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Abstract

The Federated Averaging (FedAvg) algorithm, which consists of alternating be-
tween a few local stochastic gradient updates at client nodes, followed by a model
averaging update at the server, is perhaps the most commonly used method in
Federated Learning. Notwithstanding its simplicity, several empirical studies have
illustrated that the model output by FedAvg leads to a model that generalizes well
to new unseen tasks after a few fine-tuning steps. This surprising performance of
such a simple method, however, is not fully understood from a theoretical point
of view. In this paper, we formally investigate this phenomenon in the multi-task
linear regression setting. We show that the reason behind the generalizability of
the FedAvg output is FedAvg’s power in learning the common data representation
among the clients’ tasks, by leveraging the diversity among client data distributions
via multiple local updates between communication rounds. We formally establish
the iteration complexity required by the clients for proving such result in the setting
where the underlying shared representation is a linear map. To the best of our
knowledge, this is the first result showing that FedAvg learns an expressive repre-
sentation in any setting. Moreover, we show that multiple local updates between
communication rounds are necessary for representation learning, as distributed
gradient methods that make only one local update between rounds provably cannot
recover the ground-truth representation in the linear setting, and empirically yield
neural network representations that generalize drastically worse to new clients than
those learned by FedAvg trained on heterogeneous image classification datasets.

1 Introduction

Federated Learning (FL) [1] provides a communication-efficient and privacy preserving means to
learn from data distributed across clients such as cell phones, autonomous vehicles, and hospitals.
FL aims for each client to benefit from collaborating in the learning process without sacrificing
data privacy or paying a substantial communication cost. Federated Averaging (FedAvg) [1] is
the predominant FL algorithm. In FedAvg, also known as Local SGD [2–4], the clients achieve
communication efficiency by making multiple local updates of a shared global model before sending
the result to the server, which averages the locally updated models to compute the next global model.

FedAvg is motivated by settings with homogeneous data across clients, since multiple local updates
should improve model performance on all other clients’ data when their data is similar. In contrast,
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Figure 1: In multi-task linear regression with
population losses, FedAvg linearly converges
to the ground-truth representation, while D-GD
(FedAvg with one local update) fails to learn it.
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Figure 2: The NN representation learned by Fe-
dAvg on CIFAR-100 with 5 classes/client does
not change significantly when fine-tuned on a
new dataset (CIFAR-10), unlike D-SGD.

FedAvg faces two major challenges in more realistic heterogeneous data settings: learning a single
global model may not necessarily yield good performance for each individual client, and, multiple
local updates may cause the FedAvg updates to drift away from solutions of the global objective
[5–9]. Despite these challenges, several empirical studies [10–12] have observed that this shared
global model trained by FedAvg with several local updates per round when further fine-tuned for
individual clients is surprisingly effective in heterogeneous FL settings. These studies motivate us to
explore the impact of local updates on post-fine-tuning performance.

Meanwhile, a large number of recent works have shown that representation learning is a powerful
paradigm for attaining high performance in multi-task settings, including FL. This is because the tasks’
data often share a small set of features which are useful for downstream tasks, even if the datasets
as a whole are heterogeneous. Consider, for example, heterogeneous federated image classification
in which each client (task) may have images of different types of animals. It is safe to assume the
images share a small number of features, such as body shape and color, which admit a simple and
accurate mapping from feature space to label space. Since the number of important features is much
smaller than the dimension of the data, knowing these features greatly simplifies each client’s task.

To explore the connection between local updates and representation learning, we first study multi-task
linear regression sharing a common ground-truth representation (Figure 1). We observe that FedAvg
converges (exponentially fast) to the ground-truth representation in principal angle distance, while
Distributed-GD (D-GD), which is effectively FedAvg with one local gradient update, fails to learn
the shared representation. A similar concept can be shown in the nonlinear setting. We study a
multi-layer CNN on a heterogeneous partition of CIFAR-100 (Figure 2). Since there is not necessarily
a ground-truth model here, we evaluate representation learning as follows. We first train the models
with FedAvg and Distributed-SGD (D-SGD) then fine-tune the pre-trained models on clients from a
new dataset, CIFAR-10. Finally we evaluate the quality of the learned representation by measuring
the amount that each model layer changes during fine-tuning using CKA similarity [13]. Observe that
the early layers of FedAvg’s pre-trained model (corresponding to the representation) change much
less than those of D-SGD. More details for both experiments are in Section 5 and Appendix C. These
observations suggest that FedAvg learns a shared representation that generalizes to new clients, even
when trained in a heterogeneous setting. Hence, a natural question that arises is:

Does FedAvg provably learn effective representations of heterogeneous data?

We answer “yes” to this question by proving that FedAvg recovers the ground-truth representation
in the case of multi-task linear regression. Critically, we show that FedAvg’s local updates leverage
the diversity among client data distributions to learn their common representation. This is surprising
because FedAvg is a general-purpose algorithm not designed for representation learning. Our analysis
thus yields new insights on how FedAvg finds generalizable models. Our contributions are:

• Representation learning guarantees. We study the behavior of FedAvg in multi-task linear
regression with common representation. Here, each client aims to solve a d-dimensional
regression with ground-truth solution that belongs to a shared k-dimensional subspace of Rd,
where k � d. Our results show that FedAvg with τ ≥ 2 local updates learns the representation
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at a linear rate when each client accesses population gradients. To the best of our knowledge,
this is the first result showing that FedAvg learns an effective representation in any setting.

• Insights on the importance of local updates. Our analysis reveals that executing more than
one local update between communication rounds exploits the diversity of the clients’ ground
truth regressors to improve the learned representation in all k directions in the linear setting. In
contrast, we prove that D-GD fails to learn the representation.

• Empirical evidence of representation learning. We provide experimental results showing
Fedavg learns a generalizable representation when we use deep neural networks on image
classification datasets. In contrast, the representations learned by D-SGD generalize drastically
worse to data from new clients. This suggests that the main message of our theoretical results
that local updates facilitate representation learning can generalize to more complex scenarios
beyond the bilinear setting.

Related work. Recently there has been a surge of interest motivated by FL in analyzing FedAvg/Local
SGD in heterogeneous settings. Multiple works have shown that FedAvg converges to a global
optimum (resp. stationary point) of the global objective in convex (resp. nonconvex) settings but
with decaying learning rate [5, 14–17], leading to sublinear rates and communication complexity
sometimes dominated by Distributed-SGD [18]. These results are tight in the sense that FedAvg with
fixed learning rate may not converge to a stationary point of the global objective in the presence of
data heterogeneity, as its multiple local updates cause it to optimize a distinct, unknown objective
[6–9, 16, 19, 20]. Several methods have tried to correct this objective inconsistency via gradient
tracking [5, 19, 21–25], local regularization [20, 26–28], operator splitting [7], and strategic client
sampling [29–31]. In contrast, we show that local updates with constant learning rate benefit learning
in heterogeneous settings by resulting in linear convergence to generalizable models.

Several papers have also studied FedAvg from a generalization perspective. It was shown in [32]
that in a setting with strongly convex losses, either local training or FedAvg with fine-tuning (but
not both) achieves minimax risk, depending on the level of data heterogeneity. Similarly, [33]
argued that FedAvg with fine-tuning generalizes as well as more sophisticated methods, including
Model-Agnostic Meta-Learning (MAML) [34, 35], in a strongly convex regularized linear regression
setting. Additional work has studied the generalization of FedAvg in kernel regression, but for convex
objectives that do not allow for representation learning [36], and the generalization of a variant of
FedAvg, known as Reptile [37], on wide two-layer ReLU networks with homogeneous data [38].
We focus on the multi-task linear representation learning setting [39], which has become popular in
recent years as it is an expressive but tractable nonconvex setting for studying the sample-complexity
benefits of learning representations and the representation learning abilities of popular algorithms in
data heterogeneous settings [11, 40–46]. Remarkably, our study of FedAvg reveals that it can learn an
effective representation even though it was not designed for this goal, unlike a variety of personalized
FL methods specifically tailored for representation learning [11, 47–51].

Notations. We use N (u,Σ) to signify the multivariate Gaussian distribution with mean u and
covariance Σ. Od×k denotes the set of matrices in Rd×k with orthonormal columns. The notation
col(B) represents the column space of the matrix B, and col(B)⊥ is the orthogonal complement to
this space. The norm ‖ · ‖ is the spectral norm and Id is the identity matrix in Rd×d. We use [m] to
indicate the set of natural numbers up to and including m.

2 Problem Formulation

Consider a federated setting with a central server and M clients. Each client i ∈ [M ] has a training
dataset D̂i of ni labeled samples drawn from a distribution Di over X × Y , where X is the input
space and Y is the label space. The learning model is given by hθ : X → Y for model parameters
θ ∈ RD. The loss of the model on a sample (x,y) ∈ X × Y is given by `(hθ(x),y), which may be,
for example, the squared or cross entropy loss. The loss of model parameters θ on the i-th client is
the average loss of the model hθ on the samples in D̂i, namely fi(θ) := 1

ni

∑ni
j=1 `(hθ(xi,j),yi,j),

where (xi,j ,yi,j) is the j-th sample in D̂i. The server aims to leverage all of the data across clients
to find models that achieve small loss fi(θ) for each client. To do so, the standard approach is to find
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a single model θ that minimizes the average of the client losses weighted by number of samples:

min
θ

1

N

M∑
i=1

nifi(θ) =
1

N

M∑
i=1

∑
j∈D̂i

`(hθ(xi,j),yi,j)), (1)

where N =
∑M
i=1 ni. Due to communication and privacy constraints, the clients cannot share their

local data D̂i, so (1) must be solved in a federated manner.

FedAvg. The most common FL method is FedAvg. On each round t of FedAvg, the server uniformly
samples a set It of m ≤M clients. Each selected client receives the current global parameters θt,
executes multiple SGD steps on its local data starting from θt, then sends the result back to the server.
The server then computes θt+1 as the weighted average of the updates. Specifically, upon receiving
the global model θt, client i computes

θt,i,s+1 = θt,i,s − αgt,i,s(θt,i,s), (2)

for s = 0, . . . , τ −1, where τ is the number of local steps, θt,i,0 = θt and gt,i,s(θt,i,s) is a stochastic
gradient of fi evaluated at θt,i,s using b samples from D̂i. The client then sends θt,i,τ back to the
server, which computes the next global iterate as:

θt+1 =
1

Nt

∑
i∈It

niθt,i,τ , (3)

where Nt :=
∑
i∈It ni. Note that τ = 1 corresponds to D-SGD, also known as mini-batch SGD

whose convergence properties are well-understood [18, 52–54]. FedAvg improves the communication
efficiency of D-SGD by making τ≥2 local updates between communication rounds.

Fine-tuning. After training for T communication rounds, the global parameters θT learned by
FedAvg are typically fine-tuned on each client before testing. In particular, starting from θT , client i
executes τ ′ steps of SGD on its local data as follows:

θT,i,s+1 = θT,i,s − αgT,i,s(θt,i,s) (4)

for s = 0, . . . , τ − 1. The fine-tuned model ultimately used for testing is θT,i,τ ′ . Note that a new
client, indexed by M + 1, entering the system after FedAvg training has completed can also fine-tune
θT using the same procedure to obtain a personalized solution θT,M+1,τ ′ .

Representation learning. We aim to answer why the fine-tuned models {θT,i,τ ′}M+1
i=1 perform well

in practice by taking a representation learning perspective. We show that the output of FedAvg, i.e.,
θT , has learned the common data representation among clients assuming that such a representation
exists. To formalize this result, we consider a class of models that can be written as the composition
of a representation hrep and a prediction module, i.e. head, denoted as hhead. Let the model parameters
be split as θ := [φ,ψ], where φ contains the representation parameters and ψ contains the head
parameters. Then, for any x ∈ X , the prediction of the learning model is hθ(x) = (hhead

ψ ◦hrep
φ )(x) =

hhead
ψ (hrep

φ (x)). For instance, if hθ is a neural network with weights θ, then hrep
φ is the first many

layers of the network with weights φ, and hhead
ψ is the network last few layers with weights ψ. A

standard assumption in multi-task settings, including the settings we consider, is the existence of a
common representation hrep

φ∗
that admits an easily learnable head hrep

ψ∗,i
such that hhead

ψ∗,i
◦hrep
φ∗

performs
well for task i. As a result, in these settings it is of interest to all the clients to learn hrep

φ∗
.

3 Main Results

To rigorously study the representation learning abilities of FedAvg, we employ the standard setting
used for algorithmic representation learning analysis: multi-task linear regression [11, 40, 41, 46, 55,
56]. In this setting, samples (xi,j , yi,j) for each client i are drawn independently from a distribution
Di on Rd × R such that

xi,j
i.i.d.∼ px, yi,j = 〈β∗,i,xi,j〉+ ζi,j where ζi,j

i.i.d.∼ pζ

for an unobserved ground-truth regressor β∗,i∈Rd and label noise ζi,j . We assume the distributions
px and pζ are such that E[xi,j ]=0,E[xi,jx>i,j ]=Id, E[ζi,j ]=0.
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To incentivize representation learning, each β∗,i belongs to the same k-dimensional subspace of Rd,
where k � d. Let B∗ ∈ Od×k have columns that form an orthogonal basis for the shared subspace,
so that β∗,i = B∗w∗,i for some w∗,i ∈ Rk for each i. In other words, there exists a low-dimensional
set of parameters known as the “head” that can specify the ground-truth model for client i once the
shared representation, i.e., col(B∗), is known. It is advantageous to learn col(B∗) because once it is
known, all clients (including potentially new clients entering the system) have sample complexity
O(k)� d as they only need to learn the parameters of their head [40, 41].

Each client i ultimately aims to learn a model β̂i that approximates β∗,i in order to achieve good
generalization on its local distribution. To eventually achieve this for each client, FedAvg with
fine-tuning first aims to learn a global model consisting of a representation B ∈ Rd×k and a
head w ∈ Rk that minimizes the average loss across clients. The loss for client i is fi(B,w) :=
1

2ni

∑ni
j=1(yi,j − 〈Bw,xi,j〉)2, i.e. the average squared loss on the local data, so FedAvg tries to

learn a global model that solves the nonconvex problem:

min
B∈Rd×k,w∈Rk

1

N

M∑
i=1

ni

{
fi(B,w) :=

1

2ni

ni∑
j=1

(yi,j − 〈Bw,xi,j〉)2
}
. (5)

where N =
∑M
i=1 ni. To solve (5) in a distributed manner, FedAvg dictates that each client makes

a series of local updates of the current global model before returning the models to the server for
averaging (see Section 2). Our aim is to show that FedAvg training learns the column space of B∗.
First, we make standard diversity and normalization assumptions on the ground-truth heads.

Assumption 1 (Client normalization). There exists L <∞ s.t. ∀i ∈ [M ], ‖w∗,i‖2 ≤ L
√
k.

Assumption 2 (Client diversity). There exists µ>0 s.t. σmin(
1
M

∑M
i=1(w∗,i−w̄∗)(w∗,i−w̄∗)

>) ≥
µ2, where w̄∗ :=

1
M

∑M
i=1 w∗,i. Define κ := L/µ.

Assumption 2 is very similar to typical task diversity assumptions except that it quantifies the diversity
of the centered rather than un-centered tasks [40, 41]. Intuitively, task diversity is required so that all
of the directions in col(B∗) are observed. The smaller κ, the more evenly spread the ground-truth
heads are, and the larger the task (i.e. client) diversity. Next, to obtain convergence results we must
define the variance of the ground-truth heads and the principal angle distance between representations.

Definition 1 (Client variance). For γ > 0, define: γ2 := 1
kM

∑M
i=1 ‖w∗,i − w̄∗‖2, where w̄∗ is

defined in Assumption 2. For H > 0, define H4 := 1
k2M

∑M
i=1 ‖w∗,iw>∗,i −

1
M

∑M
i′=1 w∗,i′w

>
∗,i′‖2.

Definition 2 (Principal angle distance). For two matrices B1,B2 ∈ Rd×k, the principal angle
distance between B1 and B2 is defined as dist(B1,B2) := ‖B̄>1,⊥B̄2‖2, where the columns of
B̄1,⊥ ∈ Od×(d−k) and B̄2 ∈ Od×k form orthonormal bases for col(B1)

⊥ and col(B2), respectively.

Intuitively, the principal angle distance between B1 and B2 is the sine of the largest angle between
the subspaces spanned by their columns. Now we are ready to state our main result. We suppose each
client has ni=∞ samples, i.e. it accesses the gradients of the population loss on its local distribution.

Theorem 1. Consider the case that each client takes gradient steps with respect to their pop-
ulation loss fi(B,w) := 1

2‖Bw − B∗w∗,i‖2 and all losses are weighed equally in the global
objective. Suppose Assumptions 1-2 hold, the number of clients participating each round satis-
fies m ≥ min(M, 20((γ/L)2 + (H/L)4)(αL

√
k)−4 log(kT )), and the initial parameters satisfy (i)

δ0 := dist(B0,B∗) ≤
√
1−E0 for any E0 ∈ (0, 1], (ii) ‖I − αB>0 B0‖2 = O(α2τL2κ2k2) and

(iii) ‖w0‖2 = O(α2.5τL3k1.5). Choose step size α = O( 1−δ0√
τLκ2k1.5

). Then for any ε ∈ (0, 1), the
distance of the representation learned by FedAvg with τ ≥ 2 local updates satisfies dist(BT ,B∗) < ε

after at most T = O
( log(1/ε)
α2τµ2E0

)
communication rounds with probability at least 1− 4(kT )−99.

Theorem 1 shows that FedAvg converges exponentially fast to the ground-truth representation when
executed on the clients’ population losses. We provide intuition for the proof in Section 4 and the full
proof in Appendix B. First, some comments are in order.

Mild initial conditions. Theorem 1 holds under benign initial conditions. In particular, condition
(i) requires that the initial distance is only a constant smaller than 1. Condition (ii) ensures that the
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initial representation is well-conditioned with appropriate scaling, and (iii) guarantees the initial
head is not too large. The last two conditions can be easily achieved by normalizing the inputs.

Generalization without convergence in terms of the global loss. When each client accesses its
population loss as in Theorem 1, the global objective (5) becomes:

min
B∈Rd×k,w∈Rk

1

M

M∑
i=1

‖Bw −B∗w∗,i‖2 (6)

However, Theorem 1 does not imply that FedAvg solves (6). In fact, our simulations in Section 5
show that it does not even reach a stationary point of (6). This is consistent with prior works that have
noticed the “objective inconsistency” phenomenon of FedAvg: it solves an unknown objective distinct
from the global objective due to the fact that after multiple local updates, local gradients are no longer
unbiased estimates of gradients of (6) [9]. Nevertheless, our results show that FedAvg is able to learn
a generalizable model even when it does not optimize the global loss in data heterogeneous settings.

Multiple local updates critically harness client diversity, whereas Distributed GD (D-GD) does
not learn the representation. Key to the proof of Theorem 1 is that the locally-updated heads
become diverse, meaning that they cover all directions in Rk, with greater diversity corresponding to
more even covering in all directions. We will show in Section 4 that the locally-updated heads become
roughly as diverse as the ground-truth heads, and this causes the representation to move towards the
ground-truth at rate depending on the diversity level. Theorem 1 reflects this: the convergence rate
improves with the diversity metric µ/L. In this way FedAvg exploits data heterogeneity to learn the
representation, as more diverse {w∗,i}i∈[M ] implies more heterogeneous data. Moreover, since τ
also appears in the denominator of the communication round complexity, additional local updates
improve the convergence rate up to τ = O(α−2), which is the limit imposed due to the upper bound
on α.

Importantly, head diversity only benefits the global representation update if τ ≥ 2. We formally prove
that D-GD (equivalent to FedAvg with τ=1 and m=M ) cannot recover col(B∗) in the following
result.

Proposition 1 (Distributed GD lower bound). Suppose we are in the setting described in Sec-
tion 3 and d > k > 1. Then for any set of ground-truth heads {w∗,i}Mi=1, full-rank initializa-
tion B0 ∈ Rd×k, initial distance δ0 ∈ (0, 1/2], step size α > 0, and number of rounds T ,
there exists B∗ ∈ Od×k satisfying dist(B0,B∗) = δ0 and dist(BD-GD

T ,B∗) ≥ 0.7δ0, where
BD-GD
T ≡ BD-GD

T (B0,B∗, {w∗,i}Mi=1, α) is the result of D-GD with step size α and initialization B0

in the setting with ground-truth representation B∗ and ground-truth heads {w∗,i}Mi=1.

Proposition 1 shows that for any choice of δ0 ∈ (0, 1/2], non-degenerate initialization B0, and
ground-truth heads, there exists a B∗ whose column space is δ0-close to col(B0), yet is at least 0.7δ0-
far from the representation learned by D-GD in the setting with B∗ as ground-truth. Therefore, even
allowing for a strong initialization, D-GD cannot guarantee to recover the ground-truth representation.
This negative result combined with our previous results suggest that even if we had an infinite
communication budget, it would still be advantageous to execute multiple local updates between
communication rounds in order to achieve better generalization through representation learning.

4 Intuitions and Proof Sketch

Next we highlight the key ideas behind the importance of local updates and why FedAvg learns
col(B∗), while D-GD fails to achieve this goal.

Global update Bt+1. To build intuition for why FedAvg can learn col (B∗), we examine the global
update of the representation in the full participation case (m =M ):

Bt+1=Bt

[
1
M

M∑
i=1

τ−1∏
s=0

(Ik−αwt,i,sw
>
t,i,s︸ ︷︷ ︸

prior weight

)

]
+B∗

[
α
M

M∑
i=1

w∗,i

τ−1∑
s=0

w>t,i,s

τ−1∏
r=s+1

(Ik− αwt,i,rw
>
t,i,r︸ ︷︷ ︸

signal weight

)

]

Notice that Bt+1 is a mixture of Bt and B∗ with weight matrices in Rk×k. We aim to show that
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(I) the ‘prior weight’ on Bt has spectral norm strictly less than 1, and

(II) the ‘signal weight’ on B∗ adds energy from col(B∗) to Bt+1 so that σmin(Bt+1) ≈ σmin(Bt).

These two conditions imply that the contribution from col(Bt) in col(Bt+1) contracts, while energy
from col(B∗) replaces the lost energy from col(Bt). Hence, col(Bt+1) moves to col(B∗) in all k
directions.

The role of head diversity and multiple local updates. To show (I) and (II), it is imperative to
use the diversity of the locally-updated heads when τ ≥ 2. First consider (I). Notice that for each
i,
∏τ−1
s=0 (Ik−αwt,i,sw

>
t,i,s) has singular values at most 1, and strictly less than 1 corresponding

to directions spanned by {wt,i,s}s∈[τ−1]. Thus, the maximum singular value of the average of
these matrices should be strictly less than 1 as long as {wt,i,s}s∈[τ−1],i∈[M ] spans Rk, i.e. the
locally-updated heads are diverse. Similarly, the signal weight is rank-k if the locally-updated heads
span Rk, which leads to (II) as discussed below. In contrast, if τ = 1, then the global update
of the representation does not leverage head diversity, as it is only a function of the global head
and the average ground-truth head: Bt+1 = Bt(Ik − αwtw

>
t ) + αB∗w̄∗w

>
t in this case. As a

result, col(Bt+1) can only improve in one direction, so D-GD ultimately fails to learn col(B∗) (see
Proposition 1).

Achieving head diversity: the necessity of controlling Ik− αB>t Bt. We have discussed the
intuition for why head diversity implies (I) and (II) for FedAvg. Next, we investigate why the heads
become diverse. Let us examine client i’s first local update for the head at round t:

wt,i,1 = (Ik − αB>t Bt)wt + αB>t B∗w∗,i

From this equation we see that if ∆t := Ik − αB>t Bt ≈ 0 and ‖wt‖ is bounded, then wt,i,1 ≈
αB>t B∗w∗,i. If this approximation holds, then {wt,i,1}i∈[M ] inherits the diversity of {w∗,i}i∈[M ],
which is indeed diverse due to Assumption 2, meaning that the local heads are diverse after just one
local update. Moreover, it can be shown that if ∆t ≈ 0 and the heads become diverse after one
local update, then they remain diverse for all local updates due to the observation that each Bt,i,s

changes slowly over s. Note that in addition to implying local head diversity, ∆t ≈ 0 for all t implies
σmin(Bt) ≈ σmin(Bt+1) ≈ 1√

α
, which directly ensures (II). Thus we aim to show ∆t ≈ 0 for all

communication rounds, i.e. Bt remains close to a scaled orthonormal matrix.

However, it is surprising why ‖∆t‖ remains small: Bt+1 is the average of nonlinearly locally-updated
representations, and the local updates could ‘overfit’ by adding more energy to some columns than
others, and/or lead to cancellation when summed, so it is not intuitive why

√
αBt remains almost

orthonormal. Nor does the expression above for Bt+1 provide any clarity on this. Nevertheless,
through a careful induction we show that ∆t indeed stays close to zero since the local heads converge
quickly and the projection of the local representation gradient onto col(Bt) is exponentially decaying.

Inductive argument. While the above intuitions seem to simplify the behavior of FedAvg, showing
that they all hold simultaneously is not at all obvious. To study this, we are inspired by recent work
[44] that developed an inductive argument for representation learning in the context of gradient
based-meta-learning. To formalize our intuition discussed previously, in our proof we need to show
that (i) the learned representation does not overfit to each client’s loss despite many local updates and
simultaneously the heads quickly become diverse, and (ii) the update at the global server preserves the
learned representation despite averaging many nonlinearly perturbed representations gathered from
clients after local updates. To address these challenges, we construct a pair of intertwined inductive
hypotheses over time, one for tracking the effect of local updates, and another for tracking the global
averaging. Each inductive hypothesis (local and global) itself consists of several hypotheses (in effect,
a nested induction) that evolve within communication rounds.

Local induction. The proof leverages the following local inductive hypotheses for every t, i:

1. A1,t,i(s) := {‖wt,i,s′−αB>t,i,s′−1B∗w∗,i‖2 = c1α
2.5τL3

maxκ
2
maxE

−1
0 ∀s′ ∈ {1, . . . , s}}

2. A2,t,i(s) := {‖wt,i,s′‖2 ≤ c2
√
αLmax ∀s′ ∈ {1, . . . , s}}

3. A3,t,i(s) := {‖Ik − αB>t,i,s′Bt,i,s′‖2 = c3α
2L2

maxκ
2
maxE

−1
0 ∀s′ ∈ {1, . . . , s}}

4. A4,t,i(s) := {dist(Bt,i,s′ ,B∗) ≤ c4 dist(Bt,B∗) ∀s′ ∈ {1, . . . , s}}
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Figure 3: (Left) D-GD converges to a stationary point of the global objective (6), unlike FedAvg, yet
(Right) FedAvg achieves smaller error after fine-tuning with various numbers of samples.

The local induction tracks the effect of updates at each client node: At the end of τ local updates,
A1,t,i(τ) captures the diversity of the local heads, A2,t,i(τ) ensures that the heads remain uniformly
bounded, A3,t,i(τ) shows that the locally adapted representations stay close to a scaled orthonormal
matrix, and A4,t,i(τ) shows that the locally adapted representations do not diverge too quickly from
the ground-truth. The second set of inductions below controls the global behavior.

Global induction. The global induction utilizes a similar set of inductive hypotheses.

1. A1(t) := {‖wt′ − α(Ik + ∆t′)B
>
t′B∗w̄∗,t′‖2 = c′1α

2.5τL3
max ∀t′ ∈ {1, . . . , t}}

2. A2(t) := {‖wt′‖2 ≤ c′2
√
αLmax ∀t′ ∈ {1, . . . , t}}

3. A3(t) := {‖∆t′‖2 = c′3α
2τL2

maxκ
2
maxE

−1
0 ∀t′ ∈ {1, . . . , t}}

4. A4(t) := {‖B>∗,⊥Bt′‖2 ≤ (1− c′4α2τµ2E0)‖B>∗,⊥Bt′−1‖2 ∀t′ ∈ {1, . . . , t}}

5. A5(t) := {dist(Bt,B∗) ≤ (1− c′5α2τµ2E0)
t−1 ∀t′ ∈ {1, . . . , t}}

Hypotheses A1(t), A2(t) and A3(t) are analogous to A1,t,i(s), A2,t,i(s) and A3,t,i(s), respectively.
A4(t) shows that the energy of col(Bt) that is orthogonal to the ground-truth subspace is contracting,
and A5(t) finally shows that the principal angle distance between the learned and ground-truth
representations is exponentially decreasing. Our main claim follows from A5(T ). However, proving
this result requires showing that all the above local and global hypotheses hold for all times t ≥ 1,
as these hypotheses are heavily coupled. As mentioned previously, the most difficult challenge is
controlling ‖∆t‖ (A3(t)) despite many local updates, and doing so requires leveraging both local
and global properties. The details of this local-global induction argument are in Appendix B.

5 Experiments

In this section, we conduct experiments to (I) verify our theoretical results in the linear setting
and (II) determine whether our established insights generalize to deep neural networks. Notably,
demonstrating the competitive performance of FedAvg plus fine-tuning for personalized FL is not
a goal of this section, as this is evident from prior experiments [10–12, 33]. Rather, to achieve
(II) we test whether FedAvg learns effective representations when trained with neural networks
in heterogeneous data settings via three popular benchmarks for evaluating the quality of learned
representations. Since our main claim is that local updates are key to representation learning, we use
D-(S)GD as our baseline in all experiments.

5.1 Multi-task linear regression

We first experiment with the regression setting from our theory. We randomly generate B∗ ∈ Rd×k
and {w∗,i}i∈[M ] by sampling each element i.i.d. from the normal distribution, where d=100, k=5
and M = 40, and then orthogonalizing B∗. Then we run FedAvg with τ = 2 local updates and
D-GD, both sampling m = M clients per round. We have seen in Figure 1 that the principal
angle distance between the representation learned by FedAvg and the ground-truth representation
linearly converges to zero, whereas D-GD does not learn the ground-truth representation. Conversely,
Figure 3 (left) tracks the gradient of the global loss (6) and shows that D-GD linearly converges to
stationary point of (6), while FedAvg does not converge to one at all. Although D-GD optimizes
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Figure 4: Average cosine similarity for features learned by D-SGD and FedAvg with varying numbers
of local updates on a heterogeneous partition of CIFAR-10.

the global loss, it does not generalize as well as FedAvg to new clients as demonstrated by Figure 3
(right). Here, we fine-tune the models learned by FedAvg and D-GD on a new client with n samples
generated by xM+1 ∼N (0, Id), ζM+1 ∼N (0, 0.01), and yM+1 = 〈B∗w∗,M+1,xM+1〉 + ζM+1.
We fine-tune using GD for τ ′ = 200 iterations with batch size b = n, and plot the final error
‖BT,M+1,τ ′wT,M+1,τ ′−B∗w∗,M+1‖2. Both plots are generated by averaging 10 runs.

5.2 Image classification with neural networks

Next we evaluate FedAvg’s representation learning ability on nonlinear neural networks. For fair
comparison, in every experiment all methods make the same total amount of local updates during the
course of training (e.g. D-SGD is trained for 50× more rounds than FedAvg with τ = 50).

Datasets and models. We use the image classification datasets CIFAR-10 and CIFAR-100 [57],
which consist of 10 and 100 classes of RGB images, respectively. We use a convolutional neural
network (CNN) with three convolutional blocks followed by a three-layer multi-layer perceptron,
with each convolutional block consisting of two convolutional layers and a max pooling layer.

Cosine similarity of features. A desirable property of representations for downstream classification
tasks is that features of examples from the same class are similar to each other, while features of
examples from different classes are dissimilar [58]. In Figure 4 we examine whether the represen-
tations learned by FedAvg satisfy this property. Here we have trained FedAvg with varying τ and
D-SGD (FedAvg with τ=1) on CIFAR-10. Image classes are heterogeneously allocated to M = 100
clients according to the Dirichlet distribution with parameter 0.6 as in [59]. Each subplot is a 10x10
matrix whose (i, j)-th element gives the average cosine similarity between features of images from
the i-th and j-th classes learned by the corresponding model. Ideally, diagonal elements are close
to 1 (high similarity) and off-diagonal elements are close to 0 (low similarity). Figure 4 shows that
FedAvg indeed learns features with high intra-class similarity and low inter-class similarity, with
representation quality improving with more local updates between communications. Meanwhile,
D-SGD does not learn such features. The leftmost subplot shows that all of the features learned by
D-SGD are dissimilar, regardless of whether two images belong to the same class.

Fine-tuning performance. We evaluate the generalization ability of the representations learned
by FedAvg to new classes and also new datasets. An effective representation identifies universally
important features, so it should generalize to new data, with perhaps a small amount of fine-tuning
needed to learn a new mapping from feature space to label space. The transfer learning performance
of fine-tuned models is a popular metric for evaluating the quality of learned representations [60, 61].
We first study how models trained by FedAvg and D-SGD generalize to unseen classes from the same
dataset. To do so, we train models on heterogeneous partitions of CIFAR-100 using both FedAvg
with τ = 50 as well as D-SGD. In the left plot of Figure 5, we illustrate the case that models are
trained on 80 clients each with 500 total images from C classes sub-selected from 80 classes of
CIFAR-100, and tested on new clients with images from the remaining 20 classes of CIFAR-100.
We fine-tune the trained models on the new clients with 10 epochs of SGD, with varying numbers
of samples per epoch as listed on the x-axis, before testing. Next, we investigate how well models
trained by FedAvg and D-SGD generalize to an unseen dataset. In the right plot of Figure 5, we train
models with C classes/client from CIFAR-100, then test on new clients with samples drawn from
CIFAR-10 (a different dataset, but with presumably similar “basic” features). Specifically, for these
new clients, we fine-tune for 10 epochs as previously, then test the post-fine-tuned models on the test
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Figure 5: Average fine-tuning accuracies on new clients for models trained by FedAvg and D-SGD.
(Left) Models trained on 80 classes from CIFAR-100 (with C classes/client) and fine-tuned on
new clients from 20 new classes from CIFAR-100. (Right) Models trained on CIFAR-100 with C
classes/client and fine-tuned on new clients from CIFAR-10 (10 classes/client). For FedAvg, τ = 50
in all cases, and error bars give standard deviations over five trials with five new clients tested per
trial.

data for each client. In both left and right plots, we observe that FedAvg significantly outperforms
D-SGD, indicating that FedAvg has learned a representation that generalizes better to new classes.

6 Conclusion

We showed that FedAvg learns the ground-truth representation in the multi-task linear regression
setting. To our knowledge, this is the first theoretical study showing FedAvg learns an effective
representation in any setting. Our analysis reveals that multiple local updates are critical to FedAvg’s
representation learning ability, which is supported empirically on both linear and nonlinear models.
These experimental results suggest future work can extend our findings to more complex settings.
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