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A Additional information of backdoor attack and defense algorithms

A.1 Descriptions of backdoor attack algorithms

In addition to the basic information in Table 1 of the main manuscript, here we describe the general
idea of eight implemented backdoor attack algorithms in BackdoorBench, as follows.

• BadNets [6]: It was the first work in backdoor learning, which simply inserted a small patch with
fixed pattern and location to replace the original pixels in the clean image to obtain a poisoned
image.

• Blended [3]: It extended BadNets by encouraging the invisibility of the trigger through alpha
blending.

• Label consistent (LC) [20]: It generated a poisoned image using adversarial attack, by enforcing it
to be close to the clean target image in the original RGB space, and close to the clean source image
patched with a trigger in the feature space of a pre-trained clean model. Since the poisoned image
is labeled as the target class, the mapping from the trigger to the target class could be learned.

• SIG [1]: It adopted a sinusoidal signal as the trigger to perturb the clean images of the target class,
while not changing their labels, such that achieving the label consistent backdoor attack.

• Low frequency attack (LF) [30] : It was built upon an analysis that the triggers in many backdoor
attacks bring in high-frequency artifacts, which are easily detectable. Inspired by this analysis,
LF developed a smooth trigger by filtering high-frequency artifacts from a universal adversarial
perturbation.

• Sample-specific backdoor attack (SSBA) [10]: It utilized an auto-encoder to fuse a trigger (e.g.,
a string) into clean samples to obtain poisoned samples. The residual between the poisoned and
the clean sample varied for different clean images, i.e., sample-specific.

• Input-aware dynamic backdoor attack (Input-aware) [14]: It was a training-controllable attack
by simultaneously learning the model parameters and a trigger generator. When testing, the learned
trigger generator generated one unique trigger for each clean testing sample.

• Warping-based poisoned networks (WaNet) [15]: It was also a training-controllable attack. A
fixed warping function is adopted to slightly distort the clean sample to construct the poisoned
sample. The attacker further controlled the training process to ensure that only the adopted fixed
warping function can activate the backdoor.
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A.2 Descriptions of backdoor defense algorithms

In addition to the basic information in Table 2 of the main manuscript, here we describe the general
idea of nine implemented backdoor defense algorithms in BackdoorBench, as follows.

• Fine-tuning (FT): It is assumed that fine-tuning the backdoored model on a subset of clean
samples could mitigate the backdoor effect. Note that FT is a widely used approach for transferring
pre-trained models to new tasks, but it has been used as a basic component in several backdoor
defense methods, such as Fine-pruning (FP) [12], Neural Attention Distillation (NAD) [8].

• Fine-pruning (FP) [12]: It is built upon the assumption that poisoned and benign samples have
different activation paths in the backdoored model. Inspired, FP proposed to firstly prune some
inactivated neurons of clean samples, then fine-tune the pruned model based on the subset of
benign samples to recover the model performance.

• Neural Attention Distillation (NAD) [8]: Its assumption is same with FT. Instead of directly
use the fine-tuned model as the mitigated model, NAD adopts the first fine-tuned model as a
teacher, and fine-tunes the backdoored model again by encouraging the consistency of the attention
representation between the new fine-tuned model and the teacher model.

• Neural cleanse (NC) [26]: It is built upon the assumption that the trigger provides a “shortcut"
between the samples from different source classes and the target class. Based on this assumption,
the possible trigger is searched through optimization. If a small-size trigger (e.g., a small patch
in the image) is found, then the model is detected as backdoored model, which is then mitigated
through pruning based on the searched trigger.

• Adversarial Neuron Pruning (ANP) [27]: It is built upon an observation that the neurons related
to the injected backdoor are more sensitive to adversarial neuron perturbation (i.e., perturbing the
neuron weight to achieve adversarial attack) than other neurons in a backdoored model. Inspired
by this, ANP proposed to prune these sensitive neurons for backdoor mitigation.

• Activation Clustering (AC) [2]: It is built upon an observation that the sample activations (i.e., the
feature presentations) of the target class will form two clusters, and the smaller cluster corresponds
to poisoned samples, while those of other classes form one cluster. Then, the model is trained from
scratch based on the dataset without poisoned samples.

• Spectral Signatures (SS) [24]: Its assumption is that the feature representation distributions of
benign and poisoned samples in one class are spectrally separable, which is a concept of robust
statistics. Consequently, the poisoned samples can be identified through analyzing the spectrum of
the covariance matrix of the feature representations. Then, the model is retrained from scratch by
removing the poisoned samples from the training set.

• Anti-Backdoor Learning (ABL) [9]: It is built upon an observation that the loss values of poisoned
samples drops much faster than those of benign samples in early epochs during the training process.
Inspired, ABL proposed to firstly isolate poisoned samples from benign samples according to their
difference on loss dropping speed, then mitigate the backdoor effect by maximizing the loss of the
isolated poisoned samples.

• Decoupling-based Backdoor Defense (DBD) [7]: It is built upon an observation that poisoned
samples from different samples will gather together in the feature space of a backdoored model.
DBD proposed to prevent the gathering by learning the model backbone through self-supervised
learning without labels, rather than the standard supervised learning. Then, since the poisoned
samples are separated, their loss values are larger than benign samples when learning the classifier,
such that samples with large loss values can be identified as poisoned samples. Finally, the labels
of poisoned samples are abandoned, and a semi-supervised fine-tuning of both the backbone and
classifier is conducted to improve the model performance.

1For FP and ANP, we define a hyper-parameter the tolerance of clean accuracy reduction as the maximum
relative drop of clean accuracy. It is used to determine the number of pruned neurons.

2For AC and Spectral, Nfe is the dimensions of the representation.
3For NAD, we use the code and recommended hyper-parameters at

https://github.com/bboylyg/NAD/tree/d61e4d74ee697f125336bfc42a03c707679071a6.
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Table 1: Hyper-parameter settings of all implemented attack methods.
Attack Hyper-parameter Setting Theoretical complexity

General Settings

attack target all-to-one with class 0 train sample size(NT ),
optimizer SGD batch size (B),
momentum 0.9 forward process for net C (fC ),
weight decay 0.0005 backward process for net C (bC ),
batch size 128 epochs (E) ,
epochs on CIFAR10 and CIFAR-100 100 number of classes ( Ncls)
epochs on GTSRB 50
lr schedule (except for CosineAnnealingLR
training-controllable attack) on
CIFAR10, CIFAR-100 and GTSRB
epochs on TinyImageNet-200 200
lr schedule on TinyImageNet-200 ReduceLROnPlateau
random seed 0

BadNets [6]
pattern & location 3 � 3, pure white, at O(NT =BE(f + b))

downright corner
(no margin left)

Blended [3]
pattern hello kitty O(NT =BE(f + b))

alpha 0.2

Label Consistent [25]

adversarial attack PGD O(NT =BE(f + b) +NT =BTstep(f + b))

step (Tstep) 100
� 1.5
� 8

SIG [1]
� 40 O(NT =BE(f + b))

f 6

Low Frequency [30]

maximum number of termination 50 O(TterNsample(2f + Tdff + TdfNclsb)+

iteration (Tter) NT =BE(f + b))

fooling rate 0.2
overshoot 0.02
maximum number of iterations 200
for deepfool (Tdf )
sample number for UAP (Nsample) 100

SSBA [10] encoded bit 1 O(Tstep(fauto + bauto) +NT =BE(f + b))

autoencoder train step (Tstep) 140000

Input-aware [14]

Generator lr (both for M, G) 0.01 O(EmaskNT =B(fmask + bmask)+

schedule (for M, G and C) MultiStepLR (E � Emask)NT =B(2fmask+

schedule milestones for G 200, 300, 400, 500 2fgenerator + 2bgenerator + f + b))

schedule milestones for C 100, 200, 300, 400
schedule milestones for M 10, 20
schedule gamma (for M and G) 0.1
�div 1
�norm 400
mask density 0.032
cross_ratio 1
mask train epochs (Emask) 25

WaNet [15]
cross_ratio 2 O(NT =BE(f + b))

lr schedule MultiStepLR
schedule milestones 100, 200, 300, 400
grid_rescale 1

A.3 Implementation details and computational complexities

Running environments Our evaluations are conducted on GPU servers with 2 Intel(R) Xeon(R) Plat-
inum 8170 CPU @ 2.10GHz, RTX3090 GPU (32GB) and 320 GB RAM (2666MHz). The versions
of all involved softwares/packages are clearly described in the README file of the Github repository
(see https://github.com/SCLBD/BackdoorBench). Here we didn’t repeat the descriptions.

Hyper-parameter settings The hyper-parameter settings adopted in our evaluations about backdoor
attack and defense algorithms are described in Table 1 and Table 2, respectively. With these hyper-
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Table 2: Hyper-parameter settings of all implemented defense methods.
Defense Hyper-parameter Setting Theoretical complexity

General Settings

optimizer SGD train sample size (NT ), batch size (B ),
momentum 0.9 forward process for net C (f C ),
weight decay 0.0005 backward process for net C (bC ),
batch size 256 epochs (E ) , number of classes (Ncls )
epochs on CIFAR10, CIFAR-100 and GTSRB 100 the number of pruning neurons (Nneu )
lr schedule (except for special learning defense) CosineAnnealingLR
on CIFAR10, CIFAR-100 and GTSRB
epochs on TinyImageNet-200 200
lr schedule on TinyImageNet-200 ReduceLROnPlateau
the number of pruning neurons the number of neurons in the last layer
random seed 0

FT ratio of validation data (pv ) 5% O(NT pv =BE (f + b))

FP [12]
ratio of validation data (pv ) 5% O(Nneu NT pv f=B )
the tolerance of accuracy reduction1 10% + O(NT pv =BE (f + b))

NAD 3 [8]
ratio of validation data for teacher model (pv ) 5% O(NT pv =BE f t (f + b))
� 1 for the loss 500 + O(NT pv =BE (2f + b))
� 2 for the loss 1000
� 3 for the loss 1000
the power for attention 2.0
the epoch for teacher model to �ne-tune (E f t ) 10

NC [26]
the norm used for the reversed trigger L1 O(NT pv E r Ncls =B(f + b))
cleaning ratio (pv ) 0.05 + O(NT pv =BE (f + b))
unlearning ratio 0.2
the epoch of learning trigger (E r ) 80

ANP [27]

the tolerance of accuracy reduction1 10%

O(ei (f + b))
number of validation data (pv ) 5%
the number of iteration during pertubation (ei ) 2000
� 0.4
� 0.2

AC [2] number of reduced dimensions 10 O(NT =BN 3
fe ) + O(NT =BE (f + b)) 2

Spectral [24] The percentile of backdoor data 85% O(N 3
fe ) + O(NT =BE d (f + b)) 2

ABL [9]

tuning epochs (E tu ) for CIFAR10, CIFAR-100 and GTSRB 20 O(NT =BE tu (f + b))
�netuning epochs (E f t ) for CIFAR10, CIFAR-100 and GTSRB60 + O(NT (1 � pi )=BE f t (f + b))
unlearning epochs (Eu ) for CIFAR10, CIFAR-100 and GTSRB20 + O(NT pi =BE u (f + b))
tuning epochs for Tiny 40
�netuning epochs for Tiny 120
unlearning epochs for Tiny 4
lr for unlearning 0.0005
the value of �ooding 0.5
the isolation ratio of training data (pi ) 0.01

DBD [7]

the epoch for self-supervised learning (Ese ) 100 O(NT =Bse Ese (f + b))
the epoch for warmup (Ewa ) 10 + O(NT =Bsemi Ese (f + b))
the epsilon for the dataset (� ) 0.5 + O(NT �=B semi E (f + b))
during the semi-supervised learning
The batch size of self learning (B self ) 512
The batch size of self learning (B semi ) 128

parameter settings, the reported results of 8,000 pairs of evaluations could be reproduced. Moreover,
we would like to explain our rules to adopt above settings, as follows:

• We don't perform a separate hyper-parameter search for each method, mainly due to the
following two reasons:

– As shown in Tables 1 and 2, most methods have several hyper-parameters. For most hyper-
parameters of a method, there is neither a good rule to determine the values, nor a suitable
range of the values suggested in its original manuscript. And, the suitable value or range
of each hyper-parameter may vary across different datasets, different model architectures,
different against attack/defense methods. Consequently, the hyper-parameter search space for
each method could be very large, requiring unimaginably high computational resource.

– Even assuming suf�cient computing resources, then we can search a good value for each
hyper-parameter of each method in each evaluation. However, the comparison results and
analysis based on suf�cient hyper-parameter search may be unfair and make no sense in
practice. Because, we still cannot tell a rule or even some experiences to determine the
hyper-parameter values in practice. The sensitivity to hyper-parameters should also be an
important metric of one method's performance, not just the best ACC/ASR values through
the suf�cient hyper-parameter search.

• How do we set the hyper-parameter values in our current 8000 pairs of evaluations.
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– If the original paper has provided the suggested good values of some hyper-parameters, then
we adopt those values in our evaluations. For example, the ANP defense method explicitly
wrote that "the perturbation budget� = 0 :4 and the trade-off coef�cient� = 0 :2", so we also
adopt these values in our evaluations.

– For those hyper-parameters without suggested values/ranges (or even without descriptions) in
their original papers, we will search values that lead to comparable results (ACC/ASR) with
the reported results in the same setting (i:e:, same dataset, same/similar model architecture,
same poisoning ratio), then �x these values in evaluations of other settings (e:g:, changing the
poisoning ratio).

– The consistent values of hyper-parameters of each method across different settings somewhat
guarantee the fairness of evaluations. And, since the adopted values may not be the optimal
ones for some hyper-parameters, we didn't conduct the �ne-grained analysis about the
effects of some speci�c hyper-parameters (e:g:, the trigger size/location in attack methods
with patch based triggers). Instead, we provided some high-level analysisw.r.t. the shared
hyper-parameters in all methods (e:g:, the number of classes, the poisoning ratio, the model
architecture). The �ndings of these high-level analysis will not be signi�cantly affected by
the particular hyper-parameters of each individual method.

Computational complexitiesThe computational complexity of each attack and each defense algo-
rithm is also described in Table 1 and Table 2, respectively.

B Additional evaluations and analysis

B.1 Full results on CIFAR-10

The full results on CIFAR-10 with �ve different poisoning ratios (i:e:, 10%, 5%, 1%, 0.5%, 0.1%)
are presented in Tables 10 – 14, respectively. The remaining results on other datasets and model
architectures among 8,000 attack-defense pairs of evaluations are presented in the Leaderborad in the
BackdoorBench website (seehttps://backdoorbench.github.io ).

B.2 Results overview

In Figure 1, we present the performance distribution of attack-defense pairs on Preact-ResNet18 and
VGG-19 with two poisoning ratios of 5% and 10%, respectively. As we mentioned in Section 4.2,
if we measured the effectiveness of methods by clean accuracy (C-Acc) and ASR, a perfect attack
method should be located at the top-right corner; the perfect defense method should show in the
top-left corner. If we measured robust accuracy (R-Acc) and ASR, the reduced ASR value would be
desirable to equal the increased R-Acc. This defense method can recover the correct prediction and
eliminate the backdoor successfully. Even if we change the model structure from Preact-ResNet18 to
VGG-19, the conclusion coincides with our analysis. Besides, with the increase in poisoning ratio,
some color patterns are closer to the anti-diagonal line, which means these defense methods can
achieve better performance in this situation. Please refer to Section 4.2 in the manuscript for the
analysis.

B.3 Effect of dataset

As shown in Figure 2, we make a detailed comparison of the performance of attacks and defenses
under different datasets using the PreAct-ResNet18 model and 5% poison ratio. Where the different
colored bars correspond to the four datasets, the height of the bars represents the ASR, and the
various subplots correspond to the multiple defenses (and no defenses). Looking down from the
undefended perspective, we can see that, by and large, the effect of the attack �uctuates across the
different datasets. Blended is the most stable across datasets, while BadNets has the most �uctuating
effect across datasets. For BadNets, we �nd that CIFAR-100 and GTSRB are more complex than
CIFAR-10, which leads to the decrease in effectiveness on these two datasets, but the ASR on Tiny
ImageNet has rebounded signi�cantly due to the enlargement of the trigger size. From different
defense perspectives, we can �nd that the two methods, AC and Spectral Signature, are relatively
unaffected by changes in the dataset compared with each other. In contrast, the rest of the defense
methods may all have large �uctuations in their effectiveness in the face of speci�c attacks. Although
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�uctuating, ANP has better results on CIFAR-10 for all attack methods, while ABL is also very
effective on Tiny ImageNet for all attack methods.

B.4 Effect of poisoning ratio

B.4.1 Effect of poisoning ratio with randomness

As demonstrated in Section 4.3 in the main manuscript, in the following we will further verify the
abnormal phenomenon of poisoning ratio's effect shown in Figure 3 in the main manuscript, under
the randomness of weight initialization and some methods' mechanisms.

Experimental setting In the reported 8,000 pairs of evaluations, we set the random seed as 0 to �x
all randomness in each evaluations, to ensure all results could be reproduced. For each evaluation
plotted in Figure 3 in the main manuscript, we re-run the script with �ve different random seeds, and
record the mean and the standard deviation of these �ve evaluations.

Analysis As shown in Figure 3, the trends of ASR curves are almost consistent with those in Figure
3 in the main manuscript, and the standard deviation (i:e:, the error bar) is small, indicating that the
abnormal phenomenon about the poisoning ratio's effect is not affected by the randomness. However,
there are still a few special cases. For example, the error bars of some attacks under the ABL defense
is very large when the poisoning ratio is low. The reason is that ABL identi�es the �xed 1% of all
training samples as the poisoning samples according to the training loss. However, we �nd that the
poisoning identi�cation accuracy is very unstable, especially when the poisoning ratio is low, leading
to the large �uctuation. The standard deviations of evaluations under the NC defense are also large.
As described in Section??, NC consists of two consecutive steps,i:e:, �rstly searching a candidate
trigger to determine whether it is a backdoored model or not, then mitigating the backdoor effect
through pruning. We observe that the �rst step is very unstable within 5 random evaluations. If the
backdoored model is successfully detected, then the ASR will be reduced signi�cantly, other keeping
the high value, causing the high standard deviations of 5 random evaluations.

B.4.2 Effect of poisoning ratio of other model architectures

In this part, we intend to give the more detailed information about the variation of ASR values against
poisoning ratio on different model structures, which are VGG-19, DenseNet-161, Ef�cientNet-B3,
and MobileNetV3-Large, respectively. The corresponding results are established in Figure 4. We
have analyzed the effect of poisoning ratio in Section 4.3 in the main manuscript based on the results
of Preact-ResNet18 on CIFAR-10. We found that the most ASR curves increase with the increase of
poisoning ratio, while there are some curves which increase at �rst and then collapse dramatically.
However, this phenomenon still exists for multiple model structures. It is interesting to notice that
if the model structure is changed, the tendency of curves is different. The curve of NAD against
BadNets can serve as an example. It keeps increasing in DenseNet-161, while increases at �rst and
then drops down in VGG-19 and MobileNetV3-Large. Thus, it is valuable to further explore the
relationship between model architecture and backdoor performance. Note that we don't provide
the results of ANP and DBD on VGG-19, as we adopt the VGG-19 architecture without the batch
normalization (BN) layer (see the demonstration in Section 4.1 of the main manuscript). According
to the ANP author's comments at https://github.com/csdongxian/ANP_backdoor/issues/2, ANP is
not suitable to the model architecture without the BN layer. Besides, in our evaluations, the defense
performance of DBD is not very stable on the VGG-19 without the BN layer, at its semi-supervised
learning phase. Thus, we also don't report the evaluation of DBD on VGG-19. However, we also
observe that DBD performs stably on the VGG-19 model with the BN layer. The behind reason will
be explored in future.

B.5 Sensitivity to hyper-parameters

As illustrated in Section??, we adopt a �xed setting for each attack/defense method to ensure
reproducibility and fair comparison. However, the sensitivity to hyper-parameters is also a very
critical metric of one method's performance and practical usage. In the following, we pick three attack
methods (i:e:, BadNets, SIG, InputAware), two defense methods (i:e:, ABL and ANP), two datasets
(i:e:, CIFAR-10 and GTSRB), and two models (i:e:, PreAct-ResNet18 and VGG-19), to present a
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partial analysis about the sensitivity to hyper-parameters. For each attack/defense method, we study
one key hyper-parameter, such as the trigger's patch size for BadNets, the trigger's frequency for SIG,
the mask density for Input-aware, the �ooding value for ABL and the poisoning threshold for ANP.

Results are shown in Tables 3, 4, 5, and 6. For BadNets, a larger square pattern means a more vigorous
attack but is also easier to �nd by defense methods. For SIG, higher frequency means stronger attacks
and harder to defend. For Input-aware, the ASR values �uctuate a lotw.r.t. the mask density in the
case of no defense but are relatively stable under defenses. For ABL, a higher �ooding parameter
often leads to worse defense performance for most attacks. For ANP, the situation is complicated.
When defending BadNets and SIG, the higher threshold often leads to better defense performance, but
the defense performance against Input-aware is rather stablew.r.t. the threshold. When comparing the
performance across different model architectures and different datasets, we �nd that the sensitivities
to hyper-parameters of each method are very diverse. Picking a good hyper-parameter for a backdoor
learning method in practice is a challenge.

B.6 Analysis of quick learning of backdoor

The quick learning phenomenon of backdoor has been observed in some previous works [9], i:e:,
the backdoor could be quickly learned in a few epochs, for almost all backdoor attacks. However,
the behind reason has not been studied. In the following, we provide a detailed analysis from the
perspective of gradient. Speci�cally, for each epoch during the training process, we record the
following information:

• Losses of training samples, clean testing samples, and poisoned testing samples;

• Accuracy on training samples, clean testing samples, and poisoned testing samples;

• Gradient signal to noise ratios (GSNR) [11] on training samples, clean train samples, and
poisoned training samples averaged over model parameters;

• Norms of average gradient on total training samples, clean training samples, and poisoned
training samples;

• Pairwise cosine similarities between average gradients on total training samples, clean
training samples, and poisoned training samples.

As shown in Figure 5, we report the results of 5 backdoor attacks, including BadNets, Blended, SSBA,
LC and LF with poisoning ratio10%, on the CIFAR-10 dataset and the PreAct-ResNet18 model.
As shown in the �rst column, the testing loss of poisoned samples drops quickly in the early stages
of training and converges to a low value, while the testing loss of clean samples drops at a slower
rate and converges to a much larger value. It veri�es the quick learning phenomenon of backdoor
under these �ve backdoor attack methods. As shown in the third column, we �rst observe that the
GSNR of poisoned samples is signi�cantly larger than the GSNR of clean samples at the early stages.
The high GSNR values of poisoned samples indicate that the backdoor has better generalization
performance and is consistent with the higher accuracy (ASR) and lower loss on poisoned testing
samples. Secondly, we notice that the norm of the gradient on poisoned samples is much larger
than the norm of the gradient on clean samples in early epochs, as shown in the fourth column.
Consequently, the cosine similarity between gradients on total training samples and poisoned training
samples is signi�cantly larger than the cosine similarity between gradients on clean training samples
and poisoned training samples, though the number of poisoned samples is much smaller than the
number of clean samples.

B.7 Analysis of backdoor forgetting

From the above analysis about the quick learning of backdoor in Section B.6, we get one impression
that the backdoored model memorizes the poisoned samples quickly and stably. To obtain more
insights about the inner mechanism of backdoor learning, we adopt the concept offorgetting event
[23] to characterize the learning dynamics during the training process. Speci�cally, one forgetting
event is recorded when a correctly predicted training sample at the current epoch is incorrectly
predicted at the next epoch. Formally, given a training sample(x; y), wherex is input feature,y is
ground-truth label. Ifx is correctly predicted at the epocht, i.e., f � t (x) = y, but is misclassi�ed at
epocht + 1 , i.e., f � t +1 (x) 6= y, wheref denotes the model and� t ; � t +1 are model parameters at the
epocht andt + 1 , then a forgetting event is recorded for this sample.
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Speci�cally, we count the number of forgetting events for clean and poisoned training samples,
respectively, on CIFAR-10 with Preact-ResNet18 backbone. The distributions of forgetting events of
clean and poisoned samples are shown in Figure 6. The results show that:

• The forgetting events of clean training samples follow an exponential distribution, and are
similar among different cases.

• For poisoned training samples:1) when the poisoning ratio is low (e:g:, 0.1%, 0.5%), the
forgetting numbers of poisoned samples are often larger than those of clean samples;2) when
the poisoning ratio is high (e:g:, 5%, 10%), the forgetting numbers of poisoned samples are
often smaller than those of clean samples.

The above observations are compatible with our high-level observation that the backdoor attack with
higher poisoning ratios could quickly learn the stable mapping from the poisoned samples to the
target class. Moreover, the forgetting event provides a �ne-grained tool to analyze the contribution of
each individual training sample, which could facilitate the development of more advanced backdoor
attack and defense methods.

B.8 Analysis of trigger generalization of backdoor attacks

In all existing backdoor attacks, there is a default assumption that the triggers used in both backdoor
training and backdoor testing are exactly same. However, we �nd that an interesting property in
backdoor learning that the backdoored model trained with one trigger could be also activated by other
triggers. We name it astrigger generalization.

In this following, we take the Blended attack as an example to study the trigger generalization.
Speci�cally, we set the trigger transparency to different values in training and testing phase, including
10%, 20%, and 30%. As shown in the �gure 7, we obtain the following observations: (1) If a more
obvious trigger (i:e:, high transparency 30%) is applied during training, then the backdoor will not be
easily activated by a different trigger with lower transparency; (2) If using a less obvious backdoor
triggers (i:e:, low transparency 10%) in the training phase, then the backdoor can be successfully
activated by the trigger with higher transparency (e:g:, 20% or 30%) in the test phase.

In addition to the above example, we �nd that the trigger generalization is a common property of the
backdoor models under several backdoor attacks. For example, the trigger in SSBA [10] is a string,
and its backdoored model could not only be activated by its training trigger. However, we �nd that
the model is likely to be activated by many other strings with the same length. Exploring the behind
reason of trigger generalization is important for us to better understand the backdoor mechanism.
Moreover, we notice that there have been some attempts to utilize the backdoor as the technique to
protect the intellectual property (IP) of AI models or datasets, based on the unique mapping from the
trigger to the target class. However, due to the trigger generalization, the uniqueness of the training
trigger no longer exists, which undermines the legitimacy backdoor learning in IP protection. Thus,
the study of trigger generation is also important for the usage of backdoor learning in practice. We
will provide more analysis about trigger generalization in BackdoorBench in future.

B.9 Evaluation on vision transformer

Until now, the reported 8,000 pairs of evaluations in BackdoorBench are all conducted on the
convolutional neural networks. In the following, we expand the evaluations to another popular family
of models,i:e:, vision transformer (ViT), which has shown superior performance on many vision
tasks (i:e:, image classi�cation, object detection, semantic segmentation). In our evaluations, a
initial checkpoint of ViT that is pre-trained on ImageNet [4] is downloaded fromhttps://github.
com/pytorch/vision/tree/main/references/classification . We then �ne-tune this pre-
trained checkpoint on the poisoned CIFAR-10 dataset. Note that the input size of ViT is224� 224,
while the size of raw images in CIFAR-10 is32� 32. Thus, in data poisoning based attack, we �rstly
insert the trigger into the raw image, then re-scale the poisoned image to the size224� 224.

We evaluate ViT-Base model with16� 16 input patch size (ViT-b-16) on CIFAR-10 with 10% poison
ratio, where the settings of all hyper-parameters are same with those for learning other models, as
shown in Tables 1 and 2. The backdoor evaluation results are summarized in Table 7. As a baseline,
the accuracy of �ne-tuning ViT-b-16 on the clean dataset with same hyper-parameters is96:56%.
According to Table 7 and the comparison with the evaluations on other models, we have the following

8



observations.1) In the case of no defense, the ASR of ViT-b-16 is still very high under all evaluated
backdoor attacks, revealing that the ViT model architecture is also vulnerable to backdoor attacks.2)
The evaluated three defense methods show very poor performance for the attack on ViT-b-16. In terms
of FT and NC, although the ASR is reduced signi�cantly, the clean accuracy is also downgraded. In
terms of ABL, the ASR doesn't decrease for most attacks, with the only exception for BadNets of
which the model after defense is fully degenerated. It implies that the effective defense that have been
veri�ed on the CNN architecture may not suitable for the ViT architecture. It inspires us to develop
more effective defense methods for the ViT architecture specially. More evaluations and analysis
about the ViT architecture will be added in BackdoorBench in future.

B.10 Evaluation on ImageNet

Due to the high computational and memory costs, one of the benchmark datasets of image classi�ca-
tion, i:e:, ImageNet [4] with 1,000 classes, has rarely been evaluated in existing backdoor learning
works. We plan to provide comprehensive evaluations of backdoor learning methods on ImageNet, to
�nd whether there are some unique challenges for backdoor learning on large-scale datasets.

Here, we provide some partial evaluations, including BadNets and Blended attack with 0.1% poison
ratio on ImageNet and the PreAct-ResNet18 model, as shown in Table 8. Note that due to the 1,000
classes, we do not set a higher poisoning ratio to ensure that the number of poisoned samples is not
much larger than the number of clean samples of the target class. Both Badnets and Blended show
good attack performance with high ASR and C-Acc. Compared with the baseline model,i:e:, PreAct-
ResNet18 trained on the clean ImageNet dataset (please refer tohttps://paperswithcode.com/
sota/image-classification-on-imagenet?tag_filter=3 ), there is a slight drop of C-Acc,
from 72.33% to 69.22%. More backdoor attack and defense evaluations on ImageNet will be added
to our BackdoorBench in the future.

B.11 Visualization

B.11.1 Individual visualization tools

Here we provide three visualization tools to analyze each individual image.

Gradient-weighted class activation mapping (Grad-CAM)[19] explains the contribution of each
pixel to the prediction of one image, based on the gradient of the logit of one classw.r.t. each pixel.
Note that in the codebase of BackdoorBench, we implement a variant of Grad-CAM, called FullGrad
[22].

Shapley Value[13] is another popular interpretation tool that assigns an importance factor to each
pixel for a particular prediction. Inspired by the cooperative game theory, the competition among
pixels is also taken into account in the computation of each individual importance factor.

Frequency saliency map (FSM)is our innovative visualization method for viewing the contribution
of every Fourier basis to model classi�cation. Consider an image classi�cation task withS classes.
Let x be a clean image with sizeH � W � C and ~x = F(x ) be the corresponding frequency
spectrum withF being the channel-wise Discrete Fourier Transform (DFT) operator. LetC be the set
of complex numbers. Denote the classi�er byf : RH � W � C ! RS . We de�neF : CH � W � C ! RS

as the corresponding classi�er in the frequency domain, which means

F ( ~x ) = f (x ) = f
�

F-1( ~x )
�
; (1)

whereF-1 is the channel-wise Inverse Discrete Fourier Transform (IDFT) operator, which means
F-1( ~x )(u; v) =

P H � 1
h=0

P W � 1
w=0 ~x (h; w)e2�i ( uh

H + vw
W ) .

Inspired by the saliency map in the RGB space, we intend to establish the connection between model
prediction and image's frequency spectrum by the gradient. According to the chain's rule, we can
estimate the gradientw.r.t. the frequency spectrum as follows

@Fs( ~x )
@~x (u; v; c)

=
H � 1X

h=0

W � 1X

w=0

C � 1X

c0=0

@fs(x )
@x (h; w; c0)

�
@x (h; w; c0)
@~x (u; v; c)

=
H � 1X

h=0

W � 1X

w=0

@fs(x )
@x (h; w; c)

e2�i ( uh
H + vw

W ) ;

(2)

9



wheref s means the logit output of the modelf w.r.t. thes-th class.

The obtained gradients are then averaged over channels and normalized to form the FSM, as follows

FSM � (u; v) =
1
C

C � 1X

c=0

@Fs( ~x )
@~x (u; v; c)

; (3)

FSM (u; v) =
FSM � (u; v) � FSM �

min

FSM �
max � FSM �

min
; (4)

where we use min-max normalization to normalize the FSM image.

B.11.2 Visualization results

In the following, we present some visualization results using the above three tools to understand
the inner mechanism of backdoor learning better. Speci�cally, Speci�cally, we train the PreAct-
ResNet18 model under various backdoor attacks and defenses with the poisoning ratio5%, on 3
datasets, including CIFAR-100, GTSRB, and Tiny ImageNet. Then, we randomly select a poisoned
sample from the test set and show its visualization. The visualization results using Shapley Value and
Grad-CAM are shown in Figures 8 to 13, respectively.

The frequency saliency map (FSM) visualization results are shown in Figure 14, where low-frequency
components are shifted into the central regions. In contrast, high-frequency components are distributed
in surrounding regions. The �rst column displays the studied poisoned images generated by different
attack methods, including BadNet, Blended, SSBA, WaNet, and LF. The second column shows the
contribution of each frequency basis to the backdoored model's prediction. It tells that most backdoor
models pay attention to high-frequency regions, while the model under the LF attack makes the model
concentrates more on low-frequency regions. Besides, we can see an apparent difference between
SSBA and WaNet in the frequency domain, even though their spatial images look similar. These
observations demonstrate the potential usage of FSM in trigger or backdoor detection, which will be
explored in our future work. The remaining columns show the contribution of each frequency basis
under various defense methods. For example, the contribution of some high-frequency regions is
enormous for the poisoned image in a BadNet model without defense. However, after conducting
FT on this backdoor model, the low-frequency regions regain attention from the model. It explains
well that FT can effectively remove backdoors embedded by BadNet and WaNet (see Figure 3 in the
main manuscript). We plan to explore more backdoor learning properties from the frequency domain
perspective.

C BackdoorBench in Natural Language Processing

Apart from the analysis of backdoor attack and defense methods in computer vision, we also
expand our benchmark to the �eld of Natural Language Processing (seehttps://github.com/
SCLBD/BackdoorBench/tree/main/backdoorbench_nlp ). We implement two stage-of-the-art
backdoor attack methods (i:e:, LWS [18] and HiddenKiller [17]) and one defense method (i:e:,
Onion [16]) in NLP as a complement to the original BackdoorBench. We closely follow the original
implementation of the attack and defense methods and make necessary changes to unify all the
methods in our benchmark. We choose BERT [5] as the model to be poisoned. All the experiments
are conducted on three widely-used datasets for text classi�cation tasks, including Stanford Sentiment
Treebank(SST-2) [21], Offensive Language Identi�cation Dataset(OLID) [28] and AG's News [29].
For all experiments, the poison rate is set to be 5% and the default target label is 1. For LWS, the bar
for ONION for each dataset is set to be the recommended value in the original implementation. All
results are reported in Table 9.

We can �nd that the two chosen attack methods can both achieve high attack success rate even at a
low poisoning ratio. However, the defense performance of ONION against two SOTA attack methods
is not quite satisfactory. The possible reason is that ONION aims to �nd out obvious outliers in each
sentence, but both HiddenKiller and LWS are invisible methods which do not rely on special tokens
as triggers. In the future, we will also keep updating latest backdoor attack and defense methods in
the NLP �eld into our benchmark.
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D Reproducibility

All evaluation results in BackdoorBench can be easily reproducible, just running the scripts provided
in the github repositoryhttps://github.com/SCLBD/BackdoorBench , with the hyper-parameter
settings presented in Tables 1 and 2. All evaluated datasets and model architectures are publicly and
freely available. Besides, we also compress all codes into one �le as a part of the supplementary
materials.

E License

This repository is licensed by The Chinese University of Hong Kong, Shenzhen and Shenzhen Re-
search Institute of Big Data under Creative Commons Attribution-NonCommercial 4.0 International
Public License (identi�ed as CC BY-NC-4.0 in SPDX, seehttps://spdx.org/licenses/ ). More
details about the license could be found inhttps://github.com/SCLBD/BackdoorBench/blob/
main/LICENSE.
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(a) Attack-defense pairs with PreAct-ResNet18 and 10% poisoning ratio on CIFAR-10.

(b) Attack-defense pairs with VGG-19 and 10% poisoning ratio on CIFAR-10.

(c) Attack-defense pairs with VGG-19 and 5% poisoning ratio on CIFAR-10.

Figure 1: Performance distribution of attack-defense pairs on different model structure and poisoning
ratios. A successful attack method should be high C-Acc and ASR, while a successful defense method
should be high C-Acc and low ASR. Besides, if the reduced ASR value equals to the increased R-Acc,
the color patters would be close to the anti-diagonal line.
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Figure 2: The effects of different datasets on backdoor learning. Note that for the clean-label (i:e:,
LC [20] and SIG [1]) attack, the number of poisoned samples must be less than the target class size,
thus it may be not applied to the case of high poisoning ratios.)

Figure 3: The effects of different poisoning ratios of backdoor learning with 5 random seeds.
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(a) The variation of ASR on different poisoning ratios with VGG-19 and CIFAR-10.

(b) The variation of ASR on different poisoning ratios with DenseNet-161 and CIFAR-10.

(c) The variation of ASR on different poisoning ratios with Ef�cientNet-B3 and CIFAR-10.
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(d) The variation of ASR on different poisoning ratios with MobileNetV3-Large and CIFAR-10.

Figure 4: The effect of different ratios on backdoor learning. From (a) to (d), the structure of models
are different. In the condition of no defense, the higher poisoning ratio, the higher ASR value. In the
defense situation, some ASR curves raise with the increase of poisoning ratio, while some curves go
up �rst and then sharply drop down. It could also be noticed that the performances of same defense
method on different model structures are distinctive,i:e:, ABL on VGG-19 and DenseNet-161. Note
that we don't provide the results of ANP and DBD on VGG-19, and the reason is illustrated in Section
B.4.2.
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Figure 5: Analysis of the quick learning phenomenon based on the details of the backdoor learning
process. From the �rst column to the last column, we report the curves of loss, accuracy, GSNR,
gradient norm and cosine similarity of gradients in poisoned samples, clean samples and all samples,
respectively.

Table 7: Evaluation of ViT-b-16 on CIFAR-10 with10%poisoning ratio.

No defense FT NC ABL

Backdoor Attack C-Acc (%) ASR (%) R-Acc (%) C-Acc (%) ASR (%) R-Acc (%) C-Acc (%) ASR (%) R-Acc (%) C-Acc (%) ASR (%) R-Acc (%)

BadNets 94.58 94.11 5.66 42.00 8.81 38.60 36.09 11.12 33.60 10.00 0.00 11.11

Blended 96.47 99.72 0.28 41.36 7.24 36.29 44.92 3.90 39.40 96.88 99.81 0.19

LC 86.87 99.84 0.16 33.03 16.40 24.36 40.68 11.17 30.74 87.33 99.76 0.23

SIG 87.01 92.60 7.28 44.46 0.78 25.92 87.01 92.60 7.28 87.60 86.47 13.39

SSBA 96.30 97.58 2.34 45.35 7.62 43.49 46.24 8.17 43.60 96.78 98.22 1.70

Input-aware 92.10 96.28 3.51 89.56 25.14 69.91 43.13 7.79 37.81 96.70 93.21 6.58

Table 8: BadNets and Blended attack result on ImageNet

C-Acc ASR R-Acc

BadNets 69.21 75.86 0.33
Blended 69.24 98.59 0.11

20



Figure 6: Distributions of forgetting events of clean training examples and poisoned examples in
CIFAR-10 with Preact-Resnet18 backbone.

Figure 7: Analysis of trigger generalization in Blended attack: a) the training trigger with 10% trans-
parency; b) the training trigger with 20% transparency; c) the training trigger with 30% transparency.
For each case, we evaluate the attack success rate of testing triggers with the transparency 10%, 20%,
and 30%, respectively.

Figure 8: Shapley Value visualization of regions contributed to model decision under different attack
methods and defense methods with PreAct-ResNet18 and5%poisoning rate on CIFAR-100.
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