
Appendices for Submission # 2981678

Below we include additional implementation details, experimental results, as well as findings and679

analyses. The code implementing the model is included in the supplementary materials folder.680

Section A details our setup and evaluation, providing additional information on evaluation metrics,681

dataset statistics and CCG parser. Section B discusses implementation details of the entity discovery682

module. Section C contains additional experiments, where the performance is broken down by the683

frequency of appearance of tokens in the training data, including break-down over unseen tokens.684

Section D has some additional visualizations of the model outputs at different stages of training. And685

finally, Section E covers additional related work.686

Appendix A Experiment Settings687

A.1 Evaluation Metrics688

(1) MRR evaluates a list of code snippets. The reciprocal rank for MRR is computed as 1
rank , where689

rank is the position of the correct code snippet when all code snippets are ordered by their predicted690

similarity to the sample query. (2) P@K is the proportion of the top-K correct snippets closest to the691

given query. For each query, if the correct code snippet is among the first K retrieved code snippets692

P@K=1, otherwise it is 0.693

A.2 Parsing694

We build on top of the NLTK Python package for our implementation of the CCG parser. In attempt695

to parse as much of the datasets as possible, we preprocessed the queries by removing preceding696

question words (e.g. “How to”), punctuation marks, and some specific words and phrases, e.g. those697

that specify a programming language or version, such as “in Python” and “Python 2.7”. For a number698

of entries in CSN dataset which only consisted of a noun or a noun phrase, we appended a Load verb699

to make it a valid sentence, assuming that it was implied, so that, for example, “video page” became700

“Load video page”. This had the adverse effect in cases of noisy examples, where the docstring did701

not specify the intention or functionality of the function, and only said “wrapper”, for example. The702

final dataset statistics before and after parsing are presented in Table 3703

Dataset
Parsable Full

Train Valid Test Train Valid Test

CodeSearchNet 162801 8841 8905 412178 23107 22176
CoSQA 14210 - - 20,604 - -
WebQueryTest - - 662 - - 1,046

Table 3: Dataset statistics before and after parsing.

A.3 Failed parses704

As mentioned before, we have encountered many noisy examples and here provide samples of such705

examples that could not be parsed. These include cases where the docstring contains URLs, is not706

in English, consists of multiple sentences, or has code in it, which is often either signature of the707

function, or a usage example. Specific samples of queries that we couldn’t parse are included in708

Table 5.709

A.4 Parser generalization to new datasets710

In order to evaluate how robust our parser is when challenged with new datasets, we have evaluated711

its success rate on a number of additional datasets - containing both Python code, and code in712

other languages. More specifically, for a Python dataset we used CoNaLa dataset [42], using the713

entirety of its manually collected data, and 200K samples from the automatically mined portion.714

Additionally, we attempt parsing queries concerning 5 other programming languages - Go, Java,715

16



Javascript, PHP, and Ruby. For those, we evaluated the parser on 90K for each language, taking716

those from CodeSearchNet dataset’s training portion. The summary of data statistics, as well as717

evaluation results are reported in Table 4. As it can be seen, the parser successfully parses at least718

62% of Python data, and 32% of data concerning other languages. From new languages, our parser is719

the most succesful on PHP and Javascript, achieving 43% and 41% success rate respectively.720

Language Dataset Original Size Parser Success Rate

Python CoNaLa auto-mined 200000 0.62
Python CoNaLa manual train 2379 0.65
Python CoNaLa manual test 500 0.63
Go CodeSearchNet 90000 0.32
Java CodeSearchNet 90000 0.33
Javascript CodeSearchNet 90000 0.41
PHP CodeSearchNet 90000 0.43
Ruby CodeSearchNet 90000 0.35
Table 4: Results of evaluation of the parser’s success rate on new datasets

Example not parsed
URL From http://cdn37.atwikiimg.com/sitescript/pub/dksitescript/FC2.site.js

Signature

:param media_id:
:param self: bot
:param text: text of message
:param user_ids: list of user_ids for creating group or one user_id for send to one person
:param thread_id: thread_id

Multi-sentence
Assumed called on Travis, to prepare a package to be deployed
This method prints on stdout for Travis.
Return is obj to pass to sys.exit() directly

Noisy bandwidths are inaccurate, as we don’t account for parallel transfers here
Table 5: Example queries that were not included due to query parsing errors

Appendix B Entity Discovery Module721

To generate noisy supervision labels for the entity discovery module we used spaCy library [22]722

for labelling through regex matching, and Python’s ast - Abstract Syntax Trees library for the static723

analysis labels. For the former we included the following labels: dict, list, tuple, int, file, enum, string,724

directory and boolean. Static analysis output labels were the following: List, List Comprehension,725

Generator Expression, Dict, Dict Comprehension, Set, Set Comprehension, Bool Operator, Bytes,726

String and Tuple. The full source code for the noisy supervision labelling procedure is available in727

the supplementary materials.728

Appendix C Additional Experiments729

C.1 Unseen Entities and Actions730

We wanted to see how well different models adapt to new entities and actions that were not seen731

during training. For that end we measured the performance of the models when broken down on732

queries with a different number of unseen entities (from 0 to 3+) and action (0 and 1). The results are733

presented in Figure 9. It can be seen that NS3 is very sensitive to unseen terms, whereas CodeBERT’s734

performance stays the same.735

17



(a) Unseen Actions (b) Unseen Entities
Figure 9: Performance of CodeBERT and NS3 models when broken down by the number of unseen
entities or actions in the test queries. Evaluated on CSN test set.

C.2 Times an Entity or an Action Was Seen736

In addition to the last experiment, we wanted to measure the performance broken down by how many737

times an entity or an action verb was seen during the training. The results of this experiment are738

reported in Figure 10. For the breakdown by the number of times an action was seen, the performance739

almost follows a bell curve. The performance increases with verbs that were seen only a few times.740

On the other hand, very frequent actions are probably too generic and not specific enough (e.g. load741

and get). For the entities we see that the performance is only affected when none of the entities in742

the query has been seen. This is understandable, as in these cases an action modules don’t get any743

information to go by, so the result is also bad. CodeBERT model in both scenarios has more or less744

the same performance independently of the number of times an action or an entity was seen.

(a) Entities (b) Actions
Figure 10: Performance of CodeBERT and NS3 models when broken down by the number of times
an entity or an action was seen during the training. Evaluated on CSN test set.

745

C.3 Evaluation on Parsable and Unparsable Queries746

To understand whether there is a significant bias among samples that we could parse versus the ones747

that we could not parse, we performed additional experiment on the full test set of the CoSQA version.748

The results are reported in Table 6. In this evaluation, NS3 falls back to CodeBERT for examples that749

could not be parsed. As it can be seen, while there is some difference in performance, the overall750

trend of performances remains the same as before.751

Appendix D Additional Examples752

Figure 11 contains more illustrations of the output scores of the action and entity discovery modules753

captured at different stages of training. The queries shown here are the same, but this time they are754

evaluated on different functions.755

Staged execution demonstration756

In the next example we demonstrate the multiple-step reasoning. In this example we are looking at757

the query “Construct point record by reading points from stream”. When turned into a semantic758

parse, that query will be represented as:759

18



Method CoSQA Full Test Set
MRR P@1 P@3 P@5

CodeBERT 0.29 0.152 0.312 0.444
GraphCodeBERT 0.367 0.2 0.447 0.561

NS3 0.412 0.298 0.452 0.535
Table 6: Mean Reciprocal Rank(MRR) and Precision@1/@3/@5 (higher is better) for different
methods trained on CoSQA dataset. The performance is evaluted on the full test dataset, i.e. including
both parsable and unparsable examples.

Figure 11: The leftmost column shows output scores of the entity discovery module after pretraining
for the entity of the query. The middle column shows the scores after completing the end-to-
end training. The rightmost column shows the scores of the action module. Darker highlighting
demonstrates higher score.

ACTION(Construct, (None, point record),(BY, ACTION(Read, (None, points), (FROM, stream))))

After the processing, this query would be broken down into two parts:760

1. ACTION(Construct, (None, point record)), and761

2. ACTION(Read, (FROM, stream), (None, points))762

In order for the full query to be satisfied, both parts of the query must be satisfied. Figure 12763

demonstrates the outputs of the entity(Figure 12 a) and action(b) modules obtained for the query’s first764

part, and Figure 13 demonstrates the outputs on the second part. Now if we were to replace the second765

sub-query with a different one, so that its parse is ACTION(Remove, (In, stream), (None, points)),766

that would not affect the outputs of the entity modules, but it would affect the output of the action767

module, as shown in Figure 14. The final prediction for this modified query would be 0.08 instead of768

0.94 on the original query.769

Appendix E Related Work770

Chai et al. [8] proposes expanding CodeBERT with MAML to perform cross-language transfer for771

code search. In their work they study the case where the models are trained on some languages, and772

the then finetuned for code search on unseen languages.773

Wang et al. [38] proposes combining token-wise analysis, AST processing, neural graph networks774

and contrastive learning from code perturbations into a single model. Their experiments demonstrate775

that such combination provides improvement over models with only parts of those features. This776

illustrates, that those individual features are complementary to each other. In a somewhat similar777

19



(a) Entity outputs

(b) Action outputs
Figure 12: Outputs of the action and entity modules on the query
ACTION(Construct, (None, point record)).

manner, Guo et al. [18] proposes combining sequence-based reasoning with AST-based reasoning,778

and uses contrastive pretraining objective for the transformer on the serialized AST.779

Additionally, both Zhu et al. [46] and Lu et al. [32] propose solutions closely inspired by human780

engineers’ behaviors. Zhu et al. [46] propose a bottom-up compositional approach to code under-781

standing, claiming that engineers go from understanding individual statements, to lines, to blocks782

and finally to functions. They propose implementing this by iteratively getting representations for783

program sub-graphs and combining those into larger sub-graphs, etc. On the other side, Lu et al. [32]784

proposes looking for the code context for the purpose of code retrieval, inspired by human behavior785

of copying code from related code snippets.786

20



(a) Entity outputs

(b) Action outputs
Figure 13: Outputs of the action and entity modules on the query
ACTION(Read, (FROM, stream), (None, points)).

21



Figure 14: Outputs of the action module on the modified query
ACTION(Remove, (IN, stream), (None, points)).

22


	Introduction
	Background
	Semantic Code Search
	Neural Models for Semantic Code Search

	Neural Modular Code Search
	Module Network Layout
	Entity Discovery Module
	Action Module
	Model Prediction
	Module Pretraining and Joint Fine-tuning

	Experiments
	Experiment Setting
	Results
	Ablation Studies
	Analysis and Case Study

	Related work
	Conclusion
	Experiment Settings
	Evaluation Metrics
	Parsing
	Failed parses
	Parser generalization to new datasets

	Entity Discovery Module
	Additional Experiments
	Unseen Entities and Actions
	Times an Entity or an Action Was Seen
	Evaluation on Parsable and Unparsable Queries

	Additional Examples
	Related Work

