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Abstract

We study the differentially private (DP) k-means and k-median clustering problems
of n points in d-dimensional Euclidean space in the massively parallel computation
(MPC) model. We provide two near-optimal algorithms where the near-optimality
is in three aspects: they both achieve (1). O(1) parallel computation rounds, (2).
near-linear in n and polynomial in k total computational work (i.e., near-linear run-
ning time when n is a sufficient polynomial in k), (3). O(1) relative approximation
and poly(k, d) additive error. Note that Ω(1) relative approximation is provably nec-
essary even for any polynomial-time non-private algorithm, and Ω(k) additive error
is a provable lower bound for any polynomial-time DP k-means/median algorithm.
Our two algorithms provide a tradeoff between the relative approximation and the
additive error: the first has O(1) relative approximation and ∼ (k2.5 + k1.01

√
d)

additive error, and the second one achieves (1 + γ) relative approximation to the
optimal non-private algorithm for an arbitrary small constant γ > 0 and with
poly(k, d) additive error for a larger polynomial dependence on k and d.
To achieve our result, we develop a general framework which partitions the data
and reduces the DP clustering problem for the entire dataset to the DP clustering
problem for each part. To control the blow-up of the additive error introduced by
each part, we develop a novel charging argument which might be of independent
interest.

1 Introduction

Over the last decade, the leakage of private information by machine learning and data mining
algorithms has had dramatic consequences, from losses of billions of dollars [60] to even costing
human lives [8]. Thus, protecting data privacy has become a top priority constraint in many modern
machine learning and data mining problems.

This high demand has stimulated an important research effort to design algorithmic techniques
enabling privacy-preserving algorithms. In recent years, the elegant notion of differential privacy
(DP) [34] has become the gold standard for privacy-preserving algorithms [38, 67, 33, 1]. Informally,
differential privacy requires the output (distribution) of the algorithm to remain almost the same under
a small adversarial perturbation of the input.

k-Means and k-median clustering are fundamental and widely-studied problems in unsupervised
learning. They are used to analyze and extract information from massive datasets in machine learning
and data mining tasks. In particular, given a set of n points X ⊆ Rd within a ball of radius Λ, the
goal is to find a set C of k centers such that the clustering cost

∑
x∈X minc∈C d

p(x, c) is minimized,
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where the power p = 1, 2 stands for k-median and k-means respectively. The importance of data
privacy has sparked an important research effort on designing accurate and efficient differentially
private k-means and k-median algorithms [15, 62, 39, 47, 58, 73, 64, 65, 71, 42, 5, 63, 52, 70, 69,
44, 53, 19, 61, 20, 14, 24]. In the above line of work, one can distinguish two separate efforts: one
effort emphasizing the approximation guarantees, namely aiming at best possible approximation
guarantee (under privacy constraints) in polynomial time, and a second effort targeting practical and
efficient differentially private algorithms. More concretely, none of the above works achieve optimal
accuracy and efficiency at the same time, i.e., the algorithms achieving O(1) relative approximation
and Λp · poly(k, log(n)) additive error have running time at least n1+Ω(1) · d (see e.g., [70, 44]), and
the algorithms with running time proportional to Õ(nd)3 and polynomial in the number of centers,
k, have either relative approximation Ω(log n) or additive error Λp · nΩ(1) (see e.g., [24, 14]). In
this work, we reconcile these two lines of work and present two algorithms that both achieve near
optimal approximation guarantee and near optimal running time simutaneously. Our two algorithms
provide a tradeoff between the relative approximation and the additive error. In particular, the first
algorithm runs in Õ(nd) + poly(k) time and outputs a solution with O(1) relative approximation
and roughly (k2.5 + k1.01

√
d) · Λp additive error (we ignore minor dependencies on log n and the

privacy parameters ε, δ in the additive error). The second algorithm runs in Õ(ndk) + poly(k) time
and outputs a solution with (1 + γ)ρ relative approximation and roughly poly(k, d) · Λp additive
error for a larger polynomial dependence on k, d, where γ > 0 is an arbitrarily small constant and ρ
is the best relative approximation of any polynomial-time non-private algorithm. Our approximation
guarantee is near optimal since the Ω(1) relative approximation is necessary even for any non-private
polynomial-time algorithm [28, 27, 26, 55] and Ω(k ·Λp) is a provable lower bound for additive error
achieved by any polynomial-time DP algorithm [47]. In addition, the approximation guarantees of our
algorithms match the best previous DP algorithms [70, 44] while our algorithms have faster running
time. In fact, our running time is almost tight when k = no(1) because Ω(nd) time is necessary to
read all input points.

Importantly, our algorithms are scalable. In the era of massive datasets, in-memory sequential
algorithms struggle to handle billions of data points. Algorithms that are suitable for large-scale
distributed/parallel computational systems such as MapReduce [32] are more desired. It motivates
the study of algorithms in the massively parallel computation (MPC) model [54, 46, 11]. In the MPC
model, there are multiple machines where each has local memory that is sublinear in the data size.
The computation proceeds in rounds. In each round, each machine sends/receives messages to/from
other machines but the size of messages sent/received by a machine cannot exceed its local memory.
As long as the local memory per machine is at least polynomial in k and at least nθ for a small
constant θ, our algorithms can be easily implemented in the MPC model with O(1) computation
rounds and total space (total memory size across all machines) linear in the input data size. Note that
Ω(k) local memory is needed for all previous non-private o(log n)-round MPC O(1)-approximate
k-means and k-median clustering algorithms (see e.g., [36, 40, 4, 6, 10, 18, 41]).

1.1 Other Related Work

k-Means and k-median clustering have seen a large body of work over the past few decades. There
have been numerous works obtainingO(1)-approximation algorithms for both k-means and k-median,
using either local search or primal-dual techniques. The state-of-the-art approximation algorithms
are a 5.912-approximation for Euclidean k-means and a 2.406-approximation for Euclidean k-
median, due to [25]. Two other fruitful methods of improving algorithms for these problems are
coresets [21, 40, 51, 31, 29], which replace the dataset of points with a smaller set, and dimensionality
reduction [22, 56], which reduces the number of dimensions of the ambient Euclidean space the
points reside in.

There is a line of work studying k-means and k-median problems under parallel, distributed and
streaming computational models. A popular way to tackle these clustering problems at scale is via
coresets. A coreset is a small weighted subset of input points such that a good clustering solution for
coreset yields a good approximate clustering to the original input point set. k-Means and k-median
coresets have been extensively studied in the literature (e.g, [40, 6, 10, 18, 16, 41, 17]), and most of
them can be implemented in the MPC model in O(1) rounds as long as the memory per machine is at

3Õ(f(n)) := f(n) · poly(log f(n))
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least poly(k), i.e., is large enough to hold the entire coreset. Other approaches to solve k-means and
k-median in parallel are via quad-tree [13] or locality sensitive hashing [12]. These data partitioning
based approaches require less local memory size but provide worse approximations or output more
than k centers (and so pertain to the line of work sacrificing approximation guarantees to practicality
and efficiency). Notice that none of the previous scalable algorithms are differentially private.

Our paper focuses on differentially private k-means and k-median clustering in Euclidean space,
which, as described previously, has seen significant work over the past several years. The paper [70]
was the first paper to provide a differentially private algorithm for k-means clustering with O(1)
multiplicative ratio, and additive error polynomial in k, d, log n, ε−1, and log δ−1. Later, [44]
improved their result by obtaining an algorithm with multiplicative ratio arbitrarily close to the
best non-private k-means (or k-median) approximation, at the cost of a much larger polynomial
dependence on k in the additive error. The paper [24] was the first paper to study private clustering in
the Massively Parallel Computing framework, obtaining a polylogarithmic multiplicative ratio for
k-means and k-median with polylogarithmic rounds of communication and computation. We also
remark that [63, 70, 69, 19, 20] also provided private algorithms for k-means clustering in the local
differential privacy model, but these algorithms all have additive errors proportional to at least

√
n.

1.2 Our Results

In this paper, we provide nearly optimal algorithms for differentially private k-means and k-median,
in the MPC setting with O(1) total rounds of communication and computation. We gave a brief,
informal description of our results previously. We now formally state the two main theorems that we
will prove about private clustering in the MPC model. In our MPC setting, we assume that we have
n1−θ machines, each of which can store Õ(nθ) points in Rd, where θ > 0 can be an arbitrarily small
constant. (Equivalently, each machine has Õ(nθ · d) space and the total amount of space is Õ(n · d)).
Theorem 1.1. (Theorem E.4.) There exists an (ε, δ)-DP algorithm for k-means (or k-median) cluster-
ing with multiplicative error O(1) and additive error (k2.5 + k1.01

√
d) · poly

(
log n, ε−1, log δ−1

)
.

In addition, assuming each machine can store Õ(nθ) ≥ (k1.5 + d0.5) · poly(log n, ε−1, log δ−1)
points, the algorithm can be implemented in MPC with O(1) total rounds of communication and com-
putation, total sequential running time Õ(nd) + poly(k, ε−1, log δ−1), and total time per machine
Õ(nθd) + poly(k, ε−1, log δ−1).

Theorem 1.2. (Theorem E.9) Suppose that there exists a polynomial-time algorithm that can compute
a ρ-approximation to k-means (resp., k-median). Then, for any constant ρ′ > ρ, there exists an
(ε, δ)-DP algorithm for k-means (resp., k-median) with multiplicative error ρ′ and additive error
poly

(
k, d, log n, ε−1, log δ−1

)
. In addition, the algorithm can be implemented in MPC with O(1)

total rounds of communication and computation, total sequential time Õ(nd), and total time per
machine Õ(nθd), assuming each machine can store Õ(nθ) ≥ poly(k, d, log n, ε−1, log δ−1) points.

Our two results are similar to the results of [70] and [44], respectively, except that our algorithms are
implementable in MPC with O(1) rounds, and our algorithm has near-linear dependence on the size
of the dataset n (whereas [70] and [44] have polynomial dependence on n). We also remark that our
additive error for the first algorithm is slightly worse than that of [70] (which had k1.5 + k1.01d0.51),
and our additive error for the second algorithm matches that of [44].

Our results improve over the best MPC algorithm for private k-means and k-median [24], as we have
an O(1)-approximation whereas their paper had a poly log n-approximation. In addition, our result
only needs O(1) rounds of communication between machines, whereas they require log n rounds for
k-median and poly log n rounds for k-means.

1.3 Technical Overview and Roadmap

In this subsection, we assume for simplicity that we are dealing with k-means. The overall outline for
k-median is quite similar.

Some natural approaches and why they don’t work. A first natural approach is to apply a
uniform sampling approach. In other words, we can consider sampling nθ points at random, moving
them to a single machine, and then performing a sequential private clustering algorithm on this
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machine. This idea of uniform sampling for private clustering was recently used by [14]. While they
proved that this method ensures differential privacy, their additive error is quite large: they prove
that with T samples one can obtain total additive error of roughly n/

√
T · Λ2. Even if we sampled

n/2 points at random, this equals
√
n · Λ2, whereas we wish for a much smaller additive error of

poly(k) · Λ2. One can also construct examples, even when k = 2, where random sampling must
induce large additive error. For instance, if we co-locate n−

√
n points at the origin and co-locate√

n points at a point Λ away from the origin, the optimal cost for 2-means is 0, but a random sample
of
√
n points, with constant probability, consists only of points located at the origin. Therefore, any

algorithm applied to the sampled points will completely fail to recognize the second cluster, and will
incur an Ω(

√
n · Λ2) error.

Another tempting approach to obtain an efficient and scalable DP algorithm with optimal approxima-
tion guarantees is to implement the O(1)-approximate private algorithms of [70] or [44] in the MPC
setting. Unfortunately, both of these algorithms have an intrinsic sequential behavior that makes this
approach difficult. The algorithm of [70] relies on a private local search procedure of [47], which
appears very difficult to implement in MPC without a number of rounds of communication of Ω(k).
The algorithm of [44] relies on iteratively finding and peeling off a “privately”-dense ball of points.
This method requires roughly O(k log n) iterations, and again appears very difficult to implement in
O(1) parallel rounds.

Our approach: we describe our overall procedure, and give intuition for some of the details.

Overall procedure. Our overall algorithm can be split into three main steps.
1. Reduce the dimensionality of the problem d to O(log k). This will remove large depen-

dencies on the dimension for both the runtime and additive error.
2. Compute in MPC a private and very efficient but weak k-means (or k-median) solu-

tion: Namely a solution with an ω(1)-approximation guarantee and that may use up to
O(k log2 n) centers instead of just k centers.

3. Combine the weak but efficient MPC solution with an O(1)-approximate private sequen-
tial algorithm to obtain an efficient O(1)-approximate MPC algorithm.

We remark that the first and third steps can be done using two different but related methods. The
first method obtains an O(1)-approximation with additive error proportional to approximately k2.5 +

k1.01
√
d (i.e., Theorem 1.1). The second method obtains a approximation factor within an arbitrary

factor γ of even the best known non-private and sequential algorithm, but with additive error
proportional to approximately kÕ(1/γ2) (i.e., Theorem 1.2). We discuss the second step in Section
3, the first method of doing the third step in Section 4, the second method of doing the third step in
Section 5, and both ways of doing the first step in Section 6. We now just focus on a key idea for the
third step, and will give more algorithmic description and intuition in the later sections of this paper.
All formal proofs are deferred to the appendix.

Charging Additive Error to Multiplicative Error. As previously mentioned, a direct sampling
approach fails because it incurs a too large additive error. However, we show that we can still use
sampling if we sort the points appropriately and do not sample each point with the same probability.
The first idea we use is inspired by Chen [21], which is to start with our weak MPC centers, and
map each point x to a bucket (j, r), where j represents the closest of the weak centers to x, and r
approximates the distance from x to this center. Our next idea is to show that if we apply a private
clustering procedure on a random sample of a fixed size in each bucket, we can charge the large
additive cost obtained to a small constant-factor blowup in the multiplicative cost. The intuition for
this is that if the average cost of each point is roughly R, then most points in our weak approximation
are still roughly within O(R) of the weak centers, and therefore get mapped to buckets represented
by much smaller balls. So, we can then apply a private sequential algorithm on these buckets with
total error depending on R2 rather than on Λ2. We will show that, by using properties of the initial
weak solution, the large additive error can be replaced with a small multiplicative error, even if the
sample size T for each bucket is small.

To explain the above intuition further, in our analysis we apply a Chernoff bound and some properties
of high-dimensional Euclidean space to show that if there are m points in a bucket all within radius
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R of each other, we accumulate roughly R2 · m/
√
T additive error, as opposed to a more naive

Λ2 ·m/
√
T error (which would be obtained by [14]). We can then evenly distribute the error between

each of the m points, to obtain R2/
√
T error per point. We charge the error of each point to the

squared distance of each point to its center in the weak approximation, which is roughly equal to R2.
So, when we add over all points, the error across all points is roughly 1/

√
T times the overall cost of

the weak approximation. So, if the weak solution had cost at most α times the optimal k-means cost,
if the sampling size T is much bigger than α2 then the total error is much smaller than the optimal
cost. Hence, we are able to charge the total additive error into a small multiplicative error!

2 Preliminaries

We present some basic definitions and setup that will be sufficient for explaining our algorithms for
the main body of the paper. We defer the full set of preliminaries to Appendix A.

2.1 Differential Privacy

Definition 2.1 ([34]). A (randomized) algorithm A is said to be (ε, δ)-differentially private ((ε, δ)-
DP for short) if for any two “adjacent” datasets X and X ′ and any subset S of the output space of A,
we have

P(A(X ) ∈ S) ≤ eε · P(A(X ′) ∈ S) + δ.

In our setting, we say that two datasets X and X ′ are adjacent if we can convert X to X ′ either by
adding, removing, or changing a single data point. We remark that in all of our algorithms, we will
implicitly assume that ε, δ ≤ 1

2 .

A ubiquitous method we use to ensure privacy is the Laplace Mechanism. Simply, this is a method
where we privatize a statistic of the data by adding noise Lap(t) to the statistic for some t > 0, where
Lap(t) has the PDF 1

2t · e
−|x|/t. It is well-known that if f(X ) is a statistic that never changes by

more than ∆ between any two adjacent datasets X ,X ′, then f(X ) + Lap(∆/ε) is (ε, 0)-DP.

2.2 The Massively Parallel Computation (MPC) Model

In the MPC model, there are multiple machines where each machine has sublinear local memory.
The input data points are distributed arbitrarily on the machines before computation starts. The
computation proceeds in rounds. In each round, each machine reads its local data and performs
computations. At the end of each round, each machine sends/receives messages to/from other
machines. The total size of messages sent/received by a machine in each round does not exceed the
local memory size. The output is distributed on machines at the end of the computation. The MPC
algorithm with small number of rounds and small total space (total memory across all machines) is
desired. Furthermore, scalability is also considered in many applications and thus we want the local
memory required by the algorithm as small as possible. There are many scalable MPC algorithmic
primitives. The most basic one is sorting.

Theorem 2.2 ([46, 45]). There is an MPC algorithm which sorts N data items in O(1) rounds using
O(N) total space. The local memory per machine required is at most O(Nθ) for arbitrary small
constant θ > 0.

Based on the sorting primitive above, other basic subroutines such as indexing, prefix sum and set
aggregation can be easily implemented in the MPC model with same complexity as sorting. We refer
readers to Appendix E of [3] for more basic MPC algorithmic primitives.

2.3 k-Means and k-Median Clustering

For two points x, y ∈ Rd, we define d(x, y) to be the Euclidean distance between x and y. For a set
C ⊂ Rd of points, we define d(x, C) = d(C, x) to be minc∈C d(x, c).

In both k-means and k-median clustering, we are given a dataset of points X = {x1, . . . , xn} in
d-dimensional Euclidean space Rd. We further assume that the points in X are in B(0,Λ), which
is the ball of radius Λ about the origin in Rd. Our goal in k-means (resp., k-median) clustering is
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to find a subset C of k-points that minimizes the cost of X with respect to C. Specifically, for a set
of centers C, we define cost(X ; C) :=

∑
x∈X d(x, C)p, where p = 2 in the setting of k-means and

p = 1 in the setting of k-median. Occasionally, we may assign each point xi ∈ X a positive weight
wi, in which case we define cost(X ; C) :=

∑
xi∈X wi · d(xi, C)p. We also define OPT(X ) to be the

minimum value of cost(X ; C) for any set of k points C.

Our goal in differentially private clustering is to produce a set of k centers C such that C is (ε, δ)-DP
with respect to X , and such that cost(X ; C) ≤ α · OPT(X ) + V · Λp (where p = 2 for k-means and
p = 1 for k-median). If we obtain this guarantee, we say that we have an (ε, δ)-DP algorithm for
k-means (or k-median) with multiplicative ratio α and additive error V . In the MPC model, our goal
is to make a machine output the set of k centers at the end of the algorithm.

Finally, we briefly discuss coresets. For a dataset X ⊂ B(0,Λ) and for some γ ≤ 1
2 and W ≥ 0,

a (γ,W )-coreset is a dataset Y that estimates X with respect to k-means (or k-median) clustering,
i.e., (1 − γ) · cost(X ; C) −W · Λp ≤ cost(Y; C) ≤ (1 + γ) · cost(X ; C) + W · Λp for all subsets
C ⊂ B(0,Λ) of size at most k. We will also want the dataset Y to have much fewer distinct points
than X , though each point in Y may have large multiplicity. In the setting of non-private coresets, we
usually have W = 0, in which case we write γ-coreset to mean (γ, 0)-coreset. We note the following
theorem regarding MPC algorithms for non-private coresets.
Theorem 2.3 ([17, 40, 41]). Consider n points in Rd. There exists a non-private MPC algorithm
which outputs a k-means/k-median γ-coreset with size poly(k, d, log n, 1/γ) in O(1) rounds for
γ ∈ (0, 0.5). The total space needed is O(nd) + poly(k, d, log n, 1/γ), and the local memory per
machine required is poly(k, d, log n, 1/γ). In addition, the total running time over all machines is at
most O(nd) + poly(k, d, log n, 1/γ).

3 A Preliminary Bicriteria Approximation

A key tool in all of our k-means and k-median algorithms is an initial, crude approximation for
k-means (or k-median) clustering. Specifically, we start with a bicriteria approximation, which
means that the algorithm may output a list of more than k centers. Our algorithm is very efficient,
only needing constant rounds of communication and computation, and essentially optimal time per
machine.
Theorem 3.1. There exists an (ε, δ)-DP algorithm that, given a dataset X ⊂ B(0,Λ) of size n,
computes a set of O(k log2 n) points F that provides a dO(1)-approximation to the best k-means (or
k-median) clustering with additive error k · poly(log n, d, ε−1, log δ−1). In addition, the algorithm
can be implemented in MPC with O(1) rounds of communication and computation, and Õ(nθd) time
per machine.

Our techniques for this section heavily rely on a data structure called a Quadtree. This data structure
involves creating a nested series of grids partitioning Rd. The quadtree has varying levels, where
the 0th level is a very coarse grid, and each subsequent level further refines the previous level
with smaller grid pieces. The Quadtree can be used to embed the input points into a so-called
“Hierarchically Separated Tree” (HST) metric, for which computing k-median cost is often much
simpler than computing k-median in Euclidean space. Indeed, [24] uses this embedding, along with a
dynamic programming approach, to provide a private approximation to k-median with multiplicative
approximation O(d3/2 log n) and additive approximation O(k) · poly(log n, d, ε−1).

Unfortunately, we cannot directly use their approach for two reasons. The first is that their dynamic
programming approach requires roughly log n rounds of communication across machines for k-
median (and poly log n rounds for k-means), whereas we wish for O(1) rounds. The second is that
their approach runs into a barrier when the memory per machine is below roughly

√
n, whereas we

want an MPC algorithm even if each machine can only store nθ points for an arbitrarily small θ > 0.

Our method of developing a bicriteria approximation is inspired by the Quadtree and embeddings
into this HST metric, but we avoid the issues above by using a greedy approach rather than a dynamic
programming one. Specifically, we will consider each level of the Quadtree grid separately, and
map every point x ∈ X to the grid center x lies in. We then approximately choose the O(k) centers
that have the most points in them, using a private selection mechanism. We will have to do this for
logarithmically many levels, which causes us to have a bicriteria approximation. To analyze this
procedure, we avoid looking at the HST metric and instead consider the number of points nr that are
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of distance r away from some center for every choice of radius r. We then use an integration by parts-
based idea to analyze the k-means (or k-median) cost based on summing a weighted combination of
nr over r, which we use to establish our accuracy bounds. Our greedy method can be implemented
in O(1) rounds of communication and computation for both k-means and k-median.

The full details of the algorithm and analysis, including pseudocode, are deferred to Appendix B.

4 A Constant Approximation in MPC

In this section, we describe how to combine our bicriteria approximation from Section 3, along with
the sequential private O(1)-approximate algorithm from [70], to obtain a parallel O(1)-approximate
algorithm using only O(1) rounds of communication and computation. Specifically, we prove the
following.
Theorem 4.1. There exists an (ε, δ)-DP algorithm for k-means (or k-median) with multiplicative
ratioO(1) and additive error k2.5 ·poly

(
d, log n, ε−1, log δ−1

)
. In addition, assuming each machine

stores Õ(nθ) ≥ k1.5 · poly(d, log n, ε−1, log δ−1) points, the algorithm can be implemented in
MPC with O(1) rounds of communication and computation, total sequential running time Õ(nd) +

poly(k, d, ε−1, log δ−1), and total time per machine Õ(nθd) + poly(k, d, ε−1, log δ−1).

We remark that large polynomial dependencies in d are not crucial, as we will use dimensionality
reduction in Section 6 to set d = O(log k).

Our algorithm is inspired by the coreset framework of Chen [21], who shows how to convert a
bicriteria approximation into a coreset for clustering (in the sequential, non-private setting). The
rough method is to start with an approximate set of cluster centers F of β · k points for some β > 1,
and map each point x ∈ X to its nearest neighbor in F . Then, the points in X are split into “rings”,
based on their closest point and their approximate distance to that closest point. Finally, the points in
each ring are replaced by a uniform sample of a few points in each ring, to create a small coreset.

Ordinarily, when performing DP k-means/k-median over n points, we incur additive cost proportional
to Λp, where Λ is the diameter of the pointset. Hence, naive application of using private k-means/k-
median on a random subset (or even a coreset) of T points is quite bad, as we have to scale each point
by a factor of n/T for the weights to match, which induces a n/T · Λp additive error. In reality, the
induced additive error is actually worse, and behaves like n/

√
T · Λp. However, an important insight

we have, as noted in Subsection 1.3, is that when using the framework of Chen [21], we can charge
much of the additive cost to multiplicative cost. Namely, if we perform a private k-means/k-median
algorithm on a random sample of T points in each ring separately, if the ring had radius R� Λ, we
would roughly incur additive error proportional to Rp/

√
T per point, rather than Λp/

√
T .

We then use the properties of the bicriteria approximation to show that if we add this error across
all rings, the additive error is actually only a small multiple of the optimal cost, as opposed to a
much worse n/

√
T · Λp. Recall that if Ri represents the approximate distance of each point xi to

its bicriteria center, then
∑
iR

p
i is at most dO(1) times more than the optimal k-means cost (plus

some small multiple of Λp), by Theorem 3.1. Hence, if T is roughly dO(1), we can get the overall
additional error induced by each Rp/

√
T error per point is at most O(1) times the optimal k-means

cost. This is what allows us to get a multiplicative approximation with small additive cost. We remark
that some rings may have fewer than our desired T points, in which case we cannot sample T random
points and incur an additional small additive cost. Finally, is quite simple to sample T points in each
ring in parallel, and map each sample to a separate machine. We can then use a sequential private
k-means algorithm for each sample separately, as we can store the T points on a single machine.

One additional issue is that this procedure has to find k points for each ring, and there will end up
being roughly O(k · poly log n) rings. So this means we need O(k2 · poly log n) centers, whereas
we only want k centers. Our way of fixing this is to convert our k centers into a “semi-coreset” by
mapping each point in a ring to its closest point in the corresponding private set of centers, and then
adding Laplace noise to the multiplicities of the set. These semi-coresets will be private, which means
we can apply a non-private MPC k-means algorithm on the union of all the semi-coresets to generate
a final set of points, since the semi-coresets have already been privatized. Also, while they are not
true coresets, we show that any O(1)-approximate k-means algorithm applied on the union of all the
semi-coresets still provides an O(1)-approximate solution for the original dataset.
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We present the algorithm pseudocode in below in Algorithm 1, and defer the full analysis to Appendix
C. We remark that we replace some instances of mapping points to the nearest center with mapping
them to an approximately nearest center, which is useful in speeding up runtime.

Algorithm 1 A constant approximation algorithm for differentially private k-means (or k-median) in
MPC.

1: procedure CONSTANTAPPROX(X , ε, δ) . Will be (O(ε), O(δ))-DP.
2: Let T = poly(d, log n, ε−1, log δ−1) · k1.5 be a sufficiently large threshold parameter.
3: Let F = {f1, . . . , fβ·k} be an (ε, δ)-DP bicriteria approximation for k-clustering of X , using

Theorem 3.1, and where β = O(log2 n).
4: for all xi ∈ X do
5: Assign xi to bucket (j, r) if xi has fj as a O(log n)-approximate nearest neighbor, with
d(xi, fj) ≈ Λ

2n · 2r.
6: for all j ≤ β · k, r ≤ O(log n) do
7: Let Xj,r be set of points xi assigned to (j, r).
8: Let N̂j,r := |Xj,r|+ Lap(1/ε).
9: if N̂j,r ≥ 2T then

10: Sample T random points Yj,r from Xj,r.
11: Send Yj,r to one machine, and use [70] on each machine to find a k-clustering Gj,r.
12: Replace each point in Yj,r with an O(1)-approximate nearest neighbor in Gj,r.
13: Add Lap(1/ε) noise to the multiplicity of each point in the replaced data set, to create

dataset Ŷj,r.
14: else
15: Let Ŷj,r = ∅.
16: Let Ŷ =

⋃
j,r Ŷj,r.

17: Return a non-private MPC k-means clustering algorithm on Y, using, e.g., [17].

5 An Arbitrarily Good Approximation in MPC

In this section, we present a different method of combining the bicriteria approximation from Section
3 with a sequential private O(1)-approximation from [70] to obtain a parallel approximate algorithm
achieving arbitrarily close multiplicative ratio to the best non-private sequential algorithm. While we
obtain an improved multiplicative approximation ratio, we suffer a larger additive error. Specifically,
we prove the following.

Theorem 5.1. Suppose that there exists a polynomial-time algorithm that can compute a ρ-
approximation to k-means (resp., k-median). Then, for any constant ρ′ > ρ, exists an
(ε, δ)-DP algorithm for k-means (resp., k-median) with multiplicative ratio ρ′ and additive er-
ror poly

(
k, ed, log n, ε−1, log δ−1

)
. In addition, assuming each machine can store Õ(nθ) ≥

poly(k, ed, ε−1, log δ−1) points, the algorithm is implementable in MPC with O(1) total rounds of
communication and computation, and O(nθkd) time per machine.

We remark that while there is an exponential dependence on the dimension d in both the runtime and
additive error, in Section 6, we show how to replace the ed with poly(k) additive error.

Our overall procedure has two steps. The first step is to convert an O(1)-approximate private
sequential algorithm into a private sequential coreset: this is somewhat similar to Ghazi et al. [44],
which provides a similar guarantee but has a runtime dependence that is polynomial in n as opposed
to near-linear in n. The second step is to convert a private sequential coreset into a private parallel
coreset.

For the first step, we start with a private O(1)-approximate clustering, and as in Section 3, we split the
dataset X into roughly O(k log n) rings based on each point’s closest center and the distance to that
center. For each ring, we use a result of Ghazi et al. [44] inspired by the theory of error-correcting
codes, which forms a “cover” of each ring of size roughly exponential in the dimension, which is a
method of selecting points such that every point in the ring is reasonably close to at least 1 point in
the cover. We can create the cover in parallel, and then map every point to its closest point in the

8



cover in eO(d) time. We can use this cover and a Laplace mechanism to construct a private coreset of
the data, though the coreset will have size exponential in the dimension.

For the second step, we apply a similar method to Section 4, again using the insight of charging
additive error to multiplicative error. We again start with our weak parallel coreset from Section 3,
partition the points into rings, and sample uniformly from each ring which allows each ring’s sample
to fit on a single machine. Now, for each sample, we apply the private coreset procedure from the first
step, and together we obtain a large private coreset. We finally apply a non-private MPC clustering
algorithm on the already privatized coreset.

The full details of the algorithm and analysis, including pseudocode, are deferred to Appendix D.

6 Dimensionality Reduction

Our algorithm for dimensionality reduction relies on [56], which shows that a random projection Π
down to O(log k) dimensions can approximate every k-clustering of n points simultaneously. While
this may seemingly imply that we can automatically assume d = O(log k), this is not so obvious,
because once we have found a set of centers C′ in RO(log k), it is unclear how to pull this back up to a
set of centers in Rd.

Ghazi et al. [44] use dimensionality reduction to improve their exponential dependence on d to
a polynomial dependence on k (as eO(log k) = poly(k)). They start by constructing a random
projection Π down to O(log k) dimensions and compute a private set C′ = {c′1, . . . , c′k} in the
reduced dimension. They then map each point xi to a cluster Xj based on which point c′j ∈ C′ is
closest to Πxi. Finally, to obtain a set of centers in high dimensions, they compute a private average
(for k-means) or geometric median (for k-median) of the points in each cluster Xj .
The main issue in applying this method is that we wish for a very fast scalable algorithm that works
in MPC, and it is unknown how to compute a private geometric median that is sufficiently scalable,
i.e., runs in O(1) MPC rounds and Õ(nd) total work. Our first observation in obtaining an efficient
algorithm is that, rather than computing a geometric median of the points, a coordinate-wise median
serves as a reasonable proxy for the geometric median. Specifically, it has the important property
of being within distance O(r) of the geometric median of X̃j if at least 2/3 of the points in Xj are
within r of the geometric median [59]. In addition, the coordinate-wise median can be computed
on a small sample without significant error, and can be computed privately without much error
either. We can therefore use an approximate coordinate-wise median for each cluster Xj to obtain an
O(1)-approximate private and scalable clustering with minimal dependence on the dimension.

If we want arbitrarily good approximation, such as in Section 5, the coordinate-wise median is
unfortunately not strong enough. To fix this, our rough intuition is to compute a private geometric
median of a small uniform subsample of points, but only among those points close to the private
coordinate-wise median. This idea of uniform subsampling to speed up runtime has been used in
several previous algorithms for k-means, such as [23, 14, 30, 37]. As we perform the geometric
median on a small sample, a polynomial-time algorithm is sufficient. In addition, by restricting
ourselves to points close to the coordinate-wise median, we are able to replace additive error
proportional to Λ with additive error proportional to some smaller radius R, which we can charge
to multiplicative error in a similar manner as in Sections 4 and 5. We remark that this algorithm
may take Õ(ndk) total time instead of Õ(nd) time, but we fix this by performing another uniform
subsampling trick at the beginning of the algorithm, which improves the runtime at the cost of a slight
blowup in the additive error.

Overall, we obtain our main theorems of this paper, Theorems 1.1 and 1.2, which correspond to
dimension reduction applied to Theorems 4.1 and 5.1, respectively.

We provide pseudocode for Theorem 1.1 below, in Algorithm 2. The full algorithm and analysis for
both theorems, as well as pseudocode for Theorem 1.2, are deferred to Appendix E.

9



Algorithm 2 A constant approximation algorithm for differentially private k-means (or k-median) in
MPC, with improved dependence on d.

1: procedure CONSTANTAPPROXHIGHDIM(X , ε, δ) . Will be (O(ε), O(δ))-DP.
2: Let T = O(log(nd) · ε−1

√
d log δ−1) be a threshold parameter.

3: Let d′ = O(log k), and pick a random projection Π ∈ Rd′×d.
4: Use Algorithm 1 to find a k-means clustering C′ = {c′1, . . . , c′k} of ΠX = {Πx1, . . . ,Πxn}.
5: Let S ⊂ [n] be a random sample where each i ∈ S with probability k−0.01.
6: Map each point Πxi : i ∈ S to a 10-approximate nearest neighbor in C′.
7: for j = 1 to k do
8: Let Xj be the set of points xi such that Πxi is mapped to c′j .
9: Let N̂j = |Xj |+ Lap(1/ε).

10: if N̂j ≥ 2T then
11: Sample T points in Xj , and let cj be a private coordinate-wise median of the sampled

points, where we use (ε/(2
√
d log δ−1, 0)-DP in each direction.

12: else
13: Let cj be the origin.
14: Return C = {c1, . . . , ck}
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