarial training to learn a representation h that is invariant to such a bias[4]. More
specifically, we hope to learn a encoder H such that for any two users with different history X1

and X2, p(Tr|H(X1)) = p(Tr|H(X2)) for the same Tr. In other words, in the representation
space, the probability that the two users interact with the same post at the same time should be same,
which is the same as psychology experiments that divide the experimental and controlled groups
randomly. To achieve this object, we apply adversarial training to remove the information about
future treatment from the representation of covariates. More specifically, we additionally train a
treatment predictor p̂(Tr|H(X)) by modeling �tr(t(e)|h) and ptr(f (e)|t, h) with the encoding h of
the historical covariates X . However, between the treatment predictor and the encoder, we insert a
gradient reversal layer (GRL)[13, 28, 4] to reverse the sign of the gradient. Thus, when we optimize
the treatment predictor to maximize the likelihood of the observed treatment Tr = (f (e)

, t
(e)), the

GRL will make the encoder to minimize the likelihood. This process leads to the following min-max
game:

minHmaxp̂ETr,X⇠p(Tr,X) log p̂(Tr|H(X)) (18)
The following theorem (proof provided in Appendix A.1) provide theoretic guarantee that the above
adversarial training reduce the bias introduced by treatment-covariate correlation (e.g. recommenda-
tion system and personal interest):
Theorem 2. Given the following min-max game:

minHmaxp̂ETr,X⇠p(Tr,X) log p̂(Tr|H(X)) (19)

the min gamer’s Nash balanced solution H
⇤
, ensures for any X1, X2, the following equation holds:

p(Tr|H⇤(X1)) = p(Tr|H⇤(X2)) (20)

where p denote the ground-truth conditional distribution of treatment given encoding.

5 Experiments

On real-world social media platforms, the ground truth causal effects of user engagement with posts,
no matter misinformation post or information post, are unknown. To address the unknown ground
truth causal effect, previous works of causality analysis evaluate their models on synthetic dataset.
In this paper, following previous works, we evaluate the performance of our model and compare
it with baselines on synthetic dataset. Then we apply our proposed method to evaluate the impact
misinformation on a real-world social media data about COVID-19 vaccine collected from Twitter5.

5.1 Experiments on Synthetic Data

Synthetic Data Generation: To simulate the real-world social media, we generate 15000 users and
120 post of news. Each user i is represented with a hidden vector ui, which correspond to the status
of a social media user. Each piece news n has two randomly generated feature vectors: a topic vector
vtopic(n) and an inherent influence vector vin(n). Each user has two kinds of activities: (1) engaging
with one of the 120 news post and (2) posting a post with original contents. The chance that a user
engage with a post is decided by vin(n) and ui, simulating information cocoons. Engagement event
with news post n will change the hidden status u of the user. The scale and direction of the change
are decided by the current user status, the topic vector and the inherent influence vector jointly. For

5Code and data will be provided in https://github.com/yizhouzhang97/CNTPP
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Table 1: Estimation Error to the ground-truth ITE

Method Accuracy " RAE # RRSE # Decoder Inference Time
FullyNN 73.0% 0.865 0.901 7.13ms

CNTPP-VAE (Approximation) 85.9% 0.279 0.503 4.05ms

CNTPP-VAE (Sampling) 87.8% 0.237 0.454 29.34ms
CNTPP(Ours) 88.0% 0.234 0.448 7.12ms

each user, the engagement events and the posting events are modeled through two Hawkes process
respectively. Both Hawkes processes are influenced by user status u. Also, the feature of each posting
event f is drawn from a distribution P (f |u, t) characterized by a random parameterized multi-layer
perceptron (MLP) taking (u, t) and random noises as input and output f . Thus, the engagement with
the news post will have causal effects on the two processes. Since we have all parameters of the
model, we can calculate the ground-truth ITE defined in Eq. 7 for the synthetic dataset. The details
of the data generation algorithm is included in the Appendix B.2.

Baselines: To the best of our knowledge, the causality effect on temporal user behaviour from
misinformation is not explored by previous works. Thus, we lack well-established baselines for
this specific task. To address this issue, we select some baselines from previous works on temporal
point process and temporal causal inference and extend them to adapt our setting. FullyNN [25] is a
non-causal neural temporal point process that predict the user future behaviours without considering
causal effect. We select it because has the same neural architecture as our model. It can also be
regarded as our model’s variant w/o adversarial balancing. Neural-CIP

6 is an extension of CIP
[14], which aims at discovering causal effect of event pairs in temporal point process. We further
compare our model with an ablation variant: CNTPP-VAE. It replace our GMM-based decoder with
a Variational Auto-Encoder [17]. Since VAE does not have a closed form solution of feature expect,
we report the results applying sampling and approximation separately.

In this work, we will evaluate the proposed model in two aspects:

Table 2: Causal Effect Inference

Method MatDis# LinCor"
Neural-CIP 0.90 0.04

FullyNN 0.93 0.236
CNTPP-VAE (Approximation) 0.84 0.303

CNTPP-VAE (Sampling) 0.76 0.287
CNTPP (Ours) 0.77 0.310

ITE Estimation: we will evaluate the
model by comparing ITE estimated by the
model and the ground-truth ITE. We report
three metrics: Accuracy (the model need
to correctly predict whether the engage-
ment increase or decrease each dimension
of the expected average feature), Relative
Absolute Error (RAE) and Relative Root
Square Error (RRSE). In addition, we also
report the inference time of our model to
reflect our model’s efficiency.

As shown in Table 1, our model establishes new state-of-the-art on all three quantitative metrics. This
means that our model can fully utilize the causal information from the multivariates point process for
unbiased treatment effect estimation. In particular, the model with causal analysis outperforms the
model with direct neural network prediction (FullyNN), which leads to results that are not causally
related. Simultaneously, our model outperforms all baselines in all three metrics of estimation
precision. Although CRN-VAE incorporated with sampling method can achieve a performance very
close to us, it spends substantially longer inference time.

Causal Effect Inference: CIP defines the treatment effect in a way different from our model. Thus
ITE estimation experiment is not fair for it. For a fair comparison, and also to further prove that our
model can achieve unbiased estimation, we use all the models to predict the ATE of each news post.
Then we evaluate the correlation between the learnt ATEs and ground-truth average change of the
news post to all users’ hidden statuses. The more correlated the learnt ATE is, the better it reflect the
inherent causal effect of the engagement on users. To evaluate the correlation, we apply the following
two metrics: MatDis and LinCor. MatDis evaluates the similarity between the ATE-Distance matrix
and Hidden-Status-Distance matrix. LinCor evaluates the linear correlation between the learnt ATE

6Because the authors did not opensource the code of original CIP and one important precious work that is
crucial for CIP, we implement a version of CIP that apply neural network rather than graphical causal model.
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Table 3: Comparison of (normalized) Average Sum of Distances with different methods on the
real-world dataset. This metric reflect how well the a group of data points is clustered.

Methods ASD# ASDin # ASDmis #
Event Feature 0.123 0.123 0.122

FullyNN 0.073 0.069 0.072
CNTPP (Ours) 0.045 0.042 0.044

and the ground-truth average hidden status change. Details of the two metrics can be found in
Appendix B.4. From Table 2, the ATE of our model best reflect the ground-truth average change of
the news post on the simulated data for both two evaluation metrics. This suggests that our model has
the potential to discover the influence of misinformation on social media users’ hidden status, e.g.
interest and idea.

5.2 Experiments on Real World Data

In this section, we apply our proposed model on the Twitter dataset to estimate misinformation impact
on social media scenario. We apply the data set collected in [49, 38], including a total of 16,9008
tweets with labels from 24,192 users over a 5-month period from 2020/12/09 to 2021/04/24. Notably,
we focus on understand how the tweets that users retweeted influence their behavior of posting
original tweets. For each post, its feature f includes: text representation (extracted with a pre-trained
BERT), sentiment score and subjectivity score. We discover the following two phenomenons with
our model.
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Figure 3: Analysis on real world social media data

Identifiability between misinformation and information in influencing people’s narratives:
For the desired outcome, we analyze the distinguishability between "retweeting fake news" and
"retweeting true news" events. More specifically, for each retweeting event, we use its ITE estimated
with our model as feature (dimension reduced via PCA [21]) and whether the content is information
or misinformation as label. As shown on Figure 3(b), we can verify the identifiability of our proposed
method as the treatment effect of two types of the news are substantially different. This discovery
not only supports that misinformation and information influence people’s behaviour in different
ways, but also provides us with a new paradigm to detect fake news. We also calculate Normalized
Averaged Sum of Distances (NASD, details in Appendix B.7) for information cluster, misinformation
cluster and their joint set. The lower these metrics are, the better that information and misinformation
are distinguished. The comparison of our model against FullyNN and event features on this metric
is shown in Table 3. As we can see, the ITE learnt by our model can identify information and
misinformation better than the baselines.

Misinformation is hurting people’s subjective emotion related to COVID vaccine: To understand
the influence of misinformation in a more intuitive way, we analyze the impact of retweeting events
on users’ average sentiment score and subjectivity score in the future. The higher subjectivity the
content gets, the more personal opinions rather than factual information text contains. Then, we
use the proposed model to generate the estimated ITE for each retweeting event and plot the results
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of fake news and real news. As shown on Figure 3(a) (x-axis for sentiment score and y-axis for
subjectivity score), we find that both information and misinformation do not substantially influence
the users’ subjectivity. However, information tends to make people optimistic about vaccines (true
news increases the sentiment score), while fake news tends to make people feel negative about
vaccines. This discovery strongly supports the hypothesis that misinformation is hurting people’s
subjective emotion toward COVID-19 vaccines, and suggests that misinformation could be causally
responsible for vaccine hesitancy.

6 Broader Impact and Limitations

The predicted ITE scores of our model can bring impacts from two perspectives: misinformation

mitigation and misinformation research. First, the predicted ITE scores help platforms allocate
resources better for more efficient and effective misinformation mitigation. Here, resources include a
wide range of specific concepts, including but limited to the efforts of human verifiers, users’ capacity
to accept and spread the contents for clarification, and so on. Second, our proposed model provides
researchers with a data-driven algorithmic tool to bridge the research in user behavior modeling and
misinformation. This tool can help researchers in different ways, e.g. providing researchers a set of
potential misinformation factors that could influence user behaviours, understanding misinformation
campaigns, which spread misinformation with specific topics or narratives to influence public
opinions, and designing better evaluation metrics for fake news detection7.

The proposed model also has some limitations. First, it mainly focus on the causal effect of engage-
ment on posting. However, in real-world social media, there could be other impacts of misinformation,
such as changing the user’s preference of engagement, topics of interest and community identity [47].
Also, due to the limitation of synthetic algorithm and the meta data in the real-world data, we did
not consider that different types of engagement may have different impact strength. In addition, the
real-world dataset experiment only consider one dataset related to COVID-19, which is a single topic
dataset. Although our model does not prohibit from being generalized onto multi-topic datasets, e.g.,
PolitiFact [43] and GossipCop [40, 39, 41], how to verify the model performance and reliability on a
multi-topic dataset is still questionable. These limitations provides a strong motivation for further
exploration on this paper’s topic in future works. Potential directions may include how to verify the
model’s reliability on multi-topic datasets, how to generate synthetic data with more details and how
to model more causal effect in real-world social media.

7 Conclusion

In this paper, we propose a framework to describe the causal structure model and causal effect
about how misinformation influence online user behaviours. We further design a neural temporal
point process model to conduct unbiased estimation on the causal effect in a data-driven approach.
Experiments on synthetic dataset verify the effectiveness and efficiency of our model. We further
apply our model on real-world dataset from Twitter and recognize identifiable causal effect of
misinformation. The experiment results suggests that the misinformation about COVID-19 vaccine is
hurting people’s subjective attitudes toward vaccines. However, it is also noticeable that our model is
a statistical machine learning model. Consequently, all of its estimation can only be regarded as a
reference rather than judgement. Also, misinformation campaigns could use the proposed approach
to direct their editors to write more impactful fake news. A probable strategy to address this potential
problem is to require social media platforms to raise necessary alerts to those suspicious articles that
seems to be optimized. We discussed the strategy to detect such articles in the Checklist.
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